JPS63108730A - Method of annealing iii-v compound semiconductor - Google Patents

Method of annealing iii-v compound semiconductor

Info

Publication number
JPS63108730A
JPS63108730A JP25497086A JP25497086A JPS63108730A JP S63108730 A JPS63108730 A JP S63108730A JP 25497086 A JP25497086 A JP 25497086A JP 25497086 A JP25497086 A JP 25497086A JP S63108730 A JPS63108730 A JP S63108730A
Authority
JP
Japan
Prior art keywords
gaas
compound semiconductor
liquid
annealing
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25497086A
Other languages
Japanese (ja)
Inventor
Nobuyuki Izawa
伊沢 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25497086A priority Critical patent/JPS63108730A/en
Publication of JPS63108730A publication Critical patent/JPS63108730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To realize uniform heating effect for effectively obtaining desired effects such as increase of resistivity, improvement of mobility, decrease of crystal defects or the like, by annealing III-V compound semiconductor such as a GaAs compound semiconductor while being dipped in a liquid containing a group III element as a principal component. CONSTITUTION:A heating means 5 is provided on the outer periphery of a core tube 6 constituting a heating furnace 4. A container 1 is disposed within the core tube 6. The container is then filled with liquid 3 consisting of Ga and GaAs and a GaAs semiconductor 2 is dipped in this liquid. Then, a predetermined annealing is performed in this condition. According to this method, As can be handled without any problem of safety and no deviation is caused in composition of GaAs. Further, since impurities can be gettered, crystal having a high purity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs化合物半導体のようなm−v族化合
物半導体のアニール法に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an annealing method for m-v group compound semiconductors such as GaAs compound semiconductors.

〔発明の概要〕[Summary of the invention]

本発明は、GaAsのようなm−v族化合物半導体のア
ニール処理をこの化合物半導体を構成する■族元素を主
体とする液体中に浸漬して行うことによって良好にアニ
ールの所期の目的を確実に果たすことができるようにす
る。
The present invention effectively ensures that the intended purpose of annealing is achieved by annealing an m-v group compound semiconductor such as GaAs by immersing it in a liquid mainly containing group II elements constituting this compound semiconductor. to be able to fulfill their duties.

〔従来の技術〕[Conventional technology]

m−v族化合物半導体、特にGaAs半導体結晶は高速
FETあるいは集積回路等に広く用いられるに至ってい
る。この場合半導体基板すなわち半導体サブストレイト
として高純度の半絶縁性のGaAs基板上にGaAs化
合物半導体層をエピタキシャル成長して目的とする半導
体装置を構成するという方法が屡々採られる。この場合
、そのエピタキシャル成長の基板は結晶性に優れている
ことが要求され、これに高抵抗が要求される場合におい
て高純度の半絶縁性を呈することが必要となる。この種
の半絶縁性GaAs結晶は、例えばHB法(水平ブリッ
ジマン法)によって形成される。また、他の方法として
L E C法(液体封止引上法)あるいはFEC法(完
全液体封止引上法)等によるときは結晶性に優れた結晶
が得られるとされている。しかしながら、いずれの方法
によって得たGaAs結晶インゴットにおいてもこのイ
ンゴット、あるいはGaAs結晶体から切り出した基板
をアニールすることによって抵抗率ρを例えば10’〜
io’Ω・備に向上し且つ各部均一化することができ、
またその移動度μを例えば6×1OJc!J/v−3に
高め且つ均一化することができること、史にEL2  
(光吸収体)濃度の改善がはかられることが知られてい
る。 (例えばセミコンダクタワールド(Semico
nductor World ) 19B5.6.94
〜100 Qあるいは特開昭58−175828号公報
参照)。
MV group compound semiconductors, particularly GaAs semiconductor crystals, have come to be widely used in high-speed FETs, integrated circuits, and the like. In this case, a method is often adopted in which a GaAs compound semiconductor layer is epitaxially grown on a high-purity semi-insulating GaAs substrate as a semiconductor substrate, ie, a semiconductor substrate to construct the intended semiconductor device. In this case, the epitaxially grown substrate is required to have excellent crystallinity, and when high resistance is required, it is required to exhibit high purity semi-insulating properties. This type of semi-insulating GaAs crystal is formed, for example, by the HB method (horizontal Bridgman method). Furthermore, it is said that crystals with excellent crystallinity can be obtained by other methods such as the LEC method (liquid-enclosed pulling method) or the FEC method (completely liquid-enclosed pulling method). However, in the GaAs crystal ingot obtained by either method, by annealing the ingot or the substrate cut out from the GaAs crystal, the resistivity ρ can be adjusted to, for example, 10' to 10'.
io'Ω・equipment can be improved and each part can be made uniform,
Moreover, its mobility μ is, for example, 6×1OJc! J/v-3 and can be made uniform, EL2
(Light absorber) It is known that the concentration can be improved. (For example, Semiconductor World (Semiconductor World)
ndductor World ) 19B5.6.94
~100 Q or see Japanese Patent Application Laid-Open No. 175828/1983).

上述したGaAsに対するアニールは、例えば800〜
1000℃の温度で数時間以上熱処理を行う。
The above-mentioned annealing for GaAs is, for example, 800~
Heat treatment is performed at a temperature of 1000° C. for several hours or more.

この場合、雰囲気として不活性ガスあるいは砒素(As
)圧下で行う。つまり、この場合、GaAs結晶は、熱
処理中にこれらの雰囲気にさらされている0通常不活性
ガスを用いる場合は、開管法によるものであり、この場
合GaAs1ltj晶表面から砒素が解離し、GaAs
の組成にずれが生じて比抵抗が低下する虞れが生じ、ま
た砒素の解離によって表面が荒れたり逆に不活性ガスに
含まれる汚染物質がにaAs結晶中へと拡散したりして
所期の目的を果たすことができない場合が生じるという
問題点がある。
In this case, the atmosphere is an inert gas or arsenic (As).
) Perform under pressure. In other words, in this case, the GaAs crystal is exposed to these atmospheres during heat treatment.Usually, when an inert gas is used, the open tube method is used; in this case, arsenic is dissociated from the GaAs crystal surface, and the GaAs
There is a risk that the specific resistance will decrease due to a shift in the composition of the aAs crystal, and the dissociation of arsenic may cause the surface to become rough, or contaminants contained in the inert gas may diffuse into the aAs crystal, causing the desired result. There is a problem in that there are cases where the purpose cannot be achieved.

また、一方封管法により砒素圧化でアニール処理を行う
場合は、上述の問題点は改善されるものの封止管にする
ための作Vの畑雑ざ、さらに封止管を構成する石英管の
再使用の困難さ、さらに有害な砒素を取り扱うという安
全上の問題点がある。
On the other hand, when performing annealing treatment using arsenic pressure using the sealing tube method, although the above-mentioned problems are improved, there are also problems with the field miscellaneousness of the crop V to make the sealed tube, and the quartz tube that constitutes the sealed tube. It is difficult to reuse arsenic, and there are safety issues associated with handling harmful arsenic.

〔発明が解決しよ・うとする問題点〕[Problem that the invention attempts to solve]

本発明は上述した諸問題を解決し、アニールによってG
aAs組成に変動を来したり、また表面に荒れを生じさ
せたり不純物の取り込みを生じたり、有害な砒素を取り
扱うというよ・うな不都合を効果的に回避してアニール
の所期の目的を確実に達成することのできる■−■族化
合物半導体のアニール法を提供する。
The present invention solves the above-mentioned problems and allows G
Effectively avoids inconveniences such as variations in aAs composition, surface roughness, impurity incorporation, and handling of harmful arsenic, ensuring that the intended purpose of annealing is achieved. The present invention provides a method of annealing group compound semiconductors that can be achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図に示すように容器(1)内に、アニー
ル処理を行おうとするm−v族化合物干導体、例えばG
aAsインゴットあるいはウェファをこの化合物半導体
を構成する■族元素すなわち一般に比較的融点の低く少
くともアニール処理温度以下の温度で液体となる■族元
素、例えばGaを主体とする液体、例えばGa単体の液
体あるいはこのGaとGaAsとの液体に■族元素例え
ばAsを含ましめた液体(3)を収容する。そして、こ
の液体(3)にアニールを行おうとする被アニールm−
v族化合物半導体(2)を浸漬して、この容器(1)を
加熱炉(4)中に配置して加熱炉(4)内に不活性ガス
を送給し、開管法によって例えば800〜1000’c
の加熱処理を施して目的とするアニールを行う、図にお
いて(5)は加熱炉(4)の加熱手段で、(6)はその
炉心管を示す。
In the present invention, as shown in FIG.
The aAs ingot or wafer is made of a Group 2 element constituting this compound semiconductor, that is, a Group 2 element that generally has a relatively low melting point and becomes liquid at a temperature at least below the annealing temperature, such as a liquid mainly composed of Ga, such as a liquid consisting of simple Ga. Alternatively, a liquid (3) containing a group Ⅰ element, for example, As, is contained in the liquid of Ga and GaAs. Then, the annealed target m- who wants to anneal this liquid (3)
The V-group compound semiconductor (2) is immersed, the container (1) is placed in a heating furnace (4), an inert gas is fed into the heating furnace (4), and a 1000'c
In the figure, (5) is the heating means of the heating furnace (4), and (6) is the furnace core tube.

〔作用〕[Effect]

上述の本発明方法によれば、被アニール■−■族化合物
半導体(2)例えばGaAsを、Gaを主体とする液体
(3)中に浸漬した状態でアニールを行うので、化合物
半導体例えばGaAs半導体(2)からのAsの蒸発を
抑制し乍ら目的とするアニールを行うことができ、この
化合物半導体(2)の組成にずれを生じさせることが効
果的に回避される。特に液体(3)中にGaAsを混入
させておくときはGaAs半導体(2)からのAsのと
び出しを、より効果的に抑制できる。また、半導体(2
)を液体(3)中でアニールするので、加熱炉(4)中
に送り込まれる不活性ガスが直接的に半導体(2)に接
触することがないので、この半導体(2)中への不純物
の拡散が回避され、また例えば液体(3)としてGaを
用いる場合、その熱伝導率が高いことによって半導体(
2)の全域に渡って均一温度のアニール処理を行うこと
ができるので、良好なアニール効果が得られる。さらに
またGa液体(3)中に、半導体(2)に含まれる不要
不純物例えばCu1Q子のゲッタリングがなされる効果
もあり、半導体(2)がより高純度化されて結晶欠陥等
の発生がより効果的に抑制される。
According to the above-described method of the present invention, since annealing is performed while the compound semiconductor (2) to be annealed, for example, GaAs, is immersed in the liquid (3) mainly composed of Ga, the compound semiconductor, for example, the GaAs semiconductor ( The desired annealing can be performed while suppressing the evaporation of As from the compound semiconductor (2), and deviations in the composition of the compound semiconductor (2) can be effectively avoided. In particular, when GaAs is mixed into the liquid (3), the protrusion of As from the GaAs semiconductor (2) can be more effectively suppressed. In addition, semiconductors (2
) is annealed in the liquid (3), so the inert gas sent into the heating furnace (4) does not come into direct contact with the semiconductor (2), thereby preventing impurities from entering the semiconductor (2). Diffusion is avoided, and when using Ga as the liquid (3), for example, its high thermal conductivity allows it to be used as a semiconductor (
2) Since the annealing treatment can be performed at a uniform temperature over the entire area, a good annealing effect can be obtained. Furthermore, the Ga liquid (3) has the effect of gettering unnecessary impurities contained in the semiconductor (2), such as Cu1Q atoms, making the semiconductor (2) more purified and reducing the occurrence of crystal defects. effectively suppressed.

〔実施例〕〔Example〕

容器(1)は、例えば石英管あるいはPBN (パイロ
リックボロンナイトライド)によって構成する。
The container (1) is made of, for example, a quartz tube or PBN (pyrolic boron nitride).

容W (1)内にGaとGaAsとによる液体(3)を
収容し、GaAs半導体(2)、例えばHB法、LEC
法、FEC法等によって育成したGaAs結晶インゴッ
ト或いはこれより切り出したGaAs半導体(2)を全
体が液体(3)中に浸されるように容器+11内に入れ
、加熱炉(4)中に導入してアニールする。
A liquid (3) made of Ga and GaAs is contained in the container W (1), and a GaAs semiconductor (2), for example, HB method, LEC
A GaAs crystal ingot grown by the FEC method or the FEC method, or a GaAs semiconductor (2) cut out from the ingot, is placed in a container +11 so that the whole is immersed in the liquid (3), and introduced into a heating furnace (4). and anneal.

他の例としては第2図に示すように容器+11内に収容
した例えばGaとGaAsによる■原液体(3)上にさ
らに82 (b等の液体(3)に比し比重の小さい他の
液体(7)を配置してGaAs半導体(2)及びGa液
体(3)からのQaないしはAsの蒸発を阻止するよう
になし得る。この日203とGaとは比重が相違するこ
とから層状に堆積された状態を保持され、またB2O3
はその融点が500℃程度であるのでアニール処理温度
では液状を保持している。
As another example, as shown in FIG. (7) can be arranged to prevent the evaporation of Qa or As from the GaAs semiconductor (2) and the Ga liquid (3).Since 203 and Ga have different specific gravities, they are deposited in a layered manner. B2O3
Since its melting point is about 500° C., it remains liquid at the annealing temperature.

尚、上述した例ではGaAs半導体に対するアニールに
ついて主として説明したが他の類似の性状を示すm−v
族化合物半導体に本発明を適用することが出来る。
In the above example, the annealing for GaAs semiconductor was mainly explained, but other m-v exhibiting similar properties were explained.
The present invention can be applied to group compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明においては、化合物半導体(2)
例えばGaAs化合物半導体のアニールを、その構成元
素の例えばGaを主体とする液体中でいわば封止された
状態でアニール処理を施すようにしたので、加熱炉とし
ては不活性ガスを流す閉管法によって形成することがで
き、閉管法による場合の謬問題を解消できてその取り扱
いがWFj単となる。
As mentioned above, in the present invention, compound semiconductor (2)
For example, when annealing a GaAs compound semiconductor, it is annealed in a sealed state in a liquid whose main constituent element is Ga, so the heating furnace can be formed using a closed-tube method in which an inert gas is flowed. This eliminates the problem of errors caused by the closed pipe method, and the handling becomes simple with WFj.

また■原液体(3)中でのアニールであることによって
例えば砒素A3を取り扱う場合の安全性の問題もなく、
しかも液体(3)によって囲まれていることによってG
aAsの組成のずれを来すなどの不都合や不活性ガスか
らの不純物の取り込み等が回避され、更に不純物のゲッ
タリング効果さえ得られることから高純度の結晶が得ら
れる。更に、例えば熱伝導度の高いGaを主体とする液
体中でアニールがなされるので、被アニール半導体(2
)を全域に亘って均一に加熱できることからアニール効
果が、より確実になされて高砥抗化、移動度の向上、結
晶欠陥の低下等のアニールの所期の目的を効果的に果た
すことができる。
Also, by annealing in the raw liquid (3), there is no safety problem when handling arsenic A3, for example.
Moreover, because it is surrounded by liquid (3), G
Inconveniences such as a deviation in the composition of aAs and the incorporation of impurities from the inert gas are avoided, and a gettering effect of impurities is even obtained, so that highly pure crystals can be obtained. Furthermore, since annealing is performed in a liquid mainly composed of Ga, which has high thermal conductivity, the semiconductor to be annealed (2
) can be heated uniformly over the entire area, which makes the annealing effect more reliable and effectively achieves the intended purpose of annealing, such as increasing abrasion resistance, improving mobility, and reducing crystal defects. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法を実施する装置の各側を
示す路線的断面図である。 (1)は容器、(2)はアニール処理を施す化合物半導
体、(3)は■原液体、(4)は加熱炉である。
1 and 2 are cross-sectional views showing each side of the apparatus for carrying out the method of the invention. (1) is a container, (2) is a compound semiconductor to be annealed, (3) is ■raw liquid, and (4) is a heating furnace.

Claims (1)

【特許請求の範囲】[Claims] III−V族化合物半導体のアニール処理を、上記III−V
族化合物半導体を構成するIII族元素を主体とする液体
中に浸漬した状態で行うことを特徴とするIII−V族化
合物半導体のアニール法。
The annealing treatment of the III-V compound semiconductor is performed using the III-V compound semiconductor described above.
1. An annealing method for a III-V compound semiconductor, characterized in that it is carried out in a state where the compound semiconductor is immersed in a liquid mainly containing a group III element constituting the group compound semiconductor.
JP25497086A 1986-10-27 1986-10-27 Method of annealing iii-v compound semiconductor Pending JPS63108730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25497086A JPS63108730A (en) 1986-10-27 1986-10-27 Method of annealing iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25497086A JPS63108730A (en) 1986-10-27 1986-10-27 Method of annealing iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPS63108730A true JPS63108730A (en) 1988-05-13

Family

ID=17272396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25497086A Pending JPS63108730A (en) 1986-10-27 1986-10-27 Method of annealing iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63108730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488830B1 (en) * 1997-01-23 2005-09-12 스미토모덴키고교가부시키가이샤 Heat treatment method of group II-VI compound semiconductor
JP2009161401A (en) * 2008-01-08 2009-07-23 Mitsubishi Chemicals Corp Method for controlling content of impurity element in single crystal, single crystal and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488830B1 (en) * 1997-01-23 2005-09-12 스미토모덴키고교가부시키가이샤 Heat treatment method of group II-VI compound semiconductor
JP2009161401A (en) * 2008-01-08 2009-07-23 Mitsubishi Chemicals Corp Method for controlling content of impurity element in single crystal, single crystal and semiconductor device

Similar Documents

Publication Publication Date Title
Hovel et al. The Epitaxy of ZnSe on Ge, GaAs, and ZnSe by an HCl Close‐Spaced Transport Process
US4032370A (en) Method of forming an epitaxial layer on a crystalline substrate
Fewster et al. The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
Norris et al. Substrate temperature limits for epitaxy of InP by MBE
JPS63108730A (en) Method of annealing iii-v compound semiconductor
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
Korenstein et al. Copper outdiffusion from CdZnTe substrates and its effect on the properties of metalorganic chemical vapor deposition-grown HgCdTe
JPH0750692B2 (en) <III>-<V> Group compound semiconductor heat treatment method
EP0455325B1 (en) Single crystals of semi-insulating indium phosphide and processes for making them
US3615928A (en) Growth of pb1-xsnxte from nonstoichiometric melts
Kitagawara et al. Deep levels in semiconducting In‐alloyed bulk n‐GaAs and its resistivity conversions by thermal treatments
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JPH0269307A (en) Compound semiconductor and its production
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
US5254507A (en) Semi-insulating InP single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPH0274597A (en) Chromium-doped semi-insulative gallium-arsenic single crystal and production thereof
JPS59190294A (en) Process for liquid-phase epitaxial growth of semiconductor crystal
JP2610319B2 (en) Method for producing group II-VI compound semiconductor crystal
JPS621358B2 (en)
JPS6218710A (en) Manufacture of epitaxial wafer
JPH0456128A (en) Manufacture of group ii-vi compound semiconductor device
JPH06291052A (en) Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate