JPS59190294A - Process for liquid-phase epitaxial growth of semiconductor crystal - Google Patents

Process for liquid-phase epitaxial growth of semiconductor crystal

Info

Publication number
JPS59190294A
JPS59190294A JP6371583A JP6371583A JPS59190294A JP S59190294 A JPS59190294 A JP S59190294A JP 6371583 A JP6371583 A JP 6371583A JP 6371583 A JP6371583 A JP 6371583A JP S59190294 A JPS59190294 A JP S59190294A
Authority
JP
Japan
Prior art keywords
epitaxial growth
molten liquid
melt
layers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6371583A
Other languages
Japanese (ja)
Inventor
Osamu Mikami
修 三上
Hiroshi Nakagome
弘 中込
Tadashi Saito
正 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6371583A priority Critical patent/JPS59190294A/en
Publication of JPS59190294A publication Critical patent/JPS59190294A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/063Sliding boat system

Abstract

PURPOSE:To prevent the evaporation of an element having high vapor pressure in the epitaxial growth of a semiconductor crystal, and to obtain a high-quality epitaxial growth layer, by covering the molten liquid containing the semiconductor material to be sujected to the epitaxial growth with a material inert to the molten liquid and having smaller specific gravity than the molten liquid. CONSTITUTION:An n type InP (001) single crystal is used as the substrate 3, and undoped InP and p type InP are grown continuously on the substrate 3. The molten liquid reservoirs 11, 12 are filled with In and InP polycrystals. Especially, the reservoir 11 is added with Zn as a dopant. A B2O3 plate is placed on each growing material in the reservoir 11, 12, and heated in a reaction tube. After the reaction, the substrate 4 is transferred successively under the reservoirs 12 and 11 while cooling slowly the reaction product to room temperature to effect the epitaxial growth of two layers. The molten liquid layers 21 and 22 are covered completely with the layers of B2O3. Since the melting point of B2O3 is sufficiently low compared with the epitaxial growth temperature, and since B2O3 has small specific gravity, it is melted to a liquid having high viscosity during the growing process, and covers the top of the molten liquid layers to fulfill the role of a shield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体結晶のスライドボート式液相エピタキシ
ャル成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a slide boat liquid phase epitaxial growth method for semiconductor crystals.

(従来技術) 半導体レーザや光検波器等の化合物半導体素子の製作に
おいては、多くの場合スライド・ボート式の液相エピタ
キシャル成長法が採用される。この液相成長法に用いる
治具の一例を第1図に示す。
(Prior Art) In manufacturing compound semiconductor devices such as semiconductor lasers and photodetectors, a slide-boat liquid phase epitaxial growth method is often adopted. An example of a jig used in this liquid phase growth method is shown in FIG.

図において11.12.13はエピタキシャル成長させ
る半導体を溶質とする融液21,22.23を収納する
融液溜、3は基板となる半導体単結晶4を移動させるス
ライダーである。5は融液の蒸発による損失を防ぐため
のふたである。液相成長はこれらの治具を用い、はとん
どの場合高純度水素基囲気中で行われる。したがって、
この成長を行う前に、反応管内(図示せず)を真空にし
、治具(多くの場合、高緻密カーボン相別が用いられて
いる)あるいは融液中に含まれている空気を1ノ1気し
なければならない。この成長前の排気工程でぶだの密閉
度が高いと、排気初期において融液溜内と外部との圧力
差のだめ、ふたが持上り、ふたがずれたりする。成長工
程中においてその状態が維持されていると、融液の蒸発
を抑えるというふた本来の役目を釆ずことができない。
In the figure, reference numerals 11, 12, and 13 are melt reservoirs containing melts 21, 22, and 23 containing the semiconductor to be epitaxially grown as a solute, and 3 is a slider for moving the semiconductor single crystal 4 that will become the substrate. 5 is a lid to prevent loss of melt due to evaporation. Liquid phase growth is carried out using these jigs, usually in an atmosphere of high-purity hydrogen radicals. therefore,
Before performing this growth, the inside of the reaction tube (not shown) is evacuated and the air contained in the jig (highly dense carbon phase separation is used in many cases) or the melt is removed. I have to be careful. If the bulge is highly sealed during this pre-growth evacuation process, the pressure difference between the inside and outside of the melt reservoir during the initial stage of evacuation will cause the lid to lift and shift. If this state is maintained during the growth process, the lid cannot fulfill its original role of suppressing evaporation of the melt.

m −v &化合物半導体のInPあるいはGa In
 As Pの液相成長においては、  工nを溶媒とし
て工nP。
m - v & compound semiconductor InP or Ga In
In the liquid phase growth of AsP, AsP is grown using AsP as a solvent.

GaAs 、 InAs等の半導体材料を溶質として溶
かしているが、この時の熱処理によってt大甲液が高温
に保持される。融液が蒸気圧の高いPあるい(はAsを
含むため、ふたが完全にされていない時は、これらの成
分が蒸発することによって所望の組成が得られないこと
がある。とくに長波長帯工。3−1.6μmの半導体レ
ーザ、2発光ダイオードを製作する場合には、もともと
Pの虐有貨が少ないため、熱処理によりP成分が蒸発す
ることにより、エピタキシャル成長)咎の組成が変化し
、発振波長が大きくずれる問題があった。あるいは融液
にドーパントを添加する場合、とくにP型半得体を得る
ためKZnを用いる場合には、InP 、 f]aIn
、AsP 等の成長温度でのZnの蒸気圧か高く、ふた
のすき間からZnが蒸発し、隣りの融液前のに液を汚染
することが多い。これにより液相成長によるPn接合の
形成がうまく出来ないことが多い。これとは反対に、圧
着状態でふたをすると、融液溜内のUト気ができず、昇
温時において内部の圧力が高くなり、融液が融液溜の底
部とスライダーの隙間から流れ出すことがある。
A semiconductor material such as GaAs or InAs is dissolved as a solute, and the liquid is kept at a high temperature by the heat treatment at this time. Since the melt contains P or (As) with high vapor pressure, if the lid is not completely closed, these components may evaporate and the desired composition may not be obtained.Especially in the long wavelength range. When manufacturing 3-1.6 μm semiconductor lasers and 2-light emitting diodes, there is originally little P content, so the P component evaporates during heat treatment, which changes the composition of the epitaxial growth. There was a problem that the oscillation wavelength shifted significantly. Alternatively, when adding a dopant to the melt, especially when using KZn to obtain a P-type semisolid, InP, f]aIn
, AsP, etc., the vapor pressure of Zn is high at the growth temperature, and Zn often evaporates from the gap in the lid, contaminating the next melt. As a result, it is often difficult to form a Pn junction by liquid phase growth. On the other hand, if the lid is crimped, no air is created inside the melt reservoir, and the internal pressure increases when the temperature rises, causing the melt to flow out from the gap between the bottom of the melt reservoir and the slider. Sometimes.

従って、液相エピタキシャル成長に従来用いられていた
ふたではその再現性が悪く、その操作に(発明の目的) 本発明は前記の欠点を改善するために提案されたもので
、蒸気圧の高い元素を含む物質の液相エピタキシャル成
長において、その元素の蒸発を防ぎ、良好なエピタキシ
ャル成長層をうることを目的とするものである。
Therefore, the reproducibility of the lid conventionally used for liquid phase epitaxial growth is poor, and the present invention has been proposed to improve the above-mentioned drawbacks. The purpose of this is to prevent the evaporation of the element during liquid phase epitaxial growth of the substance contained therein, and to obtain a good epitaxial growth layer.

(発明の構成) 上記の目的を達成するため、本発明は化合物半導体のス
ライドボート式液相エピタキシャル成長において、エピ
タキシャル成長させる半導体を溶質とする融液の上に、
該融液よシ比重が小さく、かつ融液と反応しない物質で
覆うことを特徴とする半導体結晶の液相エピタキシャル
成長法を発明の一要旨とするものである。
(Structure of the Invention) In order to achieve the above object, the present invention provides, in slide boat liquid phase epitaxial growth of compound semiconductors, on a melt containing the semiconductor to be epitaxially grown as a solute.
One of the gist of the invention is a method for liquid phase epitaxial growth of a semiconductor crystal, which is characterized by covering the semiconductor crystal with a substance that has a smaller specific gravity than the melt and does not react with the melt.

要約ずれは、本発明は従来のふたを用いず、液相成長さ
せる物質の融液よりも比重が小さく、かつ融液と反応し
ない物質で扱うことを特徴とするものである。
In summary, the present invention is characterized in that it does not use a conventional lid and uses a substance that has a lower specific gravity than the melt of the substance to be grown in a liquid phase and does not react with the melt.

本発明によれば、蒸気圧の高い元素を含む化合物半導体
の場合においても、融液の組成が変化することがなく、
また添加ドーパントの蒸発による融液相互の汚染がなく
なる利点がちる。
According to the present invention, even in the case of a compound semiconductor containing an element with high vapor pressure, the composition of the melt does not change,
Another advantage is that there is no mutual contamination of melts due to evaporation of added dopants.

この物質として、液相成長させようとする物質の融液と
反応せず、しかも比重の小さく、蒸気圧が低いものであ
ればよい。例えば三酸化?1tli lti (B20
3)、あるいは融点を下けるためにBi2O3などの不
純物を添加したB2O3,あるいはNa C1とKC!
ffi 。
This material may be any material as long as it does not react with the melt of the material to be subjected to liquid phase growth, has a low specific gravity, and has a low vapor pressure. For example, trioxide? 1tli lti (B20
3), or B2O3 with impurities such as Bi2O3 added to lower the melting point, or Na C1 and KC!
ffi.

L土OJ、とKaJ、の混合物のような塩化物がある。There are chlorides such as mixtures of L, OJ, and KaJ.

この内B2O3は、現在化合物半導体の引上げ法による
単結晶成長法において、高分解圧成分の蒸発を抑えるカ
プセル剤として広く用いられている化学的にl、fi、
めで安定なガラス物質であり、融点は4000C!程度
と低い。この温度は釦P 、 Ga工nAsP 49の
液相エピタキシャル成長法による成長温度(60000
前後)と比較して十分に低く、成長温度付近では粘性の
ある液体状に女っている。
Of these, B2O3 is chemically used as l, fi,
It is a stable glass substance with a melting point of 4000C! The degree is low. This temperature is the growth temperature (60,000 m
The temperature is sufficiently low compared to the temperature before and after the growth temperature, and it becomes a viscous liquid near the growth temperature.

次に本発明の実施例を添附図面について脱明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で種々の変更あるいは改良を行いうろことは云う
までもない。
Next, embodiments of the present invention will be explained with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第2図は本発明の液相エピタキシャル成長法に用いられ
た治具の一例である。図中1.3.4は第1図と同じも
のを示す。6はエピタキシャル成長させる半導体材料で
ある。具体的にV1基板3としてn型工nP (001
)単結晶を用い、その上に無添加1nP、P型IaPの
連続成長を行った。融*溜1】。
FIG. 2 is an example of a jig used in the liquid phase epitaxial growth method of the present invention. 1.3.4 in the figure shows the same thing as in FIG. 6 is a semiconductor material to be epitaxially grown. Specifically, as the V1 substrate 3, an n-type engineering nP (001
) Using a single crystal, continuous growth of additive-free 1nP, P-type IaP was performed on the single crystal. Melt*Tame 1].

12には、3yのIn 、 10■の工nP多結晶を充
てんした。とくに61には2 MllのZnをドーパン
トとして充てんした。つぎに板状のB2O3を各融液溜
の成長材料の上にのせた。これを71.72で示す。こ
の状態で反骨管中で昇温し、650°Cで211斤間放
置した。次に徐伶しながら基板4を融液溜62゜61の
下に順に移動し、2層のエピタキシャル成長を行った。
No. 12 was filled with 3y In and 10■ engineering nP polycrystals. In particular, 61 was filled with 2 Mll of Zn as a dopant. Next, a plate of B2O3 was placed on top of the growth material in each melt reservoir. This is shown as 71.72. In this state, the temperature was raised in a rebellious tube and left at 650°C for 211 days. Next, the substrate 4 was moved sequentially under the melt reservoir 62.degree. 61 while being slowly lowered, and epitaxial growth of two layers was performed.

室温に冷肩」俊、治具を仮測すると、B20371 、
72は融液21..22の上を完全に葎っており、第3
図のようになった。これはB2O3の融点が薫込み温度
に比べて十分低い/こめ、煮込み中に粘性の高い液体状
となりかつ比重が小さいだめ、各融液の上((のったも
のでちり、十分にふだの役目をしている。また融液の温
度がB2O3の融点に達するまでには、成長材料6とB
2037との間には十分隙間があシ、融液が触1(液溜
とスライダーの隙間からはみ出すことはなかった。さら
に成長したP −InP 、無濁加工nPの2層は良好
な成長接合を形成した。
"Cold shoulder at room temperature" Shun tentatively measured the jig, B20371,
72 is the melt 21. .. It completely covers the top of 22, and the third
It became like the figure. This is because the melting point of B2O3 is sufficiently low compared to the smoker temperature, and since it becomes a highly viscous liquid during simmering and has a low specific gravity, there is enough dust on top of each melt. In addition, by the time the temperature of the melt reaches the melting point of B2O3, the growth material 6 and B
There was a sufficient gap between the 2037 and the melt, and the melt did not protrude from the gap between the liquid reservoir and the slider.Furthermore, the two layers of grown P-InP and non-turbid processed nP showed good growth and bonding. was formed.

(発明の効果) 以上説明したように、本発明(でよれは蒸気圧の高い元
素を含む物質の液相エピタキシャル成長において、その
元素の蒸発を防ぎ、良好なエピタキシャル成長層を得る
ことができろ。
(Effects of the Invention) As explained above, in the liquid phase epitaxial growth of a substance containing an element with a high vapor pressure, the present invention can prevent evaporation of the element and obtain a good epitaxial growth layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液相エピタキシャル成長に用いた治其、
第21ネ1.第3図は本発明の一実施例を示す説明図で
ある。 11 .12.13・・融液溜、21  、22 、2
3・・融液、3・・スライダー、4・・基板、5・・ふ
た、61.62・・成長材料、71.72・・B203
1I!J許出願人 日本電信電話公社 第 コ [≧5 第2図 第3図
Figure 1 shows the conventional liquid phase epitaxial growth using
21st Nee 1. FIG. 3 is an explanatory diagram showing one embodiment of the present invention. 11. 12.13... Melt reservoir, 21 , 22 , 2
3... Melt, 3... Slider, 4... Substrate, 5... Lid, 61.62... Growth material, 71.72... B203
1I! J Applicant Nippon Telegraph and Telephone Public Corporation No. KO [≧5 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体のスライドボート式液相エピタキシャル成
長において、エピタキシャル成長させる半導体を溶質と
する融液の上に、該融液より比重が小さく、かつ融液と
反応しない物質で覆うことを將徴とする半導体結晶の液
相エピタキシャル成長法。
In the slide boat liquid phase epitaxial growth of compound semiconductors, the characteristic of semiconductor crystal growth is to cover a melt containing the semiconductor to be epitaxially grown as a solute with a substance that has a lower specific gravity than the melt and does not react with the melt. Liquid phase epitaxial growth method.
JP6371583A 1983-04-13 1983-04-13 Process for liquid-phase epitaxial growth of semiconductor crystal Pending JPS59190294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6371583A JPS59190294A (en) 1983-04-13 1983-04-13 Process for liquid-phase epitaxial growth of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6371583A JPS59190294A (en) 1983-04-13 1983-04-13 Process for liquid-phase epitaxial growth of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS59190294A true JPS59190294A (en) 1984-10-29

Family

ID=13237357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6371583A Pending JPS59190294A (en) 1983-04-13 1983-04-13 Process for liquid-phase epitaxial growth of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS59190294A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265196A (en) * 1986-05-08 1987-11-18 Nec Corp Method for growing crystal of mercury cadmium telluride
US6821380B2 (en) * 2000-05-17 2004-11-23 Seiko Epson Corporation Temperature adjustment apparatus
CN108265334A (en) * 2018-03-29 2018-07-10 深圳市东晶体技术有限公司 A kind of formula of n type inp monocrystalline and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092081A (en) * 1973-12-13 1975-07-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092081A (en) * 1973-12-13 1975-07-23

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265196A (en) * 1986-05-08 1987-11-18 Nec Corp Method for growing crystal of mercury cadmium telluride
US6821380B2 (en) * 2000-05-17 2004-11-23 Seiko Epson Corporation Temperature adjustment apparatus
CN108265334A (en) * 2018-03-29 2018-07-10 深圳市东晶体技术有限公司 A kind of formula of n type inp monocrystalline and preparation method thereof

Similar Documents

Publication Publication Date Title
US3783825A (en) Apparatus for the liquid-phase epitaxial growth of multi-layer wafers
Hovel et al. The Epitaxy of ZnSe on Ge, GaAs, and ZnSe by an HCl Close‐Spaced Transport Process
US3741825A (en) Method of depositing an epitaxial semiconductor layer from the liquidphase
Harman Slider LPE of Hg 1-x Cd x Te using mercury pressure controlled growth solutions
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
JPS59190294A (en) Process for liquid-phase epitaxial growth of semiconductor crystal
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
US3891478A (en) Deposition of epitaxial layer from the liquid phase
JPS626338B2 (en)
US3297403A (en) Method for the preparation of intermetallic compounds
US4717443A (en) Mass transport of indium phosphide
JP2599767B2 (en) Solution growth equipment
JPS63108730A (en) Method of annealing iii-v compound semiconductor
JPS5917846B2 (en) 3↓-5 Method of diffusing impurities into compound semiconductors
JPS62132797A (en) Epitaxial growth of iii-v compound semiconductor
JPS6058618A (en) Vapor growth of compound semiconductor and apparatus for the same
JPS62160715A (en) Slider boat for liquid phase epitaxial growth
Kao et al. Thickness of GaP liquid phase epitaxial layers grown by step‐cooling, equilibrium‐cooling, and ramp‐cooling methods
JPS6229399B2 (en)
JPS621358B2 (en)
JPH0710671A (en) Method for forming compound semiconductor thin film
JPS63198318A (en) Epitaxial growth method
JPS61276316A (en) Manufacture of semiconductor device
JPH06263580A (en) Method and device for producing semiconductor crystal