JPS63119521A - Apparatus for vapor phase growth of organic metal - Google Patents

Apparatus for vapor phase growth of organic metal

Info

Publication number
JPS63119521A
JPS63119521A JP26577786A JP26577786A JPS63119521A JP S63119521 A JPS63119521 A JP S63119521A JP 26577786 A JP26577786 A JP 26577786A JP 26577786 A JP26577786 A JP 26577786A JP S63119521 A JPS63119521 A JP S63119521A
Authority
JP
Japan
Prior art keywords
source gas
adsorbing
chamber
film
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26577786A
Other languages
Japanese (ja)
Other versions
JPH0715887B2 (en
Inventor
Kota Yoshikawa
浩太 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26577786A priority Critical patent/JPH0715887B2/en
Publication of JPS63119521A publication Critical patent/JPS63119521A/en
Publication of JPH0715887B2 publication Critical patent/JPH0715887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-quality, high-reliability IC by providing an adsorbing chamber and allowing partial hydrocarbon liberated from a source gas to be adsorbed by an adsorbing agent, thereby reducing the carbon mixing into the grown film. CONSTITUTION:In the middle of an introducing pipe 12 for making a source gas flow into a reaction chamber, an adsorbing chamber 3 containing an adsorbing agent 31 is provided, and the adsorbing chamber 3 is heated to a temperature lower than the temperature at which the vapor phase cracking of the source gas occurs, providing a construction in which partial hydrocarbon liberated from the source gas is adsorbed by the adsorbing agent 31. For example, in the adsorbing chamber 3 made of a transparent quartz tube, the adsorbing agent 31 of hydrocarbon made of an alumina (Al2O3) powder agent is used. With this, the carbon mixing into the grown metallic film can be reduced appropriately.

Description

【発明の詳細な説明】 [概要] 反応チャンバへのソースガスの導入管の中途に、低温度
に加熱した吸着室を設けて、一部の遊離した炭化水素を
吸着して除去する構造にする。そうすれば、金属成長膜
が高純度化される。
[Detailed Description of the Invention] [Summary] An adsorption chamber heated to a low temperature is provided in the middle of the source gas introduction pipe to the reaction chamber, and a part of the liberated hydrocarbons is adsorbed and removed. . By doing so, the metal growth film becomes highly purified.

[産業上の利用分野] 本発明は有機金属気相成長装置(MOCVD装置)の改
善に関する。
[Industrial Application Field] The present invention relates to an improvement in a metal organic chemical vapor deposition apparatus (MOCVD apparatus).

従来、ICなどの半導体装置の製造方法においては、半
導体基板上に半導体膜やその他の金属膜。
Conventionally, in the manufacturing method of semiconductor devices such as ICs, a semiconductor film or other metal film is deposited on a semiconductor substrate.

絶縁膜を成長する気相成長法が汎用されていて、半導体
製造の基本的技術の一つとなっている。
The vapor phase growth method for growing insulating films is widely used and is one of the basic techniques for semiconductor manufacturing.

このような気相成長法は化学気相成長(CVD)法と物
理的成長(PVD)法に2大別されるが、そのCVD法
のうち、最近開発されてきた方法に有機金属熱分解気相
成長法(M OC’V D : MetalOrgan
ic Chemical Vapour Deposi
tion )があり、これは有機金属ガスをソースガス
(原料ガス)として、それを熱分解させて被膜を成長さ
せるものである。
Such vapor phase growth methods are divided into two main types: chemical vapor deposition (CVD) and physical growth (PVD). Phase growth method (MOC'VD: MetalOrgan
ic Chemical Vapor Deposit
tion), which uses organic metal gas as a source gas (raw material gas) and thermally decomposes it to grow a film.

しかし、このMOCVD法はソースガスに含まれる不純
物が成長膜に混入しないように、十分に配慮しなければ
ならない。
However, in this MOCVD method, sufficient care must be taken to prevent impurities contained in the source gas from being mixed into the grown film.

[従来の技術] さて、MOCVD法は常圧または減圧中で低温度で成長
できて、他のCVD法と同様に被覆性(ステップカバー
レイジ)が良く、例えば、アルミニウム膜を被覆性良く
被着させることができる。
[Prior art] Now, the MOCVD method can be grown at low temperature under normal pressure or reduced pressure, and like other CVD methods, it has good coverage (step coverage). For example, it can deposit an aluminum film with good coverage. can be done.

従来、アルミニウム膜はICの電極配線として利用され
ているが、その被着方法は適当なソースガスが未開発の
ためにCVD法は用いられず、専らスパッタや蒸着など
のPVD法が用いられていて、そのため、被覆性の悪い
欠点があった。
Traditionally, aluminum films have been used as electrode wiring for ICs, but because no suitable source gas has been developed, CVD methods have not been used, and PVD methods such as sputtering and vapor deposition have been used exclusively. Therefore, there was a drawback of poor coverage.

それが、トリメチルアルミニウム(TMAL;Al (
CH)G)、  トリエチルアルミニウム(TEAL 
;Al (CH)3 )やトリイソブチルアルミニウム
(TIBAL;^1 (CH)3 )などの有機アルミ
ニウムが開発されて、MOCVD法によって被着できる
ようになり、かくして、被覆性が改善され、ICの高信
頼化、高品質化に役立つようになってきた。
That is trimethylaluminum (TMAL; Al (
CH)G), triethylaluminum (TEAL
Organo-aluminiums such as ;Al (CH)3 ) and triisobutylaluminum (TIBAL;^1 (CH)3 ) have been developed and can be deposited by MOCVD methods, thus improving coverage and improving IC It has become useful for increasing reliability and quality.

また、MOCVD法は、GaAsのような化合物半導体
デバイスを製造する場合、エピタキシャル成長法に適用
して、化合物半導体結晶層のへテロ接合が容易に得られ
、特にその分野で注目されている方法である。
Furthermore, when manufacturing compound semiconductor devices such as GaAs, the MOCVD method can be applied to the epitaxial growth method to easily obtain a heterojunction of compound semiconductor crystal layers, and is a method that is attracting particular attention in this field. .

このようなMOCVD法によって成長するMOCVD装
置の従来の概要断面図を第2図に示しており、同図にお
いて、1はソース容器、11は水素ガス送入口、12は
ソースガス導入管、2は反応チャンバ(Chamber
  S室)、20はウェハー、21はウェハーを載置し
て回転するサセプタ、22は高周波加熱コイル、23は
排気口で、反応チャンバや導入管などはすべて透明石英
材である。
A conventional schematic sectional view of an MOCVD apparatus for growing by such MOCVD method is shown in FIG. 2, in which 1 is a source container, 11 is a hydrogen gas inlet, 12 is a source gas introduction pipe, and 2 is Reaction chamber
S chamber), 20 is a wafer, 21 is a susceptor that rotates with the wafer placed thereon, 22 is a high-frequency heating coil, 23 is an exhaust port, and the reaction chamber, introduction tube, etc. are all made of transparent quartz material.

かようなMOCVD装置を用いて、例えば、アルミニウ
ム膜を成長する場合、ソース容器1にトリイソブチルア
ルミニウム(TIBAL)の溶液を入れ、それに水素ガ
スを送入しバブルさせて、水素ガスをキャリアガスにし
たT I BALガスを、導入管12を通じて反応チャ
ンバ2内のウェハー20面に送り込む。その時、ウェハ
ーの加熱温度を250℃程度に加熱しておく。そうする
と、ウェハー面に熱分解したアルミニウム膜が成長する
For example, when growing an aluminum film using such an MOCVD apparatus, a solution of triisobutylaluminum (TIBAL) is placed in the source container 1, hydrogen gas is introduced into the solution and bubbled, and the hydrogen gas is used as a carrier gas. The T I BAL gas thus obtained is sent to the surface of the wafer 20 in the reaction chamber 2 through the introduction pipe 12 . At that time, the wafer is heated to a temperature of about 250°C. Then, a thermally decomposed aluminum film grows on the wafer surface.

なお、第2図は縦型反応チャンバを例示しているが、反
応チャンバは横型のものも使用されている。
Although FIG. 2 illustrates a vertical reaction chamber, horizontal reaction chambers are also used.

[発明が解決しようとする問題点] ところで、上記のようなMOCVD装置を用いた成長方
法においては、炭化水素と金属との結合ガスを熱分解さ
せて被膜を成長させる方法であるから、PVD法に比べ
ると炭化水素が被膜に混入し易いと云う欠点がある。炭
化水素のうち、水素はガス状になって気散するから心配
はないが、炭素が被膜に混入すると云うコンタミネーシ
ョン(汚染)が起こる。
[Problems to be Solved by the Invention] Incidentally, in the growth method using the MOCVD apparatus as described above, since the film is grown by thermally decomposing the combined gas of hydrocarbon and metal, the PVD method is not suitable. It has the disadvantage that hydrocarbons are more likely to be mixed into the coating than in the conventional method. Among hydrocarbons, there is no need to worry about hydrogen because it becomes gaseous and diffuses, but contamination occurs when carbon gets mixed into the film.

このような炭素が成長膜に含有されると、高純度なIC
基板に悪影響を与え、その品質や信頼性を悪くすること
になる。
When such carbon is included in the grown film, high purity IC can be obtained.
This will have an adverse effect on the board, impairing its quality and reliability.

本発明は、このような成長膜への炭素の混入を減少させ
る構造のMOCVD装置を提案するものである。
The present invention proposes an MOCVD apparatus having a structure that reduces the incorporation of carbon into such a grown film.

[問題点を解決するための手段] その目的は、ソースガスを反応チャンバに流入させる導
入管の中途に、吸着剤を収容した吸着チャンバを設け、
該吸着チャンバを前記ソースガスが気相分解する温度よ
り低い温度に加熱して、ソースガスから遊離した一部の
炭化水素を前記吸着剤に吸着させるように構成したMO
CVD装置によって達成される。
[Means for solving the problem] The purpose is to provide an adsorption chamber containing an adsorbent in the middle of the introduction pipe through which the source gas flows into the reaction chamber,
An MO configured to heat the adsorption chamber to a temperature lower than the temperature at which the source gas decomposes in the gas phase, so that some of the hydrocarbons liberated from the source gas are adsorbed onto the adsorbent.
Achieved by CVD equipment.

[作用] 即ち、本発明にかかるMOCVD装置は、ソースガス導
入管の中途に、低温度に加熱した吸着チャンバを配置し
て、一部の遊離した炭化水素を吸着剤で吸着させて除去
する構造にする。そうすれば、金属成長膜中に混入する
炭素をそれだけ減少させることができる。
[Function] That is, the MOCVD apparatus according to the present invention has a structure in which an adsorption chamber heated to a low temperature is disposed in the middle of the source gas introduction pipe, and some liberated hydrocarbons are adsorbed and removed by an adsorbent. Make it. By doing so, the amount of carbon mixed into the metal growth film can be reduced accordingly.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかるMOCVD装置の概要断面図を
示しており、3は透明石英管製の吸着チャンバ、31は
アルミナ(Al10に+)粉末剤からなる炭化水素の吸
着剤、32は加熱ヒータで、このような吸着チャンバ3
をソースガス導入管12の中途に設けておく。なお、そ
の他の部材は、第2図と同一部材には同一記号が付しで
ある。
FIG. 1 shows a schematic cross-sectional view of the MOCVD apparatus according to the present invention, in which 3 is an adsorption chamber made of a transparent quartz tube, 31 is a hydrocarbon adsorbent made of alumina (+ Al10) powder, and 32 is a heating With a heater, adsorption chamber 3 like this
is provided in the middle of the source gas introduction pipe 12. Note that other members that are the same as those in FIG. 2 are given the same symbols.

このようなMOCVD装置において、反応チャンバ2の
加熱温度をT1.吸着室チャンバ3の加熱温度をT2に
して、T、>7’2とすると、加熱温度T2の吸着チャ
ンバ3では、 MR→MR,+R2 の分解反応が起こり、次の加熱温度T2の反応チャンバ
2では、 MR,→M+R。
In such an MOCVD apparatus, the heating temperature of the reaction chamber 2 is set to T1. If the heating temperature of the adsorption chamber chamber 3 is set to T2 and T,>7'2, then in the adsorption chamber 3 at the heating temperature T2, a decomposition reaction of MR→MR, +R2 occurs, and in the next reaction chamber 2 at the heating temperature T2. So, MR, → M+R.

の分解反応が起こる。ここに、Mは金属、Rはすべて炭
化水素であり、この反応によって金属Mは消失せずに成
長膜となるが、炭化水素はR2だけの量が反応チャンバ
2に入る前に、吸着剤31に吸着されて除去され、それ
だけ反応チャンバ2における分解反応において、炭素の
金属膜への混入が減少することになる。
A decomposition reaction occurs. Here, M is a metal and all R are hydrocarbons. Through this reaction, the metal M does not disappear and becomes a grown film, but the hydrocarbons are absorbed into the adsorbent 31 before the amount of R2 enters the reaction chamber 2. The amount of carbon mixed into the metal film during the decomposition reaction in the reaction chamber 2 is reduced accordingly.

今、アルミニウム膜の実施例で説明すると、吸着チャン
バ3の加熱温度(T2)を150℃とし、反応チャンバ
2の加熱温度(T1)を250℃にして、水素ガスをキ
ャリアガスにしたトリイソブチルアルミニウム(TIB
AL)を吸着チャンバ3を通じて反応チャンバ2に流入
させる。そうすると、吸着チャンバ3では、 A見(C4+−1,)3;=  qこ叫鳴)2H士(C
Hz入C=cH。
Now, to explain with an example of an aluminum film, the heating temperature (T2) of the adsorption chamber 3 was set to 150°C, the heating temperature (T1) of the reaction chamber 2 was set to 250°C, and triisobutyl aluminum was prepared using hydrogen gas as a carrier gas. (TIB
AL) flows into the reaction chamber 2 through the adsorption chamber 3. Then, in adsorption chamber 3, A (C4+-1,)3;
Hz input C=cH.

(TIBAL)     (DIBAL−H’)   
 (イソ7°苓レン〕の分解反応が起こり、反応チャン
バ2では、の分解反応が起こる。そのため、(CH,)
ユc−CH2だけの炭化水素が反応チャンバ2に入る前
に除去されて、その炭素分だけ金属膜への混入が減少す
る。
(TIBAL) (DIBAL-H')
A decomposition reaction of (iso7° Reiren) occurs, and a decomposition reaction of (CH,) occurs in reaction chamber 2.
Hydrocarbons such as uc-CH2 are removed before entering the reaction chamber 2, and contamination with the metal film is reduced by that amount.

上記はアルミニウム膜の実施例で説明しているが、トリ
エチルガリウムなどをソースガスにする化合物半導体膜
の成長にも、本発明にかかる装置を適用して効果がある
ことは云うまでもない。
Although the above has been explained using an example of an aluminum film, it goes without saying that the apparatus according to the present invention can also be applied to the growth of a compound semiconductor film using triethyl gallium or the like as a source gas.

[発明の効果] 以上の説明から明らかなように、本発明にかかるMOC
VD装置によれば、成長膜への炭素の混入が低減されて
、ICが高品質化・高信転化される利点がある。
[Effect of the invention] As is clear from the above explanation, the MOC according to the present invention
The VD apparatus has the advantage that the incorporation of carbon into the grown film is reduced, resulting in higher quality and higher reliability of the IC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるMOCVD装置の断面図、第2
図は従来のMOCVD装置の断面図である。 図において、 1はソース容器、   11は水素ガス送入口、12は
ソースガス導入管、2は反応チャンバ、20はウェハー
、    21はサセプタ、22は高周波加熱コイル、
23は排気口、3は吸着チャンバ、  31はアルミナ
(吸着剤)〉ト発日月蓼二ケ・かう門ocvogt第1
図 0の閂0CVD輩1 第2図
FIG. 1 is a sectional view of the MOCVD apparatus according to the present invention, and FIG.
The figure is a cross-sectional view of a conventional MOCVD apparatus. In the figure, 1 is a source container, 11 is a hydrogen gas inlet, 12 is a source gas introduction pipe, 2 is a reaction chamber, 20 is a wafer, 21 is a susceptor, 22 is a high frequency heating coil,
23 is an exhaust port, 3 is an adsorption chamber, 31 is alumina (adsorbent)
Figure 0 bolt 0CVD guy 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ソースガスを反応チャンバに流入させる導入管の中途に
、吸着剤を収容した吸着チャンバを設け、該吸着室チャ
ンバを前記ソースガスが気相分解する温度より低い温度
に加熱して、ソースガスから遊離した一部の炭化水素を
前記吸着剤に吸着させるように構成したことを特徴とす
る有機金属気相成長装置。
An adsorption chamber containing an adsorbent is provided in the middle of the introduction pipe through which the source gas flows into the reaction chamber, and the adsorption chamber is heated to a temperature lower than the temperature at which the source gas decomposes in the gas phase to release it from the source gas. 1. An organometallic vapor phase epitaxy apparatus, characterized in that the organometallic vapor phase growth apparatus is configured such that a part of the hydrocarbons produced by the hydrocarbons is adsorbed by the adsorbent.
JP26577786A 1986-11-07 1986-11-07 Metalorganic vapor phase growth equipment Expired - Lifetime JPH0715887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26577786A JPH0715887B2 (en) 1986-11-07 1986-11-07 Metalorganic vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26577786A JPH0715887B2 (en) 1986-11-07 1986-11-07 Metalorganic vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS63119521A true JPS63119521A (en) 1988-05-24
JPH0715887B2 JPH0715887B2 (en) 1995-02-22

Family

ID=17421893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26577786A Expired - Lifetime JPH0715887B2 (en) 1986-11-07 1986-11-07 Metalorganic vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0715887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695121B2 (en) 1995-04-18 2004-02-24 Nsk Ltd. Dustproof linear actuator with an air venting device
US6893965B2 (en) 2001-12-18 2005-05-17 Fujitsu Limited Method of producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695121B2 (en) 1995-04-18 2004-02-24 Nsk Ltd. Dustproof linear actuator with an air venting device
US6893965B2 (en) 2001-12-18 2005-05-17 Fujitsu Limited Method of producing semiconductor device

Also Published As

Publication number Publication date
JPH0715887B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JPH01162326A (en) Manufacture of beta-silicon carbide layer
US6106898A (en) Process for preparing nitride film
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
JPH01252776A (en) Formation of aluminum film by vapor growth
JP2528912B2 (en) Semiconductor growth equipment
JPS6115150B2 (en)
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPS5837388B2 (en) Kisouseichiyouhouhou
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JPH0572742B2 (en)
JPH01206618A (en) Organic metal vapor growth method
JPH0547668A (en) Crystal growth method for compound semiconductor
JPS59170000A (en) Device for crystal growth
JPH0222814A (en) Manufacture of compound semiconductor device
JPH04139096A (en) Vapor growth method for organic metal
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS63104417A (en) Semiconductor thin-film deposition system
JP3063317B2 (en) Vapor growth method of semiconductor thin film
JPH04127522A (en) Method for selective growth of semiconductor crystal
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPS5930799A (en) Apparatus for growing crystal of compound semiconductor
JPS62119919A (en) Device for crystal growth of compound semiconductor