JPS626338B2 - - Google Patents

Info

Publication number
JPS626338B2
JPS626338B2 JP15276381A JP15276381A JPS626338B2 JP S626338 B2 JPS626338 B2 JP S626338B2 JP 15276381 A JP15276381 A JP 15276381A JP 15276381 A JP15276381 A JP 15276381A JP S626338 B2 JPS626338 B2 JP S626338B2
Authority
JP
Japan
Prior art keywords
composition ratio
substrate
epitaxial layer
epitaxial
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15276381A
Other languages
Japanese (ja)
Other versions
JPS5853826A (en
Inventor
Nagataka Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56152763A priority Critical patent/JPS5853826A/en
Publication of JPS5853826A publication Critical patent/JPS5853826A/en
Publication of JPS626338B2 publication Critical patent/JPS626338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は液相エピタキシヤル成長方法に関し、
とりわけ、3種以上の元素を構成要素とする多元
化合物半導体結晶のエピタキシヤル層成長の厚さ
方向での結晶構成元素の組成比を所望の分布に形
成することのできる液相エピタキシヤル成長方法
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase epitaxial growth method,
In particular, a liquid phase epitaxial growth method that can form a desired distribution of the composition ratio of crystal constituent elements in the thickness direction of epitaxial layer growth of a multi-compound semiconductor crystal containing three or more types of elements as constituent elements is provided. This is what we provide.

液相エピタキシヤル成長方法は半導体エピタキ
シヤル層の形成にあたり広く使用されている方法
であり、特に燐化ガリウム(GaP)、砒化ガリウ
ム(GaAs)、砒化ガリウムアルミニウム、
(GaAlAs)等の−族化合物半導体のエピタ
キシヤル成長には欠かすことのできない方法であ
る。ところで、液相エピタキシヤル成長方法に
は、エピタキシヤル成長させるための所定の基板
を浸した溶融液の温度を下げ、溶融液を過飽和状
態にしてエピタキシヤル層を成長させる徐冷法
と、溶融液内に所定の温度勾配を設け、その一定
条件の下でエピタキシヤル層を成長させる温度差
法とに大別される。
Liquid phase epitaxial growth is a widely used method for forming semiconductor epitaxial layers, especially for gallium phosphide (GaP), gallium arsenide (GaAs), gallium aluminum arsenide,
This method is indispensable for the epitaxial growth of − group compound semiconductors such as (GaAlAs). By the way, liquid phase epitaxial growth methods include a slow cooling method in which the temperature of a melt in which a predetermined substrate for epitaxial growth is immersed is lowered, and the melt is brought into a supersaturated state to grow an epitaxial layer; It is broadly classified into a temperature difference method in which a predetermined temperature gradient is provided and an epitaxial layer is grown under the constant conditions.

徐冷法は量産性にすぐれており、最も一般的な
液相エピタキシヤル成長方法であるが、たとえ
ば、GaAlAsのような3種類以上の元素を構成要
素とする多元化合物半導体のエピタキシヤル層を
この方法で得ようとする場合には、温度変化に基
づく溶融液組成の変化等に起因して、エピタキシ
ヤル層の成長厚さ方向で構成元素の組成比が変化
することが避けられない。このようなエピタキシ
ヤル層の成長厚さ方向での組成比の変化はエピタ
キシヤル成長させる元素の種類によつて決まる一
定の傾向を有する。例えば、ガリウム(Ga)を
溶媒とし、アルミニウム(Al)、砒素(As)を溶
質とした溶融液を用いて成長したGaAlAsのエピ
タキシヤル層では、Alの分配係数が非常に大き
く、溶融液中の微量のAlによつて成長初期にAl
組成比の大きなエピタキシヤル層が成長し、溶融
液のAl濃度がエピタキシヤル成長の進行ととも
に順次減少することにより、エピタキシヤル層の
Alの組成比が順次減少する傾向を必ず有する。
したがつて、徐冷法ではエピタキシヤル層の厚さ
方向で組成比一定のエピタキシヤルを成長させる
とか、あるいは逆に、成長とともにエピタキシヤ
ル層表面に向つてAl組成比が増大するようなエ
ピタキシヤル層を成長することは極めて困難であ
る。
The slow cooling method has excellent mass productivity and is the most common liquid phase epitaxial growth method. When attempting to obtain such an epitaxial layer, it is inevitable that the composition ratio of the constituent elements changes in the growth thickness direction of the epitaxial layer due to changes in the melt composition due to temperature changes. Such a change in the composition ratio in the growth thickness direction of the epitaxial layer has a certain tendency depending on the type of element to be epitaxially grown. For example, in a GaAlAs epitaxial layer grown using a melt containing gallium (Ga) as a solvent and aluminum (Al) and arsenic (As) as solutes, the distribution coefficient of Al is extremely large, and the distribution coefficient of Al in the melt is extremely large. Al in the early stage of growth due to a small amount of Al.
An epitaxial layer with a large composition ratio grows, and the Al concentration of the melt gradually decreases as the epitaxial growth progresses.
There is always a tendency for the Al composition ratio to gradually decrease.
Therefore, in the slow cooling method, it is possible to grow an epitaxial layer with a constant composition ratio in the thickness direction of the epitaxial layer, or conversely, to grow an epitaxial layer in which the Al composition ratio increases toward the surface of the epitaxial layer as it grows. Growing up is extremely difficult.

一方、温度差法は溶融液内に温度差をつけ、高
温領域への溶質の拡散により、低温領域が過飽和
状態になることを利用して低温領域に置かれた半
導体基板上にエピタキシヤル層成長を行なう方法
であり、この方法によればエピタキシヤル成長に
ともなう溶融液内における溶質の減少は高温領域
に置かれた溶質源の溶融液中への溶解により補充
することが可能である。この方法により組成比一
定のエピタキシヤル層成長が可能となつている。
On the other hand, the temperature difference method creates a temperature difference in the melt and uses the diffusion of solute into the high-temperature region to create a supersaturated state in the low-temperature region to grow an epitaxial layer on a semiconductor substrate placed in the low-temperature region. According to this method, a decrease in solute in the melt due to epitaxial growth can be replenished by dissolving a solute source placed in a high temperature region into the melt. This method makes it possible to grow an epitaxial layer with a constant composition ratio.

本発明は上記の温度差法の利点をさらに進めた
ものであり、温度差法においてエピタキシヤル成
長用基板と対向する溶質源となる半導体基板の組
成比に厚さ方向での分布をもたせ、溶融液中への
溶質の供給をエピタキシヤル成長の進行とともに
変化させることにより、エピタキシヤル成長層の
厚さ方向での組成比分布を制御し得るエピタキシ
ヤル成長方法を確立することにある。とくに本発
明は前述の徐冷法と温度差法とを効果的に組合せ
て利用することにより、極めて容易に所定の組成
分布を厚さ方向に有するエピタキシヤル層を形成
する方法である。
The present invention further advances the advantages of the temperature difference method described above, and in the temperature difference method, the composition ratio of the semiconductor substrate, which is a solute source facing the epitaxial growth substrate, is distributed in the thickness direction. The object of the present invention is to establish an epitaxial growth method in which the composition ratio distribution in the thickness direction of an epitaxially grown layer can be controlled by changing the supply of solute into a liquid as the epitaxial growth progresses. In particular, the present invention is a method of forming an epitaxial layer having a predetermined composition distribution in the thickness direction very easily by effectively combining the slow cooling method and the temperature difference method described above.

以下に本発明の実施例として3元化合物半導体
GaAlAsの場合について図面を参照して詳細に説
明する。
The following describes a ternary compound semiconductor as an example of the present invention.
The case of GaAlAs will be explained in detail with reference to the drawings.

まず第1段階として徐冷法によるエピタキシヤ
ル成長を行う。すなわち、920℃に加熱したGa溶
媒中にAl、多結晶GaAsを溶質として溶解させ飽
和状態にした溶融液(Al濃度は約0.4原子%)を
エピタキシヤル成長用の単結晶GaAs基板と接触
させ、同温度で約1時間保持した後、0.4℃/分
の冷却速度で750℃まで冷却しエピタキシヤル成
長を行う。第1図は、このようにして得られた
GaAlAsエピタキシヤル層を有する半導体基板の
断面図aと同エピタキシヤル層の厚さ方向での
Al組成比を示した分布図bであり、前記の過程
で同図bに示すように成長開始時でAl組成比が
約30%、終了時でほぼ0%となるエピタキシヤル
層が単結晶GaAs基板上に成長した。次に、第2
段階として得られたエピタキシヤル基板を用いて
温度差法によるエピタキシヤル成長を行う。すな
わち、第2図に示すようにボート4内の一方の側
に前記のエピタキシヤル基板1を、他方の側に別
のエピタキシヤル成長用の単結晶GaAs基板2を
配置し、両基板間を溶媒ガリウムGa中に溶質と
して多結晶GaAsを添加しおよそ900℃に加熱して
形成した飽和融液で満たす。ついで、これらを第
3図に示されるように、エピタキシヤル基板1を
X1の位置に置いて、かつX2の位置に置かれてい
るGaAs基板2に対して約+5℃の温度差を持た
せるように系の温度を調節して、そのまま同系を
高温に保持する。すなわち、本実施例では、第3
図で、T2=900℃、△T=5℃とした。溶質の溶
媒中への溶解度は高温である程高いので、溶融液
中には温度差にもとずく溶質の濃度差が生じ濃度
の高い領域(高温領域)から濃度の低い領域(低
温領域)への溶質の拡散が生ずる。このため低温
領域が過飽和状態となり、低温領域に配置された
単結晶GaAs基板2上にエピタキシヤル層が成長
する。一方高温領而域では不飽和状態となり、エ
ピタキシヤル基板1を徐々に溶解し、これが拡散
により移動してGaAs基板2上に成長する。この
際、高温領域のエピタキシヤル基板1が前述の第
1図bのように、表面から深くなるにつれてAl
組成比が増大するGaAsエピタキシヤル層を有し
ているため、エピタキシヤル成長の進行とともに
基板から溶け出すAlも増し、溶融液中のAl濃度
が増加し、したがつて、第4図aに示すGaAs基
板2上のGaAlAsエピタキシヤル層のAl組成比は
成長とともに増大する。すなわち、この実施例の
方法により、第4図bに示すように成長開始時で
Al組成比がほぼ0%であり終了時で約25%とな
るような、組成比分布を有するGaAlAsエピタキ
シヤル層が成長した。
First, as a first step, epitaxial growth is performed by a slow cooling method. That is, a saturated molten liquid (Al concentration approximately 0.4 at%) made by dissolving Al and polycrystalline GaAs as solutes in a Ga solvent heated to 920°C is brought into contact with a single-crystal GaAs substrate for epitaxial growth. After holding at the same temperature for about 1 hour, it is cooled to 750°C at a cooling rate of 0.4°C/min to perform epitaxial growth. Figure 1 was obtained in this way
Cross-sectional view a of a semiconductor substrate having a GaAlAs epitaxial layer and the thickness direction of the same epitaxial layer.
Figure b is a distribution diagram showing the Al composition ratio. In the above process, as shown in Figure b, the epitaxial layer has an Al composition ratio of about 30% at the start of growth and almost 0% at the end of the growth. grown on the substrate. Next, the second
Epitaxial growth is performed by a temperature difference method using the epitaxial substrate obtained as a step. That is, as shown in FIG. 2, the epitaxial substrate 1 is placed on one side of the boat 4, and another single-crystal GaAs substrate 2 for epitaxial growth is placed on the other side, and a solvent is placed between the two substrates. Polycrystalline GaAs is added as a solute to gallium Ga and filled with a saturated melt formed by heating to approximately 900℃. Then, as shown in FIG. 3, the epitaxial substrate 1 is
Adjust the temperature of the system so that there is a temperature difference of approximately +5°C between the GaAs substrate 2 placed at position X 1 and position X 2 , and maintain the same system at a high temperature. . That is, in this embodiment, the third
In the figure, T 2 =900°C and ΔT = 5°C. The solubility of a solute in a solvent increases as the temperature increases, so there is a difference in the concentration of the solute in the molten liquid based on the temperature difference, from an area of high concentration (high temperature area) to an area of low concentration (low temperature area). diffusion of solute occurs. Therefore, the low temperature region becomes supersaturated, and an epitaxial layer grows on the single crystal GaAs substrate 2 placed in the low temperature region. On the other hand, in a high-temperature region, it becomes unsaturated, gradually melting the epitaxial substrate 1, moving by diffusion, and growing on the GaAs substrate 2. At this time, as the epitaxial substrate 1 in the high temperature region becomes deeper from the surface, as shown in FIG.
Since the GaAs epitaxial layer has an increasing composition ratio, the amount of Al dissolved from the substrate increases as the epitaxial growth progresses, and the Al concentration in the melt increases, as shown in Figure 4a. The Al composition ratio of the GaAlAs epitaxial layer on the GaAs substrate 2 increases with growth. That is, by the method of this example, as shown in FIG. 4b, at the start of growth,
A GaAlAs epitaxial layer was grown having a composition distribution in which the Al composition ratio was approximately 0% and was approximately 25% at the end.

以上説明してきたところから明らかなように、
本発明によれば、所定の温度勾配を設けた溶融液
の高温側に組成比勾配を有する多元化合物半導体
を配置することにより、同溶融液の低温側に設置
した半導体基板上に、上記高温側の多元化合物半
導体とは逆組成比勾配の元素組成比分を有する多
元化合物半導体のエピタキシヤル層の形成が可能
となる。特に例として示したGaAlAsでは、Al組
成比の増大とともに禁制帯幅も増大し光の吸収を
少なくできるため、かかる本発明の方法によれば
内部で発生した光を効率よく外部へ取り出すこと
のできる高効率発光ダイオードや他の素子を容易
に生産でき、その工業的価値は大である。また本
文中で3元化合物半導体であるGaAlAsを例とし
て説明したが、GaAsP、GaAlP等の他の多元化
合物半導体の場合でも同様であることは勿論であ
る。
As is clear from what has been explained above,
According to the present invention, by arranging a multi-component compound semiconductor having a composition ratio gradient on the high temperature side of a melt having a predetermined temperature gradient, it is possible to place a multi-component compound semiconductor having a composition ratio gradient on the high temperature side of the melt. It is possible to form an epitaxial layer of a multi-component compound semiconductor having an elemental composition ratio having an inverse composition ratio gradient to that of the multi-component compound semiconductor. In particular, in GaAlAs shown as an example, as the Al composition ratio increases, the forbidden band width also increases and light absorption can be reduced, so according to the method of the present invention, the light generated inside can be efficiently extracted to the outside. High-efficiency light emitting diodes and other devices can be easily produced, and their industrial value is great. Furthermore, although GaAlAs, which is a ternary compound semiconductor, has been described as an example in the text, it goes without saying that the same applies to other multi-component compound semiconductors such as GaAsP and GaAlP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはそれぞれGaAlAsエピタキシヤ
ル層の厚さ方向でのAl組成比分布をもつ基板断
面図および同分布図である。第2図は本発明の方
法で用いた液相エピタキシヤル成長装置の構成断
面図、第3図は同装置の温度分布状態図である。
第4図a,bはそれぞれ本発明の方法で得られた
GaAlAsエピタキシヤル層の断面図および同層の
厚さ方向でのAl組成比分布を示す図である。 1……GaAlAsエピタキシヤル層を成長させた
GaAs基板、2……エピタキシヤル成長用単結晶
GaAs基板、3……溶融液、4……ボート。
FIGS. 1a and 1b are a cross-sectional view of a substrate and a distribution diagram of the Al composition ratio in the thickness direction of a GaAlAs epitaxial layer, respectively. FIG. 2 is a cross-sectional view of the structure of a liquid phase epitaxial growth apparatus used in the method of the present invention, and FIG. 3 is a temperature distribution diagram of the apparatus.
Figure 4 a and b were obtained by the method of the present invention, respectively.
FIG. 2 is a cross-sectional view of a GaAlAs epitaxial layer and a diagram showing the Al composition ratio distribution in the thickness direction of the layer. 1... GaAlAs epitaxial layer was grown
GaAs substrate, 2...single crystal for epitaxial growth
GaAs substrate, 3...melt liquid, 4...boat.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の温度勾配を設けた溶融液の高温側に多
元化合物半導体にして組成比勾配を有する第1の
基板および同溶融液の低温側に第2の基板を互い
に対向配置して、前記第2の基板上に前記第1の
基板とは逆組成比勾配を有する多元化合物半導体
層をエピタキシヤル成長することを特徴とする液
相エピタキシヤル成長方法。
1. A first substrate made of a multi-compound semiconductor and having a composition ratio gradient is placed on the high temperature side of a melt having a predetermined temperature gradient, and a second substrate is placed opposite to each other on the low temperature side of the same melt. A liquid phase epitaxial growth method, characterized in that a multi-component compound semiconductor layer having a composition ratio gradient opposite to that of the first substrate is epitaxially grown on the substrate.
JP56152763A 1981-09-25 1981-09-25 Liquid epitaxial growing method Granted JPS5853826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152763A JPS5853826A (en) 1981-09-25 1981-09-25 Liquid epitaxial growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152763A JPS5853826A (en) 1981-09-25 1981-09-25 Liquid epitaxial growing method

Publications (2)

Publication Number Publication Date
JPS5853826A JPS5853826A (en) 1983-03-30
JPS626338B2 true JPS626338B2 (en) 1987-02-10

Family

ID=15547610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152763A Granted JPS5853826A (en) 1981-09-25 1981-09-25 Liquid epitaxial growing method

Country Status (1)

Country Link
JP (1) JPS5853826A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166186A (en) * 1985-01-18 1986-07-26 Oki Electric Ind Co Ltd Semiconductor light element
JPS61264767A (en) * 1985-05-20 1986-11-22 Oki Electric Ind Co Ltd Light-emitting element
JP2567698B2 (en) * 1989-04-04 1996-12-25 シャープ株式会社 Video signal processing circuit
US5247353A (en) * 1989-11-08 1993-09-21 Samsung Co., Ltd. Motion detection system for high definition television receiver

Also Published As

Publication number Publication date
JPS5853826A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
US4142924A (en) Fast-sweep growth method for growing layers using liquid phase epitaxy
JPS626338B2 (en)
Nishinaga et al. Studies of LPE ripple based on morphological stability theory
US4500367A (en) LPE Growth on group III-V compound semiconductor substrates containing phosphorus
JPS6235260B2 (en)
JPS58156598A (en) Method for crystal growth
JP4211897B2 (en) Liquid phase epitaxial growth method
US4620854A (en) Method of preparing indium ingots
US4566934A (en) Cleaning technique for LPE melt ingots
KR0156016B1 (en) The high-doping growth method of ga-as wafer for infrared diode
JP2538009B2 (en) Liquid phase epitaxial growth method
JP3151277B2 (en) Liquid phase epitaxial growth method
JPH04254321A (en) Liquid phase epitaxial growth method
Subramanian et al. Liquid‐phase epitaxial growth of smooth and thin layers of GaAs on nominally oriented substrates
JP3202405B2 (en) Epitaxial growth method
JPS6021894A (en) Process for liquid phase epitaxial growth
Gillessen et al. Temperature Gradient Solution Growth
SU639358A1 (en) Method of obtaining p-n-structures
RU2072584C1 (en) Method of local liquid epitaxy
JPS59128298A (en) Liquid phase epitaxial growing method
JP3557690B2 (en) Crystal growth method
JPH0231492B2 (en)
JPH02107590A (en) Growing equipment for semiconductor crystal