JP2599767B2 - Solution growth equipment - Google Patents

Solution growth equipment

Info

Publication number
JP2599767B2
JP2599767B2 JP19505188A JP19505188A JP2599767B2 JP 2599767 B2 JP2599767 B2 JP 2599767B2 JP 19505188 A JP19505188 A JP 19505188A JP 19505188 A JP19505188 A JP 19505188A JP 2599767 B2 JP2599767 B2 JP 2599767B2
Authority
JP
Japan
Prior art keywords
growth
substrate
solution
slider
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19505188A
Other languages
Japanese (ja)
Other versions
JPH0243723A (en
Inventor
悠一 鈴木
茂夫 児玉
Original Assignee
株式会社宇宙環境利用研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社宇宙環境利用研究所 filed Critical 株式会社宇宙環境利用研究所
Priority to JP19505188A priority Critical patent/JP2599767B2/en
Publication of JPH0243723A publication Critical patent/JPH0243723A/en
Application granted granted Critical
Publication of JP2599767B2 publication Critical patent/JP2599767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔概要〕 溶液成長装置に係り,特に化合物半導体結晶の溶液成
長装置に関し, 均一な組成の化合物半導体結晶を大きい成長速度でし
かも表面欠陥なく成長する溶液成長装置を目的とし, 〔1〕下側支持台1と,基板を配置する下側に開口し
た上側切除部21及び溶液溜となる上側開孔部22を持つ上
側支持台2と,溶液溜となるスライダ開孔部31を持ち且
つ該下側支持台及び該上側支持台に接してスライドする
スライダ3とを含む溶液成長装置であって,該上側切除
部に成長面を水平にした成長基板5が配置され,該スラ
イダ開孔部に成長面を水平から傾けたダミー基板61乃至
64が配置されている溶液成長装置と,〔2〕スライダ3
と成長基板5の間にスペースを形成するスペーサ7が上
側切除部21に配置されている〔1〕記載の溶液成長装置
と,〔3〕上の開口は成長基板5の成長面を水平にして
通す形状で下の開口は該成長面を水平にして通さない形
状の開孔を上側切除部21として持つ〔1〕記載の溶液成
長装置と,〔4〕上側支持台2の下側に開口した基板配
置凹部211及び該凹部の底から上側支持台2の上面に抜
ける基板吸引開孔部212からなる上側切除部21を持つ
〔1〕記載の溶液成長装置により構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a solution growth apparatus, and more particularly to a solution growth apparatus for compound semiconductor crystals, which aims at growing a compound semiconductor crystal having a uniform composition at a high growth rate and without surface defects. [1] a lower support 1, an upper support 2 having an upper cutout 21 opening downward and an upper opening 22 serving as a solution reservoir for disposing a substrate, and a slider opening serving as a solution reservoir. A solution growth apparatus comprising: a lower support 31; and a slider 3 which slides in contact with the upper support. 31. A growth substrate 5 having a horizontal growth surface disposed on the upper cutout. Dummy substrates 61 through with the growth surface inclined from the horizontal at the slider opening
A solution growing apparatus in which the 64 is disposed, and [2] a slider 3
The solution growing apparatus according to [1], wherein a spacer 7 for forming a space between the substrate and the growth substrate 5 is disposed in the upper cutout 21, and the opening on [3] allows the growth surface of the growth substrate 5 to be horizontal. The lower opening has a shape that allows the growth surface to be horizontal and does not allow the growth surface to pass therethrough as the upper cut-out portion 21; The solution growing apparatus according to [1] is provided with an upper cutout portion 21 having a substrate disposing concave portion 211 and a substrate suction opening portion 212 extending from the bottom of the concave portion to the upper surface of the upper support 2.

〔産業上の利用分野〕[Industrial applications]

本発明は溶液成長装置に係り,特に化合物半導体結晶
の溶液成長装置に関する。
The present invention relates to a solution growth apparatus, and more particularly to a solution growth apparatus for compound semiconductor crystals.

GaAs,InP,InGaAs等の化合物半導体は,発光機能,発
振機能等,シリコン等の元素半導体では得られない数多
くの機能を持っており,超高速IC,OEIC等への応用が見
込まれている。
Compound semiconductors such as GaAs, InP, and InGaAs have many functions that cannot be obtained with elemental semiconductors such as silicon, such as a light emitting function and an oscillation function, and are expected to be applied to ultrahigh-speed ICs, OEICs, and the like.

半導体基板に半導体素子を作製する場合,該基板上に
該基板と同種または異種の化合物半導体をエピタキシャ
ル成長することが行われている。エピタキシャル成長法
としては,溶液成長法,気相成長法,分子線エピタキシ
ャル成長法,有機金属化学気相成長法等があり,それぞ
れの方法に特長があるため用途に応じて使い分けてい
る。
When a semiconductor element is manufactured on a semiconductor substrate, a compound semiconductor of the same type or a different type as the substrate is epitaxially grown on the substrate. As the epitaxial growth method, there are a solution growth method, a vapor phase growth method, a molecular beam epitaxial growth method, a metal organic chemical vapor deposition method, and the like.

中でも,溶液成長法は成長させる結晶の融点よりはる
かに低い温度で熱平衡に近い状態で成長を行うことがで
きるため,他の方法に比べて構造的に完全性の高い結晶
を得ることができる。
Above all, the solution growth method can grow the crystal at a temperature much lower than the melting point of the crystal to be grown in a state close to thermal equilibrium, so that a crystal having higher structural integrity than other methods can be obtained.

しかし,溶液成長法は成長速度が小さく,厚い成長層
を得るためには長時間成長を行わなければならず,高温
での基板結晶の変性といった問題が生じる。そこで,高
温での基板結晶の変性を防止し且つスループットを向上
させるため,成長速度を上げる必要がある。
However, in the solution growth method, the growth rate is low, and a long growth must be performed to obtain a thick growth layer, which causes a problem such as denaturation of the substrate crystal at a high temperature. Therefore, it is necessary to increase the growth rate in order to prevent denaturation of the substrate crystal at high temperature and to improve the throughput.

〔従来の技術〕[Conventional technology]

溶液成長法の原理について,GaAsを例にとって説明す
る。
The principle of the solution growth method will be described using GaAs as an example.

第7図はGa−As系の平衡状態図である。例えば900℃
で飽和したAsのGa溶液(a点)を徐々に例えば800℃ま
で冷却する。該冷却により溶解度が減少するので溶液は
過飽和になり,GaAsが析出し,溶液中のAs濃度は液相線
に沿って減少し,b点に至る。
FIG. 7 is an equilibrium diagram of a Ga—As system. For example, 900 ° C
Is gradually cooled to, for example, 800 ° C. Since the solubility is reduced by the cooling, the solution becomes supersaturated, GaAs is precipitated, the As concentration in the solution decreases along the liquidus line, and reaches point b.

第8図は液相エピタキシャル成長法によく用いられて
いるスライドボート法による従来の溶液成長装置を示
す。該装置は石英管(図示せず)内に配置されている。
FIG. 8 shows a conventional solution growth apparatus by a slide boat method often used in a liquid phase epitaxial growth method. The device is located in a quartz tube (not shown).

固定されたカーボン製の下側支持台1に,下側切除部
11が形成され,そこに下側基板51が配置されている。該
下側支持台上に溶液溜4となる開孔部を持つカーボン製
のスライダ3が乗せられている。該スライダは石英管外
部から操作棒32を操作することにより,該下側支持台1
上を左右に移動することができる。この時,該スライダ
の溶液溜4の中の溶液41は漏れることなく該スライダと
ともに移動する。
The fixed lower support 1 made of carbon has a lower cutout
11 is formed, and the lower substrate 51 is arranged there. A carbon slider 3 having an opening to be a solution reservoir 4 is mounted on the lower support. The slider is operated by operating the operating rod 32 from outside the quartz tube, so that the lower support 1
You can move left and right on the top. At this time, the solution 41 in the solution reservoir 4 of the slider moves with the slider without leaking.

該溶液溜4に成長開始温度で溶液が飽和するように原
料となるGaとGaAsを入れておき,石英管内の雰囲気ガス
を高純度水素ガスに置換する。
Ga and GaAs as raw materials are put in the solution reservoir 4 so that the solution is saturated at the growth start temperature, and the atmosphere gas in the quartz tube is replaced with high-purity hydrogen gas.

次に,成長温度まで昇温すると,GaAsがGaに溶解して
飽和溶液41ができる。
Next, when the temperature is raised to the growth temperature, GaAs is dissolved in Ga to form a saturated solution 41.

ここでスライダ3を移動して該溶液が下側基板51と接
触する位置までもってくる。該溶液は飽和しているので
該基板が該溶液に溶出することも該基板に結晶が析出す
ることもない。
Here, the slider 3 is moved to a position where the solution comes into contact with the lower substrate 51. Since the solution is saturated, neither the substrate elutes into the solution nor crystals deposit on the substrate.

次に,溶液の温度を下げると溶質(As)の溶解度が下
がるので,該基板近くの余剰なGaAsが該基板上に析出
し,結晶成長が起こる。所望の厚さまで成長を行った
後,さらに該スライダを動かして溶液を該基板から離
し,溶液落とし12に落として成長を終了する。
Next, when the temperature of the solution is lowered, the solubility of the solute (As) decreases, so that excess GaAs near the substrate is deposited on the substrate, and crystal growth occurs. After the growth to the desired thickness, the slider is further moved to separate the solution from the substrate, and the solution is dropped into the solution drop 12 to terminate the growth.

温度を下げつつ結晶成長を行っている時,基板に近い
溶液からは基板上にGaAsの析出が起こるため,溶液中の
As濃度は下がる。しかし,基板から遠い溶液中では,あ
る臨界の溶解度に達するまではGaAsの析出が起こらな
い。この状態は過飽和または過冷却と呼ばれているが,
かかる過飽和が起こるため,溶質の濃度は基板近くで低
く,遠くでは高くなる。この濃度の相違によって濃度の
高い所から濃度の低い所へ溶質が拡散するので基板上に
溶質が輸送され,結晶成長が持続する。
During crystal growth while lowering the temperature, GaAs is deposited on the substrate from a solution close to the substrate.
As concentration decreases. However, in solutions far from the substrate, GaAs does not precipitate until a certain critical solubility is reached. This condition is called supersaturation or supercooling,
Because of such supersaturation, the solute concentration is low near the substrate and high near the substrate. The difference in the concentration causes the solute to diffuse from a high-concentration portion to a low-concentration portion, so that the solute is transported onto the substrate and crystal growth is continued.

ところで,従来の装置では基板への溶質の補給が拡散
現象のみによって行われているため,成長速度が小さ
い。成長速度を上げる方法として,冷却速度を上げて過
飽和度を高める方法があるが,この場合は溶液中に析出
の核が発生し,その核に溶質が析出するため,溶液の過
飽和度はある臨界値より大きくならず,成長速度を上げ
る効果はたいして大きくない。
By the way, in the conventional apparatus, the solute is replenished to the substrate only by the diffusion phenomenon, so that the growth rate is low. As a method of increasing the growth rate, there is a method of increasing the degree of supersaturation by increasing the cooling rate. In this case, nuclei of precipitation are generated in the solution and solutes are deposited on the nuclei. The effect of increasing the growth rate is not so large.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

溶液成長法は前述のように温度の低下による溶解度の
減少を利用するもので,溶質の割合が数パーセントと低
く,融液成長法に比べると成長速度が小さい。そのた
め,厚い成長層を得るためには成長時間が非常に長くな
ってしまう。
The solution growth method utilizes the decrease in solubility due to a decrease in temperature as described above, and the solute ratio is as low as several percent, and the growth rate is lower than that of the melt growth method. Therefore, the growth time becomes very long to obtain a thick growth layer.

さらに,基板が高温にさらされる時間が長くなると,
蒸気圧の高いV属やIV属の元素の該基板から抜け出る量
が多くなり,成長する結晶の品質が悪くなる。
In addition, the longer the substrate is exposed to high temperatures,
The amount of the element belonging to group V or group IV having a high vapor pressure to escape from the substrate increases, and the quality of the grown crystal deteriorates.

そこで,スループットを向上し且つ基板の変性を防ぐ
ために成長速度を上げる必要がある。
Therefore, it is necessary to increase the growth rate in order to improve the throughput and prevent denaturation of the substrate.

〔課題を解決するための手段〕[Means for solving the problem]

基板への成長速度を上げるために,基板への溶質の供
給を拡散によるものだけでなく,溶液中の対流も利用す
るようにする。
In order to increase the growth rate on the substrate, the supply of the solute to the substrate is not only by diffusion but also by convection in the solution.

第1図は本発明の溶液成長装置であり,第1図
(a),(b)は,それぞれ,上面図,A−A断面図であ
り,1は下側支持台,11は下側切除部,12は溶液落とし,2は
上側支持台,21は上側切除部,22は上側開孔部,3はスライ
ダ,31はスライダ開孔部,32は操作棒,4は溶液溜,41は溶
液,5は成長基板,51は下側基板,61乃至64はダミー基板を
表す。
FIG. 1 shows a solution growth apparatus of the present invention, and FIGS. 1 (a) and 1 (b) are a top view and an AA cross-sectional view, respectively, where 1 is a lower support, and 11 is a lower excision. , 12 is the solution drop, 2 is the upper support, 21 is the upper cutout, 22 is the upper opening, 3 is the slider, 31 is the slider opening, 32 is the operating rod, 4 is the solution reservoir, and 41 is the solution. , 5 indicate a growth substrate, 51 indicates a lower substrate, and 61 to 64 indicate dummy substrates.

上記課題は、〔1〕下側支持台1と、基板を配置する
下側に開口した上側切除部21及び溶液溜となる上側開孔
部22を持つ上側支持台2と、溶液溜となるスライダ開孔
部31を持ち且つ該下側支持台及び該上側支持台に接して
スライドするスライダ3とを含む溶液成長装置であっ
て、該上側切除部に成長面を水平にした成長基板5が配
置され、該スライダ開孔部に成長面を水平から傾けたダ
ミー基板61乃至64が配置されている溶液成長装置と、
〔2〕スライダ3と成長基板5の間にスペースを形成す
るスペーサ7が上側切除部21に配置されている〔1〕記
載の溶液成長装置と、〔3〕上の開口は成長基板5の成
長面を水平にして通す形状で、下の開口は該成長面を水
平にして通さない形状の開孔を上側切除部21として持つ
〔1〕記載の溶液成長装置と、〔4〕上側支持台2の下
側に開口した基板配置凹部211及び該凹部の底から上側
支持台2の上面に抜ける基板吸引開孔部212からなる上
側切除部21を持つ〔1〕記載の溶液成長装置によって解
決される。
The above-mentioned problems are as follows: [1] The lower support 1, an upper support 2 having an upper cut-out portion 21 opened on the lower side where a substrate is placed, and an upper opening 22 serving as a solution reservoir, and a slider serving as a solution reservoir. A solution growth apparatus comprising a slider 3 having an opening 31 and sliding in contact with the lower support and the upper support, wherein a growth substrate 5 having a horizontal growth surface is disposed in the upper cutout. A solution growth apparatus in which dummy substrates 61 to 64 whose growth surfaces are inclined from horizontal are arranged in the slider opening portions,
[2] The solution growing apparatus according to [1], in which a spacer 7 that forms a space between the slider 3 and the growth substrate 5 is disposed in the upper cutout 21, and [3] the opening on the growth substrate 5 The solution growing apparatus according to [1], wherein the lower opening has an opening having a shape not allowing the growth surface to pass through as the upper cutout portion 21; The solution growing apparatus according to [1], which has an upper cutout portion 21 comprising a substrate disposing concave portion 211 opened to the lower side and a substrate suction opening portion 212 extending from the bottom of the concave portion to the upper surface of the upper support 2. .

〔作用〕[Action]

化合物半導体の溶液は,溶質(Ga+GaAsの場合はAs)
の濃度が低い程比重が大きくなることが知られている。
基板に結晶成長を行うために溶液の温度を下げると,基
板近くの溶液からは該基板上に溶質が析出するため,基
板近くの溶液は遠くの溶液よりも溶質の濃度が低くな
る。それゆえ,基板近くの溶液の方が比重が大きくな
り,基板を溶液中に立てて成長を行うと,基板近くで下
向きの流れが生じる。そこで,本発明ではかかる流れを
利用するために,成長基板5を溶液41の上に成長面を下
にして水平に配置し,ダミー基板61乃至64を該溶液中に
成長面を水平から傾けて配置し溶液成長を行う。
Compound semiconductor solution is a solute (As for Ga + GaAs)
It is known that the lower the concentration of is, the higher the specific gravity becomes.
When the temperature of the solution is lowered to grow crystals on the substrate, the solute is deposited on the substrate from the solution near the substrate, and the concentration of the solute is lower in the solution near the substrate than in the solution far away. Therefore, the specific gravity of the solution near the substrate is higher, and when the substrate is grown in the solution, a downward flow occurs near the substrate. Therefore, in order to utilize such a flow, the present invention arranges the growth substrate 5 horizontally on the solution 41 with the growth surface downward, and places the dummy substrates 61 to 64 in the solution by tilting the growth surface from the horizontal. Place and perform solution growth.

第2図にかかる配置における溶液成長中の対流を示
す。溶液成長中は第2図の矢印に示すような対流が発生
し,成長基板5には過飽和度の高い溶液が常に供給され
るために,成長速度を大きくすることができる。
2 shows convection during solution growth in the arrangement according to FIG. During the solution growth, a convection as shown by an arrow in FIG. 2 occurs, and a solution having a high degree of supersaturation is always supplied to the growth substrate 5, so that the growth rate can be increased.

対流を起こさせるためにはダミー基板の成長面は水平
面から傾いて配置することが必要で,垂直に近づくほど
対流の発生が盛んになる。また,複数のダミー基板を配
置するとき,成長基板の成長面に対して対称の位置に配
置するのが対流による溶質の供給を均一にする上から望
ましい。
In order to cause convection, the growth surface of the dummy substrate needs to be arranged to be inclined from the horizontal plane, and the generation of convection becomes more active as it approaches vertical. When arranging a plurality of dummy substrates, it is desirable to arrange them at symmetrical positions with respect to the growth surface of the growth substrate from the viewpoint of making the supply of solute by convection uniform.

溶液の対流は下側切除部11に配置した下側基板51上に
も生じるが,該基板に供給される溶液はダミー基板61乃
至64により溶質を析出した後の過飽和度の低い溶液であ
るため,成長速度は大きくならない。
Although the convection of the solution also occurs on the lower substrate 51 arranged in the lower excision part 11, the solution supplied to the substrate is a solution having a low supersaturation degree after the solute is deposited by the dummy substrates 61 to 64. , The growth rate does not increase.

また,混晶の成長や不純物のドーピングを行う時,溶
液の組成と析出する結晶の組成は必ずしも一致しない,
いわゆる,偏析が生じる。例えば,偏析係数の大きい不
純物をドープする場合,成長時には基板近くの溶液中の
不純物は基板に取り込まれる割合が多いため,基板から
遠い溶液よりも不純物の濃度が低くなる。従来の溶液成
長装置では,不純物原子の成長界面までの輸送は拡散だ
けによっていたので,不純物原子の供給が遅い。そのた
め,成長する結晶中に取り込まれる不純物の濃度は徐々
に低くなってしまい,組成の均一な結晶が得られない。
In addition, when growing mixed crystals or doping impurities, the composition of the solution does not always match the composition of the precipitated crystals.
So-called segregation occurs. For example, when doping an impurity having a large segregation coefficient, the concentration of the impurity in a solution near the substrate during growth is lower than that in a solution far from the substrate because a large proportion of the impurity is taken into the substrate. In the conventional solution growth apparatus, since the transport of impurity atoms to the growth interface is performed only by diffusion, the supply of impurity atoms is slow. As a result, the concentration of impurities taken into the growing crystal gradually decreases, and a crystal having a uniform composition cannot be obtained.

本発明の溶液成長装置によれば,溶液中に対流を起こ
し溶液の上側に配置した成長基板に不純物濃度の高い溶
液を供給できるので不純物濃度の均一な結晶を成長させ
ることができる。
According to the solution growth apparatus of the present invention, since a solution having a high impurity concentration can be supplied to the growth substrate disposed above the solution due to convection in the solution, a crystal having a uniform impurity concentration can be grown.

〔実施例〕〔Example〕

本発明の一実施例について第1図に示す溶液成長装置
を参照しながら説明する。
One embodiment of the present invention will be described with reference to a solution growing apparatus shown in FIG.

スライダ開孔部31を上側開孔部22の下に移動して溶液
溜4を形成した後,該スライダ開孔部の四面の側壁に接
触してGaAsのダミー基板61乃至64を配置し,該溜にGaと
原料になるGaAsを入れる。該ダミー基板は単結晶でも多
結晶でもよい。
After moving the slider opening 31 below the upper opening 22 to form the solution reservoir 4, the GaAs dummy substrates 61 to 64 are arranged in contact with the four side walls of the slider opening. Put Ga and GaAs to be the raw material in the reservoir. The dummy substrate may be single crystal or polycrystal.

上側切除部21に成長基板5を配置し,下側切除部11に
下側基板51を配置する。
The growth substrate 5 is arranged in the upper cutout 21, and the lower substrate 51 is arranged in the lower cutout 11.

石英管内の雰囲気ガスを高純度水素ガスに置換した後
で,900℃まで温度を上げ,GaにGaAsを溶解する。この
時,原料GaAsと共にGaAs基板表面も溶解するので,ダミ
ー基板が全部溶解してしまわないように該ダミー基板の
厚さを選ぶ必要がある。
After replacing the atmosphere gas in the quartz tube with high-purity hydrogen gas, the temperature is raised to 900 ° C and GaAs is dissolved in Ga. At this time, since the surface of the GaAs substrate is dissolved together with the raw material GaAs, the thickness of the dummy substrate must be selected so that the dummy substrate is not completely dissolved.

900℃で20分間保持し溶液41を飽和させた後,スライ
ダ3を矢印の方向に押し,該溶液を成長基板5に接触さ
せる。さらに20分間保持し,該溶液を均質化した後で,
毎分0.5℃の割合で冷却し,結晶成長を行う。
After the solution 41 is saturated by holding at 900 ° C. for 20 minutes, the slider 3 is pushed in the direction of the arrow to bring the solution into contact with the growth substrate 5. Hold for another 20 minutes and after homogenizing the solution,
Cool at a rate of 0.5 ° C per minute to grow crystals.

成長終了後,スライダ3を矢印の方向に押して該溶液
を該成長基板から離し,溶液落とし12に該溶液を落とし
て室温まで温度を下げる。
After the growth is completed, the solution is separated from the growth substrate by pushing the slider 3 in the direction of the arrow, and the solution is dropped into the solution drop 12 to lower the temperature to room temperature.

第3図に本実施例で得られた成長時間と成長膜厚の関
係を示す。成長時間に対して成長膜厚はほぼ直線的に増
加し,溶液の上側に配置した成長基板には下側基板の約
2倍の膜厚の結晶が成長していた。
FIG. 3 shows the relationship between the growth time and the growth film thickness obtained in this example. The growth film thickness increased almost linearly with the growth time, and a crystal having a film thickness about twice as large as that of the lower substrate was grown on the growth substrate arranged above the solution.

次に,成長基板5を上側切除部21に配置する方法につ
いて説明する。
Next, a method of arranging the growth substrate 5 in the upper cutout 21 will be described.

第1図に示した溶液成長装置を組み立てるに際し,ま
ず下側支持台1上にスライダ3を,該スライダの上に成
長基板5を乗せる。次に,成長基板が上側切除部21に収
まり且つ該スライダが三方から包まれるように上から上
側支持台2をかぶせて該上側支持台を該下側支持台と一
体化する。
In assembling the solution growth apparatus shown in FIG. 1, first, the slider 3 is placed on the lower support 1 and the growth substrate 5 is placed on the slider. Next, the upper support is integrated with the lower support by covering the upper support 2 from above so that the growth substrate is accommodated in the upper cutout 21 and the slider is wrapped from three sides.

溶液溜4に原料を入れ,加熱し,溶液を作った後スラ
イダ3を動かして該溶液を成長基板の下にもってきて該
成長基板に接触させる。この時,該成長基板の成長面は
該溶液に接触する前にスライダの上面と接触して摩擦す
るので,成長した結晶に点状の,あるいはスライダの移
動方向に延びた線状の異常成長部の発生することがあ
る。これらの異常成長部は表面の凹凸が激しく,その後
の素子形成の工程でホトマスクの損傷や粉体の発生等の
原因となるので,異常成長部の発生は極力防止する必要
がある。
The raw material is put in the solution reservoir 4, heated, and a solution is made. After that, the slider 3 is moved to bring the solution under the growth substrate and brought into contact with the growth substrate. At this time, since the growth surface of the growth substrate comes into contact with the upper surface of the slider and rubs before contacting the solution, the grown crystal has a point-like or linear abnormal growth portion extending in the slider movement direction. May occur. These abnormally grown portions have severe irregularities on the surface, which may cause damage to the photomask, generation of powder, and the like in the subsequent element formation process. Therefore, it is necessary to minimize the occurrence of abnormally grown portions.

そこで,成長基板5をスライダ3に直接接触させない
方法について以下に述べる。
Therefore, a method for preventing the growth substrate 5 from directly contacting the slider 3 will be described below.

第4図は成長基板の配置法Iである。 FIG. 4 shows an arrangement method I of a growth substrate.

外周が成長基板5のそれとほぼ等しく,内周が該外周
よりやや小さく,厚さが0.5mm程度のスペーサ7を該成
長基板の下に配置して,該成長基板とスライダ3の間に
スペースを形成し,該スペーサ及び該成長基板を上側切
除部21に配置する。
A spacer 7 having an outer periphery substantially equal to that of the growth substrate 5, an inner periphery slightly smaller than the outer periphery, and a thickness of about 0.5 mm is arranged below the growth substrate, and a space is provided between the growth substrate and the slider 3. Formed, and the spacer and the growth substrate are arranged in the upper cutout 21.

本配置法では,該スライダを動かして溶液4を該成長
基板の下にもってきた時,スペースがあるために該溶液
が該成長基板に接触しないようにみえる。しかし,溶液
の表面は表面張力により上に凸の形状になり,0.5mm程度
のスペースでは該成長基板に接触し,結晶成長が進行す
る。
In this arrangement, when the slider is moved to bring the solution 4 under the growth substrate, it appears that the solution does not contact the growth substrate due to the space. However, the surface of the solution becomes upwardly convex due to surface tension, and in a space of about 0.5 mm, the solution comes into contact with the growth substrate and crystal growth proceeds.

第5図は成長基板の配置法IIである。 FIG. 5 shows a growth substrate arrangement method II.

上側支持台2に上の開口が成長基板5の成長面よりや
や広く,下の開口が該成長面よりやや狭い開孔を形成す
る。さらに具体的に述べると,該成長基板の成長面がス
ライダ3の上面と接触するのを防ぎ,しかも該成長基板
の成長面とスライダ3の上面の間に極く狭いスペースを
形成するため,幅0.5mm,厚さ0.5mm程度のフランジ23を
上側切除部21の底部に形成する。
The upper support 2 has an upper opening that is slightly wider than the growth surface of the growth substrate 5 and a lower opening that is slightly narrower than the growth surface. More specifically, in order to prevent the growth surface of the growth substrate from coming into contact with the upper surface of the slider 3, and to form an extremely narrow space between the growth surface of the growth substrate and the upper surface of the slider 3, A flange 23 having a thickness of about 0.5 mm and a thickness of about 0.5 mm is formed at the bottom of the upper cutout 21.

なお,該フランジは該成長基板が下に落ちないように
少なくとも該成長基板より狭い部分を持っていればよ
く,下の開口の全周にわたって形成されている必要はな
い。
It is sufficient that the flange has at least a portion narrower than the growth substrate so that the growth substrate does not fall down, and does not need to be formed over the entire periphery of the lower opening.

該成長基板の上には溶液の表面張力により該成長基板
の浮き上がるのを防ぐため,基板押さえ52を乗せる。該
基板の自重だけで浮き上がりを防止できる場合は基板押
さえ52を乗せる必要はない。
A substrate holder 52 is placed on the growth substrate to prevent the growth substrate from rising due to the surface tension of the solution. If lifting can be prevented only by the weight of the substrate, it is not necessary to put the substrate holder 52 thereon.

第6図は成長基板の配置法IIIである。 FIG. 6 shows a method III of arranging a growth substrate.

本配置法では,成長基板5の成長面とスライダ3の上
面を接触させないために該基板を上側支持台(2)の上
部から吸引する。上側支持台2に成長基板の厚さよりや
や深い基板配置凹部211を形成し,さらに該凹部の底か
ら該支持台の上面に抜ける基板吸引開孔部212を形成
し,該開孔部に吸引管8を接続し,該吸引管を石英管の
外部の真空系に接続して排気し,該基板を上側支持台に
吸着させる。かくして,該基板の成長面とスライダの上
面の間に極く狭いスペースが形成される。
In this arrangement method, the growth surface of the growth substrate 5 and the upper surface of the slider 3 are suctioned from the upper portion of the upper support (2) so that the upper surface of the slider 3 is not in contact with the growth surface. A substrate placement recess 211 slightly deeper than the thickness of the growth substrate is formed in the upper support 2, a substrate suction opening 212 is formed from the bottom of the recess to the upper surface of the support, and a suction pipe is formed in the opening. 8 is connected, the suction tube is connected to a vacuum system outside the quartz tube, and air is exhausted, and the substrate is adsorbed to the upper support. Thus, a very narrow space is formed between the growth surface of the substrate and the upper surface of the slider.

成長基板5を配置法I乃至IIIのようにし,後は前述
の実施例と同様にして成長した結晶の成長表面は平坦で
均質であり,異常成長部は見られなかった。従って,か
かる成長基板配置法は結晶成長の歩留り向上に有効であ
る。
After the growth substrate 5 was arranged in the same manner as in the arrangement methods I to III, the growth surface of the crystal grown in the same manner as in the above-mentioned embodiment was flat and uniform, and no abnormal growth portion was observed. Therefore, such a growth substrate arrangement method is effective for improving the yield of crystal growth.

〔発明の効果〕〔The invention's effect〕

以上説明した様に,本発明の溶液成長装置によれば,
結晶の成長速度を大きくしてスループットを上げ,且つ
平坦で均質な成長面を持つ結晶を歩留りよく成長するこ
とができる。
As described above, according to the solution growth apparatus of the present invention,
The crystal growth rate can be increased to increase the throughput, and a crystal having a flat and uniform growth surface can be grown with good yield.

更に,本発明の溶液成長装置によれば,偏析の小さい
混晶,不純物濃度分布の一様な結晶を成長することがで
きる。
Further, according to the solution growing apparatus of the present invention, a mixed crystal having a small segregation and a crystal having a uniform impurity concentration distribution can be grown.

本発明は化合物半導体を用いるデバイスの製造に寄与
するところが大きい。
The present invention greatly contributes to the manufacture of a device using a compound semiconductor.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の溶液成長装置, 第2図は溶液成長中の対流, 第3図は成長時間と成長膜厚, 第4図は成長基板の配置法I, 第5図は成長基板の配置法II, 第6図は成長基板の配置法III, 第7図はGa−As系の平衡状態図, 第8図は従来の溶液成長装置 である。図において, 1は下側支持台, 11は下側切除部, 12は溶液落とし, 2は上側支持台, 21は上側切除部, 211は基板配置凹部, 212は基板吸引開孔部, 22は上側開孔部, 23はフランジ, 3はスライダ, 31はスライダ開孔部, 32は操作棒, 4は溶液溜, 41は溶液, 5は成長基板, 51は下側基板, 52は基板押さえ, 61乃至64はダミー基板, 7はスペーサ, 8は吸引管 を表す。 1 is a solution growth apparatus of the present invention, FIG. 2 is convection during solution growth, FIG. 3 is growth time and growth film thickness, FIG. 4 is growth substrate arrangement method I, and FIG. Fig. 6 shows the placement method III of the growth substrate, Fig. 6 shows the equilibrium diagram of the Ga-As system, and Fig. 8 shows the conventional solution growth apparatus. In the figure, 1 is a lower support, 11 is a lower cutout, 12 is a solution drop, 2 is an upper support, 21 is an upper cutout, 211 is a concave portion for arranging a substrate, 212 is a hole for sucking a substrate, and 22 is a suction hole for a substrate. The upper opening, 23 is a flange, 3 is a slider, 31 is a slider opening, 32 is an operating rod, 4 is a solution reservoir, 41 is a solution, 5 is a growth substrate, 51 is a lower substrate, and 52 is a substrate holder. 61 to 64 are dummy substrates, 7 is a spacer, and 8 is a suction tube.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下側支持台(1)と、 基板を配置する下側に開口した上側切除部(21)及び溶
液溜となる上側開孔部(22)を持つ上側支持台(2)
と、 溶液溜となるスライダ開孔部(31)を持ち且つ該下側支
持台及び該上側支持台に接してスライドするスライダ
(3)とを含む溶液成長装置であって、 該上側切除部に成長面を水平にした成長基板(5)が配
置され、該スライダ開孔部に成長面を水平から傾けたダ
ミー基板(61乃至64)が配置されていることを特徴とす
る溶液成長装置。
An upper support (2) having a lower support (1), an upper cutout (21) opened on the lower side for disposing a substrate, and an upper opening (22) serving as a solution reservoir.
And a slider (3) having a slider opening (31) serving as a solution reservoir and sliding in contact with the lower support and the upper support. A solution growth apparatus comprising: a growth substrate (5) having a horizontal growth surface; and a dummy substrate (61 to 64) having a growth surface inclined from the horizontal position in the slider opening.
【請求項2】スライダ(3)と成長基板(5)の間にス
ペースを形成するスペーサ(7)が上側切除部(21)に
配置されていることを特徴とする請求項〔1〕記載の溶
液成長装置。
2. The method according to claim 1, wherein a spacer for forming a space between the slider and the growth substrate is arranged in the upper cutout. Solution growth equipment.
【請求項3】上の開口は成長基板(5)の成長面を水平
にして通す形状で、下の開口は該成長面を水平にして通
さない形状の開孔を上側切除部(21)として持つことを
特徴とする請求項〔1〕記載の溶液成長装置。
3. An upper opening is formed so as to pass the growth surface of the growth substrate (5) horizontally, and a lower opening is formed as an upper cutout portion (21) having the growth surface horizontal and not passed therethrough. The solution growing apparatus according to claim 1, wherein the solution growing apparatus is provided.
【請求項4】上側支持台(2)の下側に開口した基板配
置凹部(211)及び該凹部の底から上側支持台(2)の
上面に抜ける基板吸引開孔部(212)からなる上側切除
部(21)を持つことを特徴とする請求項〔1〕記載の溶
液成長装置。
4. An upper side comprising a substrate disposing recess (211) opened on the lower side of the upper support stand (2) and a substrate suction opening (212) passing from the bottom of the recess to the upper surface of the upper support stand (2). 2. The solution growing apparatus according to claim 1, further comprising a cutting portion.
JP19505188A 1988-08-03 1988-08-03 Solution growth equipment Expired - Lifetime JP2599767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19505188A JP2599767B2 (en) 1988-08-03 1988-08-03 Solution growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19505188A JP2599767B2 (en) 1988-08-03 1988-08-03 Solution growth equipment

Publications (2)

Publication Number Publication Date
JPH0243723A JPH0243723A (en) 1990-02-14
JP2599767B2 true JP2599767B2 (en) 1997-04-16

Family

ID=16334732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19505188A Expired - Lifetime JP2599767B2 (en) 1988-08-03 1988-08-03 Solution growth equipment

Country Status (1)

Country Link
JP (1) JP2599767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926542B (en) * 2014-03-06 2017-02-22 温州大学 Detection method for arc extinguishing efficiency of grid arc extinguish chamber and measuring device thereof
SE540912E (en) 2017-09-12 2021-02-16 Roxtec Ab Extension frame
CN116770421B (en) * 2023-07-03 2023-12-01 北京智创芯源科技有限公司 Graphite boat for horizontal liquid phase epitaxial growth

Also Published As

Publication number Publication date
JPH0243723A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
US20060011135A1 (en) HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
US20090130781A1 (en) Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
JP2001064098A (en) Method and device for growing crystal, and group iii nitride crystal
US3632431A (en) Method of crystallizing a binary semiconductor compound
JPH0691020B2 (en) Vapor growth method and apparatus
KR20200010711A (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
US3809584A (en) Method for continuously growing epitaxial layers of semiconductors from liquid phase
US4032370A (en) Method of forming an epitaxial layer on a crystalline substrate
US4365588A (en) Fixture for VPE reactor
JP2599767B2 (en) Solution growth equipment
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JPS61500291A (en) Liquid phase epitaxial growth on Group 3-5 compound semiconductor substrate containing phosphorus
US4238252A (en) Process for growing indium phosphide of controlled purity
TWI769943B (en) Manufacturing method of indium phosphide substrate, semiconductor epitaxial wafer, indium phosphide single crystal ingot, and manufacturing method of indium phosphide substrate
JPH01144620A (en) Semiconductor growth device
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPH0442898A (en) Crystal growth of compound semiconductor
JPH0235814Y2 (en)
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
JP2003267794A (en) Method and apparatus for growing crystal
JPH01286991A (en) Method for molecular-beam epitaxial growth and apparatus therefor
JPH0697098A (en) Growing method for semiconductor crystal
JPS63205912A (en) Manufacture of semiconductor
JPS5919917B2 (en) epitaxial epitaxy
JPH05114565A (en) Slide boat member and liquid phase epitaxy using same