JPH0274597A - Chromium-doped semi-insulative gallium-arsenic single crystal and production thereof - Google Patents

Chromium-doped semi-insulative gallium-arsenic single crystal and production thereof

Info

Publication number
JPH0274597A
JPH0274597A JP22515288A JP22515288A JPH0274597A JP H0274597 A JPH0274597 A JP H0274597A JP 22515288 A JP22515288 A JP 22515288A JP 22515288 A JP22515288 A JP 22515288A JP H0274597 A JPH0274597 A JP H0274597A
Authority
JP
Japan
Prior art keywords
single crystal
concentration
nsi
chromium
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22515288A
Other languages
Japanese (ja)
Other versions
JPH08758B2 (en
Inventor
Seiji Mizuniwa
清治 水庭
Toru Kurihara
徹 栗原
Akio Hattori
昭夫 服部
Masayoshi Aoyama
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63225152A priority Critical patent/JPH08758B2/en
Publication of JPH0274597A publication Critical patent/JPH0274597A/en
Publication of JPH08758B2 publication Critical patent/JPH08758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the thermal stability and quality of the subject single crystal by adding carbon to the single crystal in a concentration having a specific relation with the concentration of silicon remained in the single crystal. CONSTITUTION:The Cr-doped semi-insulated GaAs single crystal contains carbon in a concentration nc satisfying both the equations I and II with a concentration nsi of Si remained in the single crystal and has a specific resistance of >=10<6>OMEGA-cm. When the subject single crystal is produced by a horizontal boat method using a quartz boat, the carbon is doped in an amount required to give the concentration nc satisfying the equations I and II, thereby providing the thermally stable Cr-doped semi-insulated GaAs single crystal. Since wetting is not produced between the crystal and the quartz boat, the crack, distortion, transformation, etc., of the crystal is not generated, thereby providing the single crystal having a high quality.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クロムドープ半絶縁性ガリウム・ヒ素(Ga
As)単結晶およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to a chromium-doped semi-insulating gallium arsenide (Ga
As) It relates to a single crystal and its manufacturing method.

[従来の技術] 横形ボート法を用いて得られるクロム(Cr)ドープ半
絶縁性GaAs結晶中\は、比抵抗が高い(〜108Ω
・CI)、転位密度が小さい(〜5000C11−3)
等の特徴があり、液体封止引上法(LEC法)を用いて
得られるウエノ1と競合して用いられている。GaAs
にCrをドープする理由は、石英ボートから混入する浅
いドナーレベルを有するシリコン(Si)に対し、深い
アクセプタレベルを有するCrをより多く添加すること
によりSiによる不純物の影響を補償するためである。
[Prior art] Chromium (Cr)-doped semi-insulating GaAs crystal obtained using the horizontal boat method has a high specific resistance (~108Ω
・CI), low dislocation density (~5000C11-3)
It has the following characteristics and is used in competition with Ueno 1, which is obtained using the liquid-enclosed drawing method (LEC method). GaAs
The reason for doping Cr with Cr is to compensate for the influence of impurities caused by Si by adding more Cr having a deep acceptor level to silicon (Si) having a shallow donor level mixed in from the quartz boat.

半絶縁性、すなわち比抵抗p〉106Ω・cmの関係を
得るには(e)式の関係を満足する必要がある。
In order to obtain semi-insulating property, that is, the relationship of specific resistance p>106 Ω·cm, it is necessary to satisfy the relationship of equation (e).

n cr> n s+              −
(c)但し、ncr:Crの濃度、nsi:Stの濃度
n cr> n s+ −
(c) However, ncr: concentration of Cr, nsi: concentration of St.

[発明が解決しようとする課題] 上述したように石英ボートを用いて半絶縁性のGaAs
単結晶を製造する場合は、ボートから混入するSiの電
子レベルを補償するためCrドブが行なわれているが、
混入する5iffiが多い場合はさらに多量のCrを添
加しなければならない。
[Problem to be solved by the invention] As described above, semi-insulating GaAs can be fabricated using a quartz boat.
When manufacturing single crystals, Cr doping is performed to compensate for the electronic level of Si mixed in from the boat.
If a large amount of 5iffi is mixed, a larger amount of Cr must be added.

しかしCrの偏析係数は約6X10”−’と小さいため
結晶中に混入し難<、Cr濃度が高くなった結晶成長の
後半では濃縮過大となって析出を生じてしまう。
However, since the segregation coefficient of Cr is as small as about 6×10''-', it is difficult to mix into the crystal, and in the latter half of crystal growth when the Cr concentration becomes high, it becomes excessively concentrated and precipitates.

そこで、Slの混入を抑制する必要があるが、現在Si
の量を低減する方法としては、酸素を添加する方法やP
BN (パイロリティック窒化ボロン)ボートを使用す
る方法等が採用されている。
Therefore, it is necessary to suppress the contamination of Sl, but currently Si
Methods for reducing the amount of P include adding oxygen and
Methods such as using a BN (pyrolytic boron nitride) boat have been adopted.

しかし、酸素を添加する方法において石英ボートを使用
した場合、単結晶後端においてSi濃度か著しく低下す
るため、石英ボートと単結晶後端との間に「ぬれ」 (
焼付き現象)を生ずることが確認されており、この「ぬ
れ」の発生はSi濃度nsj≦4. 4 X 1015
cm−3(=0. 1ppma)のときに顕著である。
However, when a quartz boat is used in the method of adding oxygen, the Si concentration at the rear end of the single crystal decreases significantly, resulting in "wetting" between the quartz boat and the rear end of the single crystal.
It has been confirmed that this "wetting" occurs when the Si concentration nsj≦4. 4 x 1015
It is noticeable at cm-3 (=0.1 ppma).

またSi/a71111:nsiがnsi≧8. 8 
X 10 ”’cm−3(0、2ppma)の場合は、
アニール後表面比抵抗か低下することが知られている。
Also, Si/a71111: nsi is nsi≧8. 8
In the case of X 10'''cm-3 (0.2ppma),
It is known that the surface resistivity decreases after annealing.

これは、Crか表面から外部拡散(out di「ru
sion )することにより、(C)式を満足できない
場合が生じたためである。この傾向はCrla度ncr
が低くなる程顕著となり、安定した品質が得られない恐
れがある。
This is caused by external diffusion from the Cr surface.
This is because there were cases where equation (C) could not be satisfied due to the following. This trend is Crla degree ncr
The lower the value, the more noticeable this becomes, and there is a risk that stable quality may not be obtained.

本発明の目的は、熱的に安定なりロムドープ半絶縁性ガ
リウム・ヒ素単結晶およびその製造方法を提供すること
にある。
An object of the present invention is to provide a thermally stable ROM-doped semi-insulating gallium arsenide single crystal and a method for producing the same.

[課題を解決するための手段] 本発明は、GaAs単結晶中に残留する残留シリコン濃
度nsiに対し、 1X10cm  ≦nc < nsi    −(a)
nsi−nc≦4 、 4 X 1015cm−3−(
b)の両式を満足する濃度ncのカーボンを倉荷し、1
06Ω・cm以上の比抵抗を有する第1の発明と、横形
ボート法によるCrドープ半絶縁性GaAs単結晶の製
造方法において、上記(a)式及び(b)式を満足する
濃度ncとなるのに必要な量のカーボンをドープして製
造するようにした第2の発明とにより、熱的に安定なC
rドープ半絶縁性GaAs単結晶が得られるようにして
目的の達成を計っている。
[Means for Solving the Problems] The present invention provides the following for the residual silicon concentration nsi remaining in the GaAs single crystal: 1X10cm ≦nc < nsi −(a)
nsi-nc≦4, 4×1015cm-3-(
Carbon with a concentration nc that satisfies both formulas of b) is loaded, and 1
In the first invention having a specific resistance of 0.6 Ω cm or more and the method for manufacturing a Cr-doped semi-insulating GaAs single crystal by the horizontal boat method, the concentration nc that satisfies the above equations (a) and (b) is obtained. According to the second invention, in which carbon is doped in the required amount to produce thermally stable carbon.
The objective is to be achieved by obtaining an r-doped semi-insulating GaAs single crystal.

[作用] 本発明のCrドープ半絶縁性GaAs単結晶およびその
製造方法では、浅いアクセプタレベルを有するカーボ〉
Cを前記の(a)式および(b)式を満足するように添
加することにより、CがSiを補償するため、Crの添
加量を少なくすることができる。
[Function] In the Cr-doped semi-insulating GaAs single crystal and the manufacturing method thereof of the present invention,
By adding C so as to satisfy the above formulas (a) and (b), the amount of Cr added can be reduced because C compensates for Si.

CはSiと同様熱処理により動きにくい元素で、ウェハ
上へのエピタキシャル層形成時に成長層への拡散も少な
いため、熱的に安定なCrドープ半絶縁性GaAs単結
晶であると言うことができる。
Like Si, C is an element that does not easily move during heat treatment, and it also diffuses little into the growth layer when an epitaxial layer is formed on the wafer, so it can be said that it is a thermally stable Cr-doped semi-insulating GaAs single crystal.

また、Sinが8. 8 X 10 ”’cm−3以上
の場合は石英ボートとの「ぬれ」は発生しに<<、低転
位単結晶が得られ易い。
Also, Sin is 8. If it is 8 x 10'''cm-3 or more, "wetting" with the quartz boat will not occur and a low dislocation single crystal will be easily obtained.

なお、SiはGaAs結晶中で浅いドナー不純物および
浅いアクセプタ不純物の両方になり得る両性不純物であ
り、従ってGaAs中の81の全てを浅いドナー不純物
として扱うわけにはいかない。すなわち、正確には、浅
いドナー不純物として機能するSt濃度(Sl )は、
Sl本−(浅・本 いドナーレベルの5iia度)−(浅いアクセプタレベ
ルのSi#a度)となり、上述の(a)、(b)式中の
nsiは、厳密にはns+’とすべきものである。
Note that Si is an amphoteric impurity that can serve as both a shallow donor impurity and a shallow acceptor impurity in the GaAs crystal, and therefore, all of 81 in GaAs cannot be treated as a shallow donor impurity. That is, to be more precise, the St concentration (Sl) that functions as a shallow donor impurity is:
Sl book - (shallow/large donor level 5iia degree) - (shallow acceptor level Si#a degree), and nsi in the above formulas (a) and (b) should strictly be ns+'. It is.

また、浅いドナーレベルの不純物nDのほとんどはS 
i  (nD #nsi” )であり、浅いアクセプタ
ーレベルの不純物nAの場合は、原料から混入するもの
としてナトリウム(Na)、カリウム(Ca)、マンガ
ン(Mn)およびC等があげられるが、通常ボート法を
用いてGaAs単結晶を装造する場合のnへの総量は1
×1015CII+−3以下である。従ってSiflm
が比較的多量に含まれる結晶(> 8. 8 X 10
15c+n−3)の場合でも前記(a)。
Also, most of the shallow donor level impurity nD is S
i (nD #nsi”), and in the case of shallow acceptor level impurities nA, sodium (Na), potassium (Ca), manganese (Mn), and C can be cited as contaminants from raw materials, but usually When mounting a GaAs single crystal using the boat method, the total amount of n is 1.
×1015CII+-3 or less. Therefore Siflm
Crystals containing a relatively large amount of (> 8.8 x 10
15c+n-3) also applies to (a) above.

(L+)式を満足するようにCを添加することにより低
転位で熱的に安定なCrドープ半絶縁性単結晶を1)る
ことかできる。
By adding C so as to satisfy the equation (L+), a thermally stable Cr-doped semi-insulating single crystal with low dislocations can be produced (1).

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

実施例1 反応管内の一端に、Ga:1000g、Cr:430m
g、酸化ガリウム(Ga2o3): 40mgおよび種
結晶を入れた石英ボートを置き、他端にはAs:111
0gを配置する。次に、反応管内を5 X 10−6T
orr以下の圧力で1時間以上真空に吸引した後封止す
る。真空状態に封止した反応管を横形二連式電気炉の中
に設置して高温炉の志度を1200℃、低温炉の温度を
610℃まで上昇させこの状態で定温制御を行なう。こ
のようにしてボート内でGaAsの合成反応を行なイ〕
せた後、温度勾配一定の状態でGaAs融液に種結晶を
若干溶解させ、ボート側温度をこれより高くした状態で
一定温度で降温させて単結晶の成長を行なわせる。単結
晶が全部固化したならば100℃/時の割合で室温まで
冷却して取り出す; このようにして成長させたGaAs単結晶について固化
率−0,1の部分でスライスしてウェハを取り出し不純
物濃度をAll+定した結果、ner=1、 3X10
I5 cal”   n5i=8. 8X10”c13
nc<1011014c1テあツタ。
Example 1 Ga: 1000g, Cr: 430m at one end of the reaction tube
g. Place a quartz boat containing 40 mg of gallium oxide (Ga2O3) and a seed crystal, and place As: 111 at the other end.
Place 0g. Next, the inside of the reaction tube was heated to 5 x 10-6T.
After vacuuming for more than 1 hour at a pressure of orr or less, the tube is sealed. A reaction tube sealed in a vacuum state is placed in a horizontal double-barrel electric furnace, and the temperature of the high temperature furnace is raised to 1200°C and the temperature of the low temperature furnace is raised to 610°C, and constant temperature control is performed in this state. In this way, the GaAs synthesis reaction is carried out inside the boat.]
After this, a seed crystal is slightly dissolved in the GaAs melt with a constant temperature gradient, and the temperature is lowered at a constant temperature while the boat side temperature is higher than this to grow a single crystal. Once the single crystal is completely solidified, it is cooled down to room temperature at a rate of 100°C/hour and taken out; the GaAs single crystal grown in this way is sliced at a solidification rate of -0 and 1, and the wafer is taken out and the impurity concentration determined. As a result of setting All+, ner=1, 3X10
I5 cal” n5i=8.8X10”c13
nc<1011014c1 Teatsuta.

また、隣接するウェハを取り出し二端子法を用いて比抵
抗ρを測定した結果、アニール前は2×108Ω・Cl
11であったが、温度850℃、水素中で30分間F 
F Craca to face)法によりアニルした
後は、ρ−5X106Ω・Cl11となり、比抵抗が低
下する現象がみられた。
In addition, as a result of taking out adjacent wafers and measuring the specific resistance ρ using the two-terminal method, it was found that the resistivity ρ was 2×108Ω・Cl before annealing.
11, but at a temperature of 850°C and F for 30 minutes in hydrogen.
After annealing by F Craca to face) method, it became ρ-5×10 6 Ω·Cl 11 , and a phenomenon in which the specific resistance decreased was observed.

実施例2 Ga203を8011gに増量した以外は実施例1と同
一条件で結晶の成長を行なわせた結果、ner=1.3
X10  ca+  、  n5l−4,4X1015
ca=  n c < 1014ea+−”ノG a 
A s単結晶が得られた。また比抵抗ρは、アニール前
が5×108Ω・cIB、アニール後が8×107Ω@
e7−1実施例1に比べるとアニール後の比抵抗の低下
は少なかったが、単結晶が成長するとき単結晶とボート
との間に「ぬれ」が発生して結晶の後端部に割れが生ず
る現象がみられた。
Example 2 Crystal growth was performed under the same conditions as in Example 1 except that the amount of Ga203 was increased to 8011 g. As a result, ner=1.3
X10ca+, n5l-4,4X1015
ca=n c <1014ea+-"ノGa
An As single crystal was obtained. Also, the specific resistance ρ is 5×108Ω・cIB before annealing and 8×107Ω@cIB after annealing.
e7-1 The decrease in specific resistance after annealing was smaller than in Example 1, but when the single crystal grew, "wetting" occurred between the single crystal and the boat, causing cracks at the rear end of the crystal. This phenomenon was observed.

実施例3 この実施例が実施例1.2と異なる点はCを0.1ng
添加した点にあり、この条件で実施例1と同様の方法で
単結晶を成長させた結果、ncr−1、3X10  c
m  、  n5l−8,8X1015e+n−3nc
 = 4. 4 X 1015cI11−”であり、ま
た比抵抗ρはアニール前が5×108Ω・C11、アニ
ール後が7X107Ω・calでアニール後僅かに減少
している。単結晶とボートとの間に「ぬれ」は生じてい
ない。
Example 3 This example differs from Example 1.2 in that 0.1 ng of C was added.
As a result of growing a single crystal in the same manner as in Example 1 under these conditions, ncr-1, 3X10 c
m, n5l-8,8X1015e+n-3nc
= 4. 4 x 1015cI11-", and the specific resistance ρ is 5 x 108 Ω・C11 before annealing and 7×107 Ω・cal after annealing, which decreases slightly after annealing. There is no "wetting" between the single crystal and the boat. It has not occurred.

実施例4 本実施例は上記実施例に対しGa2O3を30mgに減
少させ、Cを0.14mgに増量して添加した場合であ
る。上記実施例と同様にして単結晶を成長させた結果、
ner −1,3x 10 ”co+−3n、5i−I
XIOCIl 、nc−6X10I5cm−3であり、
比抵抗ρはアニール前6X108Ω・cm、アニール後
8X107Ω・elmで、アニール後の比抵抗の減少は
僅少であった。また単結晶とボートとの間に「ぬれ」は
生じていない。
Example 4 This example is a case where Ga2O3 was reduced to 30 mg and C was increased to 0.14 mg compared to the above example. As a result of growing a single crystal in the same manner as in the above example,
ner -1,3x 10"co+-3n,5i-I
XIOCIl, nc-6X10I5cm-3,
The specific resistance ρ was 6×10 8 Ω·cm before annealing and 8×10 7 Ω·elm after annealing, and the decrease in specific resistance after annealing was slight. Furthermore, no "wetting" occurs between the single crystal and the boat.

第1表および第1図は上記各実施例の結果を纏めたもの
で、Cが添加されその濃度ncが大きい実施例3,4の
場合が比抵抗ρの変化が少なく、また「ぬれ」も発生せ
ず良好な結果が得られている。
Table 1 and Figure 1 summarize the results of each of the above examples. Examples 3 and 4, in which C is added and the concentration nc is large, have a small change in resistivity ρ, and also have no "wetting". Good results were obtained without any occurrence.

第1図は横軸がSi濃度nsL縦軸が比抵抗ρを示すも
ので、同図実線はCが無添加の場合、点線がCを添加し
た場合を示す。両者を比較するとC添加の場合の方が明
らかに比抵抗ρの変化が少なく絶縁性に優れていること
が認められる。
In FIG. 1, the horizontal axis shows the Si concentration ns and the vertical axis shows the specific resistance ρ, and the solid line in the figure shows the case where C is not added, and the dotted line shows the case where C is added. Comparing the two, it can be seen that the case of C addition has clearly less change in specific resistance ρ and is superior in insulation properties.

なお、前記の実施例3,4ではCを添加する場合につい
て示したか、Cの代りにSiより浅いアクセプタ量を有
する不純物、例えばナトリウム(Na) カリウム(C
a)、マンガン(M n )等を添加する方法も考えら
れる。
In addition, in Examples 3 and 4 above, the case where C is added is shown, or instead of C, impurities having a shallower acceptor amount than Si, such as sodium (Na) potassium (C
a), a method of adding manganese (M n ), etc. is also considered.

C発明の効果コ 」二連したように本発明によれば次のような効果か得ら
れる。
C. Effects of the Invention C. As mentioned above, according to the present invention, the following effects can be obtained.

(+)  Cの添加により結晶中のStを低減させなく
とも熱的に安定なCrドープ半絶縁性単結晶を得ること
ができる。
By adding (+)C, a thermally stable Cr-doped semi-insulating single crystal can be obtained without reducing the amount of St in the crystal.

(2)結晶と石英ボートとの間に「ぬれ」が生じないの
で、結晶の割れや歪み、転位等が発生せず高品質の単結
晶を得ることができる。
(2) Since "wetting" does not occur between the crystal and the quartz boat, a high-quality single crystal can be obtained without cracking, distortion, dislocation, etc. of the crystal.

(3)品質の向上により製品の歩留りが」二昇しコスト
低減を計ることができる。
(3) Improved quality can increase product yield and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法による一実施例を示す特性図
で、カーボン添加有りおよび無しの場合におけるシリコ
ン濃度対比抵抗変化特性図を示す。 ns、、/′cm3
FIG. 1 is a characteristic diagram showing an example of the manufacturing method of the present invention, and shows a characteristic diagram of resistance change versus silicon concentration with and without carbon addition. ns,,/'cm3

Claims (2)

【特許請求の範囲】[Claims] (1)クロムをドープした半絶縁性ガリウム・ヒ素単結
晶において、該単結晶中に残留する残留シリコンの濃度
nsiに対し、 1×10^1^5cm^−^3≦nc<nsi・・・(
a)nsi−nc≦4.4×10^1^5cm^−^3
・・・(b)の両式を満足する濃度ncのカーボンを含
有し、10^6Ω−cm以上の比抵抗を有することを特
徴とするクロムドープ半絶縁性ガリウム・ヒ素単結晶。
(1) In a semi-insulating gallium arsenide single crystal doped with chromium, the concentration nsi of residual silicon remaining in the single crystal is 1×10^1^5 cm^-^3≦nc<nsi... (
a) nsi-nc≦4.4×10^1^5cm^-^3
A chromium-doped semi-insulating gallium arsenide single crystal containing carbon at a concentration nc that satisfies both equations (b) and having a resistivity of 10^6 Ω-cm or more.
(2)一端に種結晶を置き原料であるガリウムまたはガ
リウム・ヒ素条結晶とドーパントであるクロムを入れた
横形ボートを反応管の一端に配置し、該反応管の他端に
はヒ素を配置し前記反応管内を加熱して前記横形ボート
内にガリウム・ヒ素融液を生成させた後、該ガリウム・
ヒ素融液に前記種結晶を接触させつつ冷却して前記ガリ
ウム・ヒ素の単結晶を育成するクロムドープ半絶縁性ガ
リウム・ヒ素単結晶の製造方法において、前記単結晶中
に残留する残留シリコンの濃度nsiに対し、 1×10^1^5cm^−^3≦nc<nsi・・・ 
(a)nsi−nc≦4.4×10^1^5cm^−3
・・・(b)の両式を満足する濃度ncとなるのに必要
な量のカーボンをドープすることを特徴とするクロムド
ープ半絶縁性ガリウム・ヒ素単結晶の製造方法。
(2) A horizontal boat containing a seed crystal at one end, a raw material of gallium or gallium arsenide strip crystals, and a dopant of chromium is placed at one end of the reaction tube, and arsenic is placed at the other end of the reaction tube. After heating the inside of the reaction tube to produce a gallium arsenic melt in the horizontal boat, the gallium arsenic
In a method for producing a chromium-doped semi-insulating gallium arsenide single crystal, in which the seed crystal is brought into contact with an arsenic melt and cooled to grow the gallium arsenide single crystal, the concentration of residual silicon remaining in the single crystal is nsi. For, 1×10^1^5cm^-^3≦nc<nsi...
(a) nsi-nc≦4.4×10^1^5cm^-3
A method for producing a chromium-doped semi-insulating gallium arsenide single crystal, comprising doping carbon in an amount necessary to obtain a concentration nc that satisfies both equations (b).
JP63225152A 1988-09-08 1988-09-08 Method for producing chromium-doped semi-insulating gallium arsenide single crystal Expired - Fee Related JPH08758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225152A JPH08758B2 (en) 1988-09-08 1988-09-08 Method for producing chromium-doped semi-insulating gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225152A JPH08758B2 (en) 1988-09-08 1988-09-08 Method for producing chromium-doped semi-insulating gallium arsenide single crystal

Publications (2)

Publication Number Publication Date
JPH0274597A true JPH0274597A (en) 1990-03-14
JPH08758B2 JPH08758B2 (en) 1996-01-10

Family

ID=16824760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225152A Expired - Fee Related JPH08758B2 (en) 1988-09-08 1988-09-08 Method for producing chromium-doped semi-insulating gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPH08758B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007622A (en) * 1996-04-26 1999-12-28 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
US6045767A (en) * 1997-11-21 2000-04-04 American Xtal Technology Charge for vertical boat growth process and use thereof
USRE40662E1 (en) 1998-03-25 2009-03-17 Sumitomo Electric Industries, Ltd. Method of preparing a compound semiconductor crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215799A (en) * 1988-02-24 1989-08-29 Nippon Mining Co Ltd Semi-insulating gaas compound semiconductor single crystal and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215799A (en) * 1988-02-24 1989-08-29 Nippon Mining Co Ltd Semi-insulating gaas compound semiconductor single crystal and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007622A (en) * 1996-04-26 1999-12-28 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
USRE39778E1 (en) * 1996-04-26 2007-08-21 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
USRE41551E1 (en) * 1996-04-26 2010-08-24 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
US6045767A (en) * 1997-11-21 2000-04-04 American Xtal Technology Charge for vertical boat growth process and use thereof
USRE40662E1 (en) 1998-03-25 2009-03-17 Sumitomo Electric Industries, Ltd. Method of preparing a compound semiconductor crystal

Also Published As

Publication number Publication date
JPH08758B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
US4594173A (en) Indium doped gallium arsenide crystals and method of preparation
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JP2022008146A (en) GaAs INGOT, PRODUCTION METHOD OF GaAs INGOT, AND GaAs WAFER
JPH0274597A (en) Chromium-doped semi-insulative gallium-arsenic single crystal and production thereof
JPS6230692B2 (en)
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JPH0557239B2 (en)
JPH0557240B2 (en)
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH0269307A (en) Compound semiconductor and its production
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPH02239195A (en) Compound semiconductor single crystal
JPS58156598A (en) Method for crystal growth
JPH03252398A (en) Production of semi-insulating gaas substrate
JPS59131598A (en) Production of gaas single crystal
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JP2593148B2 (en) Method for growing single crystal of compound semiconductor
JPH0248496A (en) Method for producing cr-doped gallium arsenide crystal having semi-insulation property
JPH0411518B2 (en)
JPH085759B2 (en) Method for manufacturing semi-insulating GaAs substrate
JP2750307B2 (en) Method for producing InP single crystal
JPS63108730A (en) Method of annealing iii-v compound semiconductor
JP2004002076A (en) METHOD FOR MANUFACTURING GaAs WAFER

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees