JPH01144620A - Semiconductor growth device - Google Patents

Semiconductor growth device

Info

Publication number
JPH01144620A
JPH01144620A JP30360687A JP30360687A JPH01144620A JP H01144620 A JPH01144620 A JP H01144620A JP 30360687 A JP30360687 A JP 30360687A JP 30360687 A JP30360687 A JP 30360687A JP H01144620 A JPH01144620 A JP H01144620A
Authority
JP
Japan
Prior art keywords
wafer
gas
reaction
semiconductor
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30360687A
Other languages
Japanese (ja)
Other versions
JP2528912B2 (en
Inventor
Tatsuya Ohori
達也 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62303606A priority Critical patent/JP2528912B2/en
Publication of JPH01144620A publication Critical patent/JPH01144620A/en
Application granted granted Critical
Publication of JP2528912B2 publication Critical patent/JP2528912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To epitaxially grow a compound semiconductor of equal thickness by putting a wafer on the center of a reaction pipe, making a gas separating plate as a rectifying plate, dividing reaction gas into two up and down flows to supply and uniformly heating the reaction gas from the up and down flows. CONSTITUTION:A Si wafer 11 is loaded on a loading stand 15 inserted in a reaction pipe 8 and positioned between a gas separating plate 14 and a holding plate 16. After carrier gas H2 is substituted in the reaction pipe, the Si wafer 11 is heated up to 900 deg.C or more by an infrared ray lamp 9 and a passive state oxide film is removed, the temperature is descended up to 650-700 deg.C, Ga(CH3)3 is supplied after AsH3 is supplied, and Ga and As are epitaxially grown. The warp of the Si wafer is not identified. Therefore, a compound semiconductor of uniform thickness can epitaxially be grown on both the surfaces of the wafer in a single process and so a substrate without warp can be formed in low cost.

Description

【発明の詳細な説明】 〔概要〕 半導体基板上に半導体薄膜をヘテロエピタキシャル成長
させる半導体成長装置に関し、半導体基板の反りを無く
することを目的とし、半導体成長装置が、半導体基板を
載置して反応ガスの分解を行う反応管と、半導体基板を
加熱する赤外線ランプよりなり、該反応管が、ガス供給
口側に位置して反応ガスとキャリアガスとの混合ガスを
上下に分離するガス分離板と、該ガス分離板の下流側に
位置して半導体基板を保持するリング状の載置台と、該
R置台を保持する保持板とを備えて構成する。
[Detailed Description of the Invention] [Summary] Regarding a semiconductor growth apparatus for heteroepitaxially growing a semiconductor thin film on a semiconductor substrate, the purpose of the semiconductor growth apparatus is to eliminate warping of the semiconductor substrate, and the semiconductor growth apparatus is used to place a semiconductor substrate and perform a reaction. The reaction tube is composed of a reaction tube that decomposes the gas and an infrared lamp that heats the semiconductor substrate, and the reaction tube is connected to a gas separation plate that is located on the gas supply port side and separates the mixed gas of the reaction gas and the carrier gas into upper and lower parts. , a ring-shaped mounting table that is located downstream of the gas separation plate and holds the semiconductor substrate, and a holding plate that holds the R mounting table.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体薄膜をエピタキシャル成長させるに使用
する半導体成長装置に関する。
The present invention relates to a semiconductor growth apparatus used for epitaxially growing a semiconductor thin film.

大量の情報を高速に処理するため情報処理技術の進歩は
著しいが、この技術を用いた情報処理装置において主体
を構成する半導体デバイスは単位素子の小形化により大
容量化が行われて、ICやLS■が生産されており、ま
た半導体レーザなども実用化されている。
Information processing technology has made remarkable progress in order to process large amounts of information at high speed, but the semiconductor devices that make up the main body of information processing equipment using this technology have increased in capacity due to the miniaturization of unit elements, and are becoming increasingly popular with ICs and LS■ has been produced, and semiconductor lasers have also been put into practical use.

そして、これらのデバイスが形成されている半導体には
シリコン(Si)で代表される単体半導体と、ガリウム
砒素(GaAs)やインジウム燐(TnP)で代表され
る化合物半導体とがあり、それぞれ高純度の単結晶基板
を用いて各種のデバイスが量産されている。
The semiconductors in which these devices are formed include single semiconductors represented by silicon (Si) and compound semiconductors represented by gallium arsenide (GaAs) and indium phosphide (TnP), each of which has high purity. Various devices are mass-produced using single crystal substrates.

こ\で、各種の半導体デバイスは厚さ500μm程度の
半導体基板(以下略してウェハ)を用いて形成されてい
るが、量産効果は当然のことなからウェハの直径に比例
して増加している。
Here, various semiconductor devices are formed using semiconductor substrates (hereinafter referred to as wafers) with a thickness of approximately 500 μm, and the mass production effect naturally increases in proportion to the diameter of the wafer. .

そのため、ウェハ径を増加させるため結晶成長技術は開
発が進んできている。
Therefore, crystal growth techniques are being developed to increase the wafer diameter.

例えば、半導体材料の主体を占めるSiはパ引き上げ法
”によって円筒状の単結晶が作られているが、この直径
は当初の3インチより進んで、現在では6インチ径のも
のまで作られている。
For example, cylindrical single crystals of Si, which is the main component of semiconductor materials, are made using the ``P-pulling method'', but the diameter of this has progressed from the original 3 inches, and now it is made to 6 inches in diameter. .

一方、GaAsのような化合物半導体については単体半
導体と異なり、単結晶の成長が容易でないことから、現
在は2インチ径のものを主流としてデバイスの形成が行
われている。
On the other hand, unlike single semiconductors, it is not easy to grow single crystals of compound semiconductors such as GaAs, and therefore devices are currently being formed mainly using 2-inch diameter semiconductors.

然し、量産効果を顕著に出すにばウェハの径を増すこと
が必要であり、この方法としてSiウェハ上に化合物半
導体をエピタキシャル成長させ、このエピタキシャル膜
を用いてデバイスを形成することが行われている。
However, in order to achieve significant mass production effects, it is necessary to increase the diameter of the wafer, and the method used to achieve this is to epitaxially grow a compound semiconductor on a Si wafer and use this epitaxial film to form devices. .

本発明はSiウェハ上に化合物半導体をエピタキシャル
成長させるのに使用する半導体成長装置に関するもので
ある。
The present invention relates to a semiconductor growth apparatus used for epitaxially growing a compound semiconductor on a Si wafer.

〔従来の技術〕[Conventional technology]

化合物半導体としては先に記したGaAs、 InP以
外に各種のものがあり、有機金属化学気相成長装置 (
Metal  Organic  Chemical 
 Vapor  Deposition略してMOCV
D炉)を用いてエピタキシャル成長が行われている。
There are various types of compound semiconductors in addition to the GaAs and InP mentioned above, and they can be grown using organometallic chemical vapor deposition equipment (
Metal Organic Chemical
Vapor Deposition (abbreviated as MOCV)
Epitaxial growth is performed using a D furnace.

以下、GaAsを代表例として本発明を説明する。The present invention will be explained below using GaAs as a representative example.

第3図に示すように、MOCVD炉1は加熱されたウェ
ハ2が載置しである反応管3の中に低沸点の有機金属化
合物をキャリアガスと共に供給し、ウェハ2の上で反応
ガスを熱分解するごとによりエピタキシャル成長を行わ
せる装置であって、具体例としてはガリウム(Ga)の
有機化合物であるトリメチルガリウム(Ga(Cl(:
+)3)と砒素(As)の有機化合物であるアルシン(
AsH,)とを水素(H2)をキャリアとし、石英より
なる反応管3の中に少量づつ導入してウェハ上に供給す
る。
As shown in FIG. 3, the MOCVD furnace 1 supplies a low boiling point organometallic compound together with a carrier gas into a reaction tube 3 on which a heated wafer 2 is placed, and a reaction gas is released above the wafer 2. It is a device that performs epitaxial growth every time it is thermally decomposed.
+)3) and arsine (As), an organic compound of arsenic (As)
Using hydrogen (H2) as a carrier, AsH, ) is introduced little by little into a reaction tube 3 made of quartz and supplied onto the wafer.

一方、Siよりなるウェハ2はグラファイトからなるサ
セプタ4の上に載置されて反応管3の中に置かれており
、反応管3の外側に設けられている高周波コイル5に高
周波電流を通電するなどの方法で加熱されている。
On the other hand, a wafer 2 made of Si is placed on a susceptor 4 made of graphite and placed in a reaction tube 3, and a high frequency current is applied to a high frequency coil 5 provided outside the reaction tube 3. heated by methods such as

か−る状態において、反応ガスはSiウェハ上でGa 
(CH3) 3  + ΔsH3→GaAs  +3C
II4. −(1,1の反応を生じ、GaAs薄膜がS
iよりなるウェハ2上にエピタキシャル成長されている
In such a state, the reactive gas reacts with Ga on the Si wafer.
(CH3) 3 + ΔsH3→GaAs +3C
II4. -(1,1 reaction occurs, and the GaAs thin film becomes S
It is epitaxially grown on a wafer 2 made of i.

然しなから、Siの格子定数が5.431 人であるの
に対し、GaAsの格子定数が5.653人と約4.1
%大きいために第4図に示すようにGaAs層6のエピ
タキシャル成長の終わったSiウェハ7には反りを生じ
ており、このためにデバイス形成に支障を生じていた。
However, while the lattice constant of Si is 5.431, the lattice constant of GaAs is 5.653, about 4.1.
%, the Si wafer 7 on which the GaAs layer 6 has been epitaxially grown is warped, as shown in FIG. 4, which causes problems in device formation.

例えば、レジストを被覆したウェハに投影露光を行って
微細パターンを形成する際にウェハの位置により焦点深
度が異なるためにパターン精度が低下するなどの問題を
生じている。
For example, when a fine pattern is formed by projection exposure on a wafer coated with a resist, the depth of focus varies depending on the position of the wafer, resulting in problems such as a decrease in pattern accuracy.

この対策として、先ずウェハの裏面にGaAs或いはこ
れと格子定数の近似した材料を膜形成した後にウェハを
裏返し、改めてMOCVD炉を用いてエピタキシャル成
長を行うことが行われている。
As a countermeasure against this problem, first, a film of GaAs or a material having a lattice constant similar to GaAs is formed on the back surface of the wafer, and then the wafer is turned over and epitaxial growth is performed again using an MOCVD furnace.

然し、か\る方法は二段階の成長プロセスを必要とする
ことから生産効率が低い。
However, such a method requires a two-step growth process, resulting in low production efficiency.

また、反りを無くして、ウェハの両面にGaAs膜を形
成する方法として反応管の中にウェハを縦に保持してM
OCVDを行うことも試みられたが、この場合はウェハ
を垂直に保持することが難しく、エピタキシャル成長中
に自重により傾斜している側に反ると云う問題があり、
良い結果が得られていない。
In addition, as a method of forming GaAs films on both sides of a wafer without warping, the wafer is held vertically in a reaction tube.
OCVD has also been attempted, but in this case, it is difficult to hold the wafer vertically, and the problem is that the wafer warps to the inclined side due to its own weight during epitaxial growth.
Not getting good results.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように大口径のSiウェハに化合物半導体を
エピタキシャル成長させる場合、格子定数の違いによっ
てウェハに反りを生じ、この対策として表裏の二段成長
が行われているが工数を要し生産効率が低いことが問題
である。
As mentioned above, when compound semiconductors are grown epitaxially on large-diameter Si wafers, the wafers warp due to differences in lattice constants.As a countermeasure, two-stage growth on the front and back surfaces is performed, but this requires a lot of man-hours and reduces production efficiency. The problem is that it is low.

c問題点を解決するための手段〕 上記の問題はウェハの両面に半導体薄膜をヘテロエピタ
キシャル成長させる成長装置が、ウェハを載置して反応
ガスの分解が行われる反応管と半導体基板を加熱する赤
外線ランプよりなり、この反応管が、ガス供給口側に位
置して反応ガスとキャリアガスとの混合ガスを」二下に
分離するガス分離板と、このガス分離板の下流側に位置
して、ウェハを保持するリング状の載置台と、この載置
台を保持する保持板とを備えてなる半導体成長装置の使
用により解決することができる。
Measures to Solve Problem C] The above problem is caused by the growth equipment that heteroepitaxially grows a semiconductor thin film on both sides of a wafer using infrared rays to heat the reaction tube in which the wafer is placed and the reaction gas is decomposed, and the semiconductor substrate. The reaction tube includes a gas separation plate located on the gas supply port side to separate the mixed gas of the reaction gas and the carrier gas into two parts, and a gas separation plate located downstream of the gas separation plate, This problem can be solved by using a semiconductor growth apparatus that includes a ring-shaped mounting table that holds the wafer and a holding plate that holds the mounting table.

〔作用〕[Effect]

本発明はMOCVD炉を用いてエピタキシャル成長を行
う際にウェハの両面に均等な厚さでエピタキシャル成長
が行えるようにしたものである。
The present invention enables epitaxial growth to be performed on both sides of a wafer to a uniform thickness when epitaxial growth is performed using an MOCVD furnace.

すなわち、従来のようにサセプタ上にウェハを置いて片
面に化合物半導体をエピタキシャル成長させるのでなく
、ウェハを反応管の中央に置き、ガス分離板を整流板と
して反応ガスを上下に三等分して供給し、上下から均等
に加熱することにより等厚の化合物半導体をエピタキシ
ャル成長させることができ、これにより反りの発生を無
くするものである。
In other words, instead of placing the wafer on a susceptor and epitaxially growing a compound semiconductor on one side as in the conventional method, the wafer is placed in the center of the reaction tube, and the gas separation plate is used as a current plate to divide the reaction gas into three equal parts at the top and bottom. However, by heating evenly from above and below, a compound semiconductor of equal thickness can be epitaxially grown, thereby eliminating the occurrence of warpage.

〔実施例〕〔Example〕

第1図は本発明に係るMOCVD炉の構成を示す断面図
で、また第2図はウェハの載置状態を示す部分平面図で
ある。
FIG. 1 is a sectional view showing the configuration of an MOCVD furnace according to the present invention, and FIG. 2 is a partial plan view showing the state in which a wafer is placed.

すなわち、このMOCVD炉は石英からなる反応管8と
上下に設置した赤外線ランプ9とから構成されている。
That is, this MOCVD furnace is composed of a reaction tube 8 made of quartz and infrared lamps 9 placed above and below.

そして、この反応管8の端部には反応ガスの供給口10
があり、反対側の反応管8には反応ガスの排気口17が
設けられている。
A reaction gas supply port 10 is provided at the end of the reaction tube 8.
The reaction tube 8 on the opposite side is provided with a reaction gas exhaust port 17.

また、反応管8の開口部は中央に操作棒12が通る穴を
備えた例えばステンレス製のキャップ13が設けてあり
、反応管8を封口している。
Further, the opening of the reaction tube 8 is provided with a cap 13 made of stainless steel, for example, which has a hole in the center through which the operating rod 12 passes, and seals the reaction tube 8.

また、反応管8の入口中央には給気口10からの反応ガ
スを部分するため石英よりなるガス分離板14があり、
また反応管8の後部にはリング状のグラファイト類の載
置台15と操作棒12とを保持するために石英よりなる
保持板16が設けられている。
Further, there is a gas separation plate 14 made of quartz at the center of the inlet of the reaction tube 8 to separate the reaction gas from the air supply port 10.
Further, at the rear of the reaction tube 8, a holding plate 16 made of quartz is provided to hold a ring-shaped graphite mounting table 15 and an operating rod 12.

第2図はウェハ11の載置状態を説明するもので、載置
台15は第1図に示すように段差を備えたリング形状を
したグラファイトで形成されており、この段差を利用し
てウェハ11を搭載している。
FIG. 2 is for explaining the state in which the wafer 11 is placed.As shown in FIG. It is equipped with

次にリング状の載置台15は図において破線17で示す
ように窪み部分をもつガス分離板14と保持板16によ
り保持されており、エピタキシャル成長が終わった後は
操作棒12を引くことにより載置台15は保持板に沿っ
て移動し、ウェハ11を取り出すことができる。
Next, the ring-shaped mounting table 15 is held by a gas separation plate 14 having a recessed portion and a holding plate 16, as shown by the broken line 17 in the figure. 15 can move along the holding plate and take out the wafer 11.

次に、か−るMOCVD炉を使用してSiウェハ上にG
aAsを成長させた実施例を述べると、5インチのSi
ウェハ11を載置台15に搭載して反応管8に挿入し、
ガス分離板14と保持板16との間に位置決めした。
Next, G was deposited on the Si wafer using a MOCVD furnace.
To describe an example in which aAs was grown, a 5-inch Si
The wafer 11 is mounted on the mounting table 15 and inserted into the reaction tube 8,
It was positioned between the gas separation plate 14 and the holding plate 16.

そして、H2よりなるキャリアガスにより反応管内を置
換した状態で赤外線ランプ9によりSiウェハ11を9
00℃以上にまで加熱して不動態酸化膜を除去した後、
温度を650〜700℃に下げ、As1b+を流してか
らGa(CL)+を供給し、1μmの厚さにGa。
Then, while the inside of the reaction tube is replaced with a carrier gas consisting of H2, the Si wafer 11 is heated to 9 by an infrared lamp 9.
After removing the passive oxide film by heating to 00℃ or higher,
The temperature was lowered to 650-700°C, As1b+ was flowed, and then Ga(CL)+ was supplied to give a thickness of 1 μm.

Asをエピタキシャル成長させたが、Siウェハには反
りは認められなかった。
Although As was epitaxially grown, no warpage was observed in the Si wafer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単一の工程でウェハの両面に均等な厚
さに化合物半導体のエピタキシャル成長を行うことがで
き、これにより反りのない基板を従来よりも低コストで
製造することができる。
According to the present invention, a compound semiconductor can be epitaxially grown to a uniform thickness on both sides of a wafer in a single process, and thereby a substrate without warpage can be manufactured at a lower cost than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るMOCVD炉の構成を示す断面図
、 第2図はウェハの載置状態を示す部分平面図、第3図は
従来のMOCVD炉の構成を示す断面図、第4図は反り
の発生状態を示す断面図、である。 図において、 1はMOCVD炉、      2.11はウェハ、3
.8は反応管、     9は赤外線ランプ、12は操
作棒、      14はガス分離板、15は載置台、
      16は保持板、である。
FIG. 1 is a cross-sectional view showing the configuration of an MOCVD furnace according to the present invention, FIG. 2 is a partial plan view showing a wafer placement state, FIG. 3 is a cross-sectional view showing the configuration of a conventional MOCVD furnace, and FIG. is a cross-sectional view showing a state in which warpage occurs. In the figure, 1 is the MOCVD furnace, 2.11 is the wafer, and 3 is the MOCVD furnace.
.. 8 is a reaction tube, 9 is an infrared lamp, 12 is an operating rod, 14 is a gas separation plate, 15 is a mounting table,
16 is a holding plate.

Claims (1)

【特許請求の範囲】  半導体基板の両面に半導体薄膜をヘテロエピタキシャ
ル成長させる成長装置が、 半導体基板(11)を載置して反応ガスの分解を行う反
応管(8)と該半導体基板(11)を加熱する赤外線ラ
ンプ(9)よりなり、 該反応管(8)が、ガス供給口側に位置して反応ガスと
キャリアガスとの混合ガスを上下に分離するガス分離板
(14)と、 該ガス分離板(14)の下流側に位置して、半導体基板
(11)を保持するリング状の載置台(15)と、該載
置台(15)を保持する保持板(16)と、を備えてな
ることを特徴とする半導体成長装置。
[Claims] A growth apparatus for heteroepitaxially growing a semiconductor thin film on both sides of a semiconductor substrate comprises a reaction tube (8) on which a semiconductor substrate (11) is placed and in which a reaction gas is decomposed, and the semiconductor substrate (11). a gas separation plate (14) comprising an infrared lamp (9) for heating, the reaction tube (8) being located on the gas supply port side and separating a mixed gas of a reaction gas and a carrier gas into upper and lower parts; A ring-shaped mounting table (15) located downstream of the separation plate (14) and holding the semiconductor substrate (11); and a holding plate (16) holding the mounting table (15). A semiconductor growth apparatus characterized by:
JP62303606A 1987-12-01 1987-12-01 Semiconductor growth equipment Expired - Lifetime JP2528912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303606A JP2528912B2 (en) 1987-12-01 1987-12-01 Semiconductor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303606A JP2528912B2 (en) 1987-12-01 1987-12-01 Semiconductor growth equipment

Publications (2)

Publication Number Publication Date
JPH01144620A true JPH01144620A (en) 1989-06-06
JP2528912B2 JP2528912B2 (en) 1996-08-28

Family

ID=17923017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303606A Expired - Lifetime JP2528912B2 (en) 1987-12-01 1987-12-01 Semiconductor growth equipment

Country Status (1)

Country Link
JP (1) JP2528912B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523472A (en) * 2004-01-09 2007-08-16 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Substrate with determinable thermal expansion coefficient
JP2009043983A (en) * 2007-08-09 2009-02-26 Shin Etsu Handotai Co Ltd Method of manufacturing high-luminance light-emitting diode
JP2009046377A (en) * 2007-05-17 2009-03-05 Mitsubishi Chemicals Corp Method for producing nitride semiconductor crystal
CN105314601A (en) * 2014-07-29 2016-02-10 潘本锋 Novel standard ozone generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523472A (en) * 2004-01-09 2007-08-16 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Substrate with determinable thermal expansion coefficient
JP4745249B2 (en) * 2004-01-09 2011-08-10 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ Substrate with determinable thermal expansion coefficient
JP2009046377A (en) * 2007-05-17 2009-03-05 Mitsubishi Chemicals Corp Method for producing nitride semiconductor crystal
JP2009043983A (en) * 2007-08-09 2009-02-26 Shin Etsu Handotai Co Ltd Method of manufacturing high-luminance light-emitting diode
CN105314601A (en) * 2014-07-29 2016-02-10 潘本锋 Novel standard ozone generator

Also Published As

Publication number Publication date
JP2528912B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
US4113547A (en) Formation of epitaxial layers on substrate wafers utilizing an inert heat radiation ring to promote uniform heating
JPH01144620A (en) Semiconductor growth device
JPH04226018A (en) Manufacture of semiconductor device
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS59149020A (en) Vertical type reaction furnace
JP2850549B2 (en) Vapor growth method
JPH01313927A (en) Compound-semiconductor crystal growth method
US5098867A (en) Heat treatment for compound semiconductor wafer
JPS62123094A (en) Susceptor for vapor growth of semiconductor
JPH0323294A (en) Method for growing compound semiconductor crystal
JPH0572742B2 (en)
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JPH0235814Y2 (en)
JPH0562916A (en) Vapor growth method
US3420705A (en) Method of etching a semiconductor material
JPH01173708A (en) Semiconductor device
JPS61242994A (en) Vertical unit for vapor growth
JP2982333B2 (en) Vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0218384A (en) Method for molecular beam epitaxial growth
JP3448695B2 (en) Vapor growth method
JPH0388325A (en) Vapor growth apparatus
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPH03209717A (en) Growing method for compound semiconductor