JPH0547668A - Crystal growth method for compound semiconductor - Google Patents

Crystal growth method for compound semiconductor

Info

Publication number
JPH0547668A
JPH0547668A JP20829091A JP20829091A JPH0547668A JP H0547668 A JPH0547668 A JP H0547668A JP 20829091 A JP20829091 A JP 20829091A JP 20829091 A JP20829091 A JP 20829091A JP H0547668 A JPH0547668 A JP H0547668A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor crystal
growth
substrate
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20829091A
Other languages
Japanese (ja)
Inventor
Nobuyuki Otsuka
信幸 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20829091A priority Critical patent/JPH0547668A/en
Publication of JPH0547668A publication Critical patent/JPH0547668A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To grow an upper layer compound semiconductor crystal of high quality when different type compound semiconductors are grown at the same temperature and to form an abrupt hetero boundary by simultaneously supplying carrier gas and gas having heavier specific weight than that of the carrier gas when a material of an element for constituting a compound semiconductor crystal is supplied. CONSTITUTION:When an InAs crystal is grown on a substrate 3, (CH3)3In and AsH3 are used as materials. The (CH3)3In and AsH3 are switched by a valve (b), alternately supplied to a reaction tube 1, and grown. H2 is used as the carrier gas, and Ar is simultaneously supplied at the time of supplying the (CH3)3In. Thus, since a surface temperature of the substrate 3 can be effectively lowered, the (CH3)3In can be supplied to the surface of the substrate in an undecomposed state as it is, and the methyl indium reaching the substrate 3 is eliminated as it is or rapidly decomposed to become In so as to contribute to the growth. Accordingly, an InAs atomic layer epitaxial growth can be conducted at 400 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体結晶成長
方法に係り、特に原子層単位で結晶成長を行うことを可
能にする原子層エピタキシャル成長を利用して化合物半
導体結晶を成長させる化合物半導体結晶成長方法の改善
に関する。近年、電子デバイスの微細化を進めてその性
能を向上させ、更には従来のバルク材料にはない優れた
物性を実現して新しい機能を有する電子デバイスを開発
する等の目的で、化合物半導体結晶の不純物濃度を原子
層単位で制御することができる化合物半導体結晶成長方
法が強く要望されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor crystal growth method, and more particularly, to a compound semiconductor crystal growth method for growing a compound semiconductor crystal by using atomic layer epitaxial growth that enables crystal growth in atomic layer units. Regarding the improvement of the method. In recent years, for the purpose of developing electronic devices with new functions by improving the performance of electronic devices by improving their performance and further achieving excellent physical properties not found in conventional bulk materials, compound semiconductor crystal There is a strong demand for a compound semiconductor crystal growth method capable of controlling the impurity concentration in atomic layer units.

【0002】[0002]

【従来の技術】従来、有機金属を用いた原子層エピタキ
シャル成長方法においては、例えば良質のInAs結晶
を成長させる場合、In原料としてはトリメチルインジ
ウム〔(CH3 3 In,TMI〕、As原料としては
アルシン(AsH3 )を用い、成長温度(基板温度)を
350℃にし、各原料ガスを交互に基板結晶上に供給して
単原子層成長を行っていた。また、良質のGaAs結晶
を成長させる場合は、Ga原料としてはトリメチルガリ
ウム〔(CH3 3 Ga,TMG〕、As原料としては
AsH3 を用い、成長温度を 500℃にし、各原料ガスを
交互に基板結晶上に供給して単原子層成長を行ってい
た。なお、キャリアガスにはInAs結晶、GaAs結
晶成長共H2 を用いていた。
2. Description of the Related Art Conventionally, in an atomic layer epitaxial growth method using an organic metal, for example, when growing a high quality InAs crystal, trimethylindium [(CH 3 ) 3 In, TMI] is used as an In raw material and As material is used as an As raw material. arsine (AsH 3), the growth temperature (substrate temperature)
The temperature was set to 350 ° C., and each source gas was alternately supplied onto the substrate crystal to grow the monoatomic layer. When growing a good quality GaAs crystal, trimethylgallium [(CH 3 ) 3 Ga, TMG] is used as a Ga raw material, AsH 3 is used as an As raw material, the growth temperature is set to 500 ° C., and each raw material gas is alternately changed. Then, it was supplied onto the substrate crystal to grow the monoatomic layer. In addition, H 2 was used as a carrier gas for both InAs crystal and GaAs crystal growth.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た従来の化合物半導体結晶成長方法では、ヘテロ界面を
有する化合物半導体結晶(InAs/GaAs)の成長
を行う際、図4に示すように、InAsとGaAsで成
長温度が各々異なり交わっているところがないため、成
長温度をInAsに合わせて 350℃とした場合はGaA
sの成長が起こらず、また、成長温度をGaAsに合わ
せて 500℃とした場合は高温であるため、ヘテロ界面近
傍で構成原子の相互拡散が起こってしまい、急峻なヘテ
ロ界面を形成し難いという問題があった。
However, in the above-described conventional compound semiconductor crystal growth method, when growing a compound semiconductor crystal (InAs / GaAs) having a hetero interface, as shown in FIG. 4, InAs and GaAs are grown. Since there is no place where the growth temperatures are different from each other, when the growth temperature is set to 350 ° C in accordance with InAs, GaA
The growth of s does not occur, and since the temperature is high when the growth temperature is set to 500 ° C. in accordance with GaAs, mutual diffusion of constituent atoms occurs near the hetero interface, making it difficult to form a steep hetero interface. There was a problem.

【0004】一方、InAs/InAsやGaAs/G
aAsのような同種化合物半導体同志を成長させるホモ
エピタキシャル成長の場合には、上記のような上層化合
物半導体結晶の成長が起こらなかったり、急峻なヘテロ
界面を形成し難かったりという問題は生じないが、In
P/GaPやInAs/GaAsのような異種化合物半
導体同志を成長させるヘテロエピタキシャル成長の場合
には上記の問題が生じてくる。
On the other hand, InAs / InAs and GaAs / G
In the case of homoepitaxial growth in which homogenous compound semiconductors such as aAs are grown, the above-mentioned problems such as the growth of the upper compound semiconductor crystal and the difficulty of forming a steep hetero interface do not occur.
The above problem arises in the case of heteroepitaxial growth in which heterogeneous compound semiconductors such as P / GaP and InAs / GaAs are grown.

【0005】そこで本発明は、InP/GaPやInA
s/GaAs等の異種化合物半導体同志を成長温度を変
えずに略同一温度で成長させる際、良質なGaPやGa
As等の上層化合物半導体結晶を成長させることができ
るとともに、ヘテロ界面で構成原子の相互拡散を起こり
難くして急峻なヘテロ界面を形成することができる化合
物半導体結晶成長方法を提供することを目的としてい
る。
Therefore, the present invention is based on InP / GaP and InA.
When growing heterogeneous compound semiconductors such as s / GaAs at approximately the same temperature without changing the growth temperature, good quality GaP or Ga
An object of the present invention is to provide a compound semiconductor crystal growth method capable of growing an upper layer compound semiconductor crystal such as As, and making it difficult to cause mutual diffusion of constituent atoms at the hetero interface to form a steep hetero interface. There is.

【0006】[0006]

【課題を解決するための手段】本発明による化合物半導
体結晶成長方法は上記目的達成のため、化合物半導体結
晶を構成する元素の原材料を供給する際に、供給するキ
ャリヤガスより比重の重いガスを同時に供給するととも
に、該原材料と該化合物半導体結晶を構成する他の原材
料を交互に成長室内へ供給して化合物半導体結晶を成長
させるものである。
In order to achieve the above object, the method for growing a compound semiconductor crystal according to the present invention simultaneously supplies a gas having a specific gravity higher than that of a carrier gas to be supplied when a raw material of an element constituting the compound semiconductor crystal is supplied. In addition to the supply, the raw material and the other raw material constituting the compound semiconductor crystal are alternately supplied into the growth chamber to grow the compound semiconductor crystal.

【0007】本発明においては、前記化合物半導体結晶
を構成する元素の原材料が化合物半導体結晶を構成する
他の原材料より分解温度が低い原材料である場合であっ
てもよく、この分解温度が低い原材料にはトリメチルイ
ンジウムが挙げられる。本発明に係るキャリアガスとこ
のキャリアガスより比重の重いガスとの組み合わせの態
様には、H2 /Ar、H2 /N2 、H2 /Ne、H2
Kr、H2 /Xe、H2 /Rn、Ar/Ne、Ar/K
r、Ar/Xe、Ar/Rn、N2 /Ne、N2 /K
r、N2 /Xe、N2 /Rn等が挙げられる。
In the present invention, the raw material of the element constituting the compound semiconductor crystal may be a raw material having a lower decomposition temperature than other raw materials constituting the compound semiconductor crystal. Is trimethylindium. Examples of the combination mode of the carrier gas according to the present invention and the gas having a higher specific gravity than the carrier gas include H 2 / Ar, H 2 / N 2 , H 2 / Ne, and H 2 /
Kr, H 2 / Xe, H 2 / Rn, Ar / Ne, Ar / K
r, Ar / Xe, Ar / Rn, N 2 / Ne, N 2 / K
r, N 2 / Xe, N 2 / Rn and the like can be mentioned.

【0008】[0008]

【作用】本発明では、例えばInAs結晶を従来のMO
−CVD法の装置を用いて成長する場合に実施例として
後述する如く、原材料にTMIおよびAsH3 を用い、
このTMIとAsH3 を交互に供給して成長を行う。キ
ャリアガスにはH2 を用いるが、TMI供給時にはアル
ゴン(Ar)をキャリアガスとして用いる。
In the present invention, for example, an InAs crystal is used as a conventional MO
In the case of growing using a CVD method apparatus, TMI and AsH 3 are used as raw materials as described later as an example,
This TMI and AsH 3 are alternately supplied to grow. H 2 is used as the carrier gas, but argon (Ar) is used as the carrier gas when supplying TMI.

【0009】これまで従来では、InAsの原子層エピ
タキシャル成長を基板表面温度(成長温度) 400℃以上
で行った場合、成長温度が高いためにTMIが気相中で
分解してしまい、基板表面にIn原子の形で供給されて
いた。そして、Inは基板表面上で相互に結合してしま
い、成長が原子一層で自動的に停止するセルフリミッテ
ィング効果を得ることができなかった。
In the past, when atomic layer epitaxial growth of InAs was carried out at a substrate surface temperature (growth temperature) of 400 ° C. or higher, TMI was decomposed in the vapor phase because of the high growth temperature, and InAs was deposited on the substrate surface. It was supplied in the form of atoms. Then, In is bonded to each other on the surface of the substrate, and it is not possible to obtain the self-limiting effect in which the growth automatically stops at one atomic layer.

【0010】これに対し本発明では、供給するキャリア
ガス、例えばH2 (分子量2)より比重の重い例えばA
r(分子量40)を用いることにより基板表面温度を実効
的に下げることができるため、TMIを基板表面まで未
分解のまま供給することができる。このため、基板に達
したメチルインジウムはそのまま脱離するか、すばやく
分解してInになり成長に寄与させることができる。従
って、In上へはメチルインジウムを吸着させないよう
にすることができるため、セルフリミッティング効果の
あるInAsの原子層エピタキシャル成長を 400℃以上
で行うことができる。
On the other hand, in the present invention, the carrier gas to be supplied, for example, H 2 (molecular weight 2), which has a higher specific gravity, for example, A
Since the substrate surface temperature can be effectively lowered by using r (molecular weight 40), TMI can be supplied to the substrate surface without decomposition. Therefore, the methylindium that reaches the substrate can be desorbed as it is, or can be quickly decomposed into In, which can contribute to the growth. Therefore, since it is possible to prevent methyl indium from being adsorbed on In, atomic layer epitaxial growth of InAs having a self-limiting effect can be performed at 400 ° C. or higher.

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の一実施例に則した気相成長装置の構成を示
す概略図である。図1において、1は石英反応管であ
り、この石英反応管1内にはカーボンサセプタ2に載置
された基板3が配置されている。4はカーボンサセプタ
2と連結されるとともに石英反応管1上方に配置され、
石英反応管1内を適宜真空排気する圧力コントローラー
であり、5は石英反応管1周囲に配置され石英反応管1
内を加熱するRFコイルである。6はTMIガス、TM
Gガス、AsH3 ガス及びH2 ガスを石英反応管1内に
適宜切り換えて導入するガス切り換えバルブであり、更
にこのガス切り換えバルブ6は適宜真空排気する圧力コ
ントローラー7と連結されている。なお、基板3温度は
カーボンサセプタ2等を通した熱電対によって測定され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a vapor phase growth apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a quartz reaction tube, and in this quartz reaction tube 1, a substrate 3 mounted on a carbon susceptor 2 is arranged. 4 is connected to the carbon susceptor 2 and is arranged above the quartz reaction tube 1.
Reference numeral 5 is a pressure controller for appropriately evacuating the inside of the quartz reaction tube 1. Reference numeral 5 denotes a quartz reaction tube 1 arranged around the quartz reaction tube 1.
An RF coil that heats the inside. 6 is TMI gas, TM
It is a gas switching valve for appropriately switching and introducing G gas, AsH 3 gas and H 2 gas into the quartz reaction tube 1, and this gas switching valve 6 is further connected to a pressure controller 7 for vacuum evacuation. The temperature of the substrate 3 is measured by a thermocouple passing through the carbon susceptor 2 and the like.

【0012】本実施例では、InP( 100)基板上への
(InAs)1 (GaAs)1 超格子の原子層エピタキ
シャル成長を、従来からMO−CVD法に用いている図
1に示す気相成長装置を用いて以下に説明する様に実施
しており、図2に示す如く結果を得ている。本実施例で
は、図1に示す成長装置を用い、成長圧力を例えば20To
rrとし、成長温度を 500℃として成長を行った。TMI
及びTMGのバブラー温度を各々 5.5℃及び 3.0℃と
し、Ar及びH2 キャリヤを通気して各原料の供給を行
った。そして、図3に示す如くTMI供給時間Xを図2
の横軸に示すように設定し、1周期が下記の各時間、流
量からなる成長を例えば342周期繰り返した結果から、
1周期当たりの成長厚さの(InAs)1 (GaAs)
1 1分子層の厚さに対する比を求めた。
In this embodiment, the atomic layer epitaxial growth of the (InAs) 1 (GaAs) 1 superlattice on the InP (100) substrate is conventionally used for the MO-CVD method, and the vapor phase growth apparatus shown in FIG. 1 is used. Was carried out as described below, and the results were obtained as shown in FIG. In this embodiment, the growth apparatus shown in FIG. 1 is used, and the growth pressure is, for example, 20 To.
The growth was performed at rr and the growth temperature at 500 ° C. TMI
The bubbler temperatures of TMG and TMG were 5.5 ° C. and 3.0 ° C., respectively, and Ar and H 2 carriers were aerated to supply the respective raw materials. Then, as shown in FIG. 3, the TMI supply time X is shown in FIG.
Is set as shown on the abscissa of FIG.
Growth thickness per cycle (InAs) 1 (GaAs)
1 The ratio to the thickness of one monolayer was determined.

【0013】本実施例では、図2から判るように、TM
Iの供給時間が約3秒に達すれば、これ以上に供給時間
Xを増加させても成長厚さは増加せずに1周期当たりの
成長厚さが1分子層に保たれた原子層エピタキシャル成
長を行うことができるという効果が得られている。この
ため、成長温度 500℃においてもTMIを気相中で分解
させることなく原子層エピタキシャル成長を行うことが
でき、Inを含む化合物半導体の原子層エピタキシャル
成長の成長温度領域を拡大させることができる。従っ
て、物性の大きく異なる化合物半導体からなるヘテロ界
面を有する電子デバイス材料の開発等に大きく貢献させ
ることができる。
In this embodiment, as shown in FIG.
When the supply time of I reaches about 3 seconds, the growth thickness does not increase even if the supply time X is further increased, and the atomic layer epitaxial growth in which the growth thickness per cycle is kept at one molecular layer is achieved. The effect is that it can be done. Therefore, even at a growth temperature of 500 ° C., atomic layer epitaxial growth can be performed without decomposing TMI in the vapor phase, and the growth temperature region of atomic layer epitaxial growth of a compound semiconductor containing In can be expanded. Therefore, it can greatly contribute to the development of an electronic device material having a hetero interface composed of a compound semiconductor having greatly different physical properties.

【0014】なお、上記実施例では、H2 より比重の重
い化学的に不活性なキャリヤガスとしてArを用いる場
合について説明したが、本発明はこれに限定されるもの
ではなく、N2 、Ne、Kr、Xe、Rn等を使用する
場合であってもよい。
In the above embodiment, the case where Ar is used as the chemically inert carrier gas having a higher specific gravity than H 2 has been described, but the present invention is not limited to this, and N 2 and Ne are used. , Kr, Xe, Rn, etc. may be used.

【0015】[0015]

【発明の効果】本発明によれば、InP/GaPやIn
As/GaAs等の3−5族、2−6族、を含む異種化
合物半導体同志を成長温度を変えずに略同一温度で成長
させる際、良質なGaPやGaAs等の上層化合物半導
体結晶を成長させることができるとともに、ヘテロ界面
で構成原子の相互拡散を起こり難くして急峻なヘテロ界
面を形成することができるという効果がある。
According to the present invention, InP / GaP and In
When heterogeneous compound semiconductors including 3-5 group and 2-6 group such as As / GaAs are grown at approximately the same temperature without changing the growth temperature, a good quality upper layer compound semiconductor crystal such as GaP or GaAs is grown. In addition, it is possible to prevent the mutual diffusion of the constituent atoms at the hetero interface and form a steep hetero interface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に則した気相成長装置の構成
を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a vapor phase growth apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に則した1周期当たりの成長
厚さの結果を示す図である。
FIG. 2 is a diagram showing a result of a growth thickness per one cycle according to an embodiment of the present invention.

【図3】本発明の一実施例に則した成長条件を示す図で
ある。
FIG. 3 is a diagram showing growth conditions according to an embodiment of the present invention.

【図4】従来例の課題を説明する図である。FIG. 4 is a diagram illustrating a problem of a conventional example.

【符号の説明】[Explanation of symbols]

1 石英反応管 2 カーボンサセプタ 3 基板 4 圧力コントローラー 5 RFコイル 6 ガス切り換えバルブ 7 圧力コントローラー 1 quartz reaction tube 2 carbon susceptor 3 substrate 4 pressure controller 5 RF coil 6 gas switching valve 7 pressure controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体結晶を構成する元素の原材料
を供給する際に供給するキャリアガスより比重の重いガ
スを同時に成長室内に供給するとともに、該原材料と該
化合物半導体結晶を構成する他の原材料とを交互に成長
室内へ供給して化合物半導体結晶を成長させることを特
徴とする化合物半導体結晶成長方法。
1. A gas having a specific gravity higher than that of a carrier gas supplied when supplying a raw material of an element constituting a compound semiconductor crystal is simultaneously supplied into the growth chamber, and the raw material and another raw material constituting the compound semiconductor crystal. And (3) are alternately supplied into the growth chamber to grow a compound semiconductor crystal.
【請求項2】前記化合物半導体結晶を構成する元素の原
材料が化合物半導体結晶を構成する他の原材料より分解
温度が低い原材料であることを特徴とする請求項1記載
の化合物半導体結晶成長方法。
2. The method for growing a compound semiconductor crystal according to claim 1, wherein the raw material of the element constituting the compound semiconductor crystal is a raw material having a lower decomposition temperature than other raw materials constituting the compound semiconductor crystal.
【請求項3】前記化合物半導体結晶上に、該化合物半導
体結晶より構成元素の分解温度の高い第2の化合物半導
体結晶を成長する工程を有し、該高い分解温度にて相方
の化合物半導体結晶を成長することを特徴とする請求項
1記載の化合物半導体結晶成長方法。
3. A step of growing, on the compound semiconductor crystal, a second compound semiconductor crystal having a decomposition temperature of constituent elements higher than that of the compound semiconductor crystal, and the compound semiconductor crystal of the opposite side is grown at the high decomposition temperature. The method for growing a compound semiconductor crystal according to claim 1, wherein the compound semiconductor crystal is grown.
JP20829091A 1991-08-20 1991-08-20 Crystal growth method for compound semiconductor Withdrawn JPH0547668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20829091A JPH0547668A (en) 1991-08-20 1991-08-20 Crystal growth method for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20829091A JPH0547668A (en) 1991-08-20 1991-08-20 Crystal growth method for compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0547668A true JPH0547668A (en) 1993-02-26

Family

ID=16553808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20829091A Withdrawn JPH0547668A (en) 1991-08-20 1991-08-20 Crystal growth method for compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0547668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7860597B2 (en) 2001-07-27 2010-12-28 Applied Materials, Inc. Atomic layer deposition apparatus
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7860597B2 (en) 2001-07-27 2010-12-28 Applied Materials, Inc. Atomic layer deposition apparatus
US8027746B2 (en) * 2001-07-27 2011-09-27 Applied Materials, Inc. Atomic layer deposition apparatus
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
JP3239622B2 (en) Method of forming semiconductor thin film
JP3137767B2 (en) Method for manufacturing semiconductor device
JPH0547668A (en) Crystal growth method for compound semiconductor
JPH0649633B2 (en) Doping method in epitaxial growth of compound crystals
JPH0431396A (en) Growth of semiconductor crystal
JPH0822800B2 (en) III-Method of forming group V compound semiconductor thin film
JP2821563B2 (en) Compound crystal epitaxial growth method and doping method thereof
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH0582447A (en) Growth method of compound semiconductor crystal
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH04260696A (en) Production of crystal of compound semiconductor
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2687862B2 (en) Method of forming compound semiconductor thin film
JP2722489B2 (en) Semiconductor crystal growth method
JPH03119721A (en) Crystal growth
JPH06163416A (en) Growing method for compound semiconductor crystal
JPH04238890A (en) Preparation of compound semiconductor single crystal
JP3063317B2 (en) Vapor growth method of semiconductor thin film
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPH0645264A (en) Vapor growing method
JPH03290925A (en) Compound semiconductor device and its manufacture
JPH02116120A (en) Crystal growth method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112