JP3239622B2 - Method of forming semiconductor thin film - Google Patents

Method of forming semiconductor thin film

Info

Publication number
JP3239622B2
JP3239622B2 JP19046794A JP19046794A JP3239622B2 JP 3239622 B2 JP3239622 B2 JP 3239622B2 JP 19046794 A JP19046794 A JP 19046794A JP 19046794 A JP19046794 A JP 19046794A JP 3239622 B2 JP3239622 B2 JP 3239622B2
Authority
JP
Japan
Prior art keywords
layer
substrate
thin film
raw material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19046794A
Other languages
Japanese (ja)
Other versions
JPH0856015A (en
Inventor
正也 萬濃
清司 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19046794A priority Critical patent/JP3239622B2/en
Publication of JPH0856015A publication Critical patent/JPH0856015A/en
Application granted granted Critical
Publication of JP3239622B2 publication Critical patent/JP3239622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、緑・青色発光ダイオ
ードや光ディスク等情報処理装置用光源に用いることの
できる青色もしくは更に短波長の半導体レーザ素子の製
造方法に関するもので、窒化物系材料の薄膜形成方法に
係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a blue or shorter wavelength semiconductor laser device which can be used as a light source for an information processing device such as a green / blue light emitting diode or an optical disk. It relates to a method for forming a thin film.

【0002】[0002]

【従来の技術】1988年に670nm帯AlGaIn
P系赤色半導体レーザが商品化されて以来、レーザプリ
ンター、光ディスク等の情報処理装置用光源として短波
長半導体レーザの開発が活発に行われている。開発の中
心は当初670〜690nmであったが、バーコードリ
ーダの視認性の改善、光ディスクの高密度化等の要求に
ともなって、波長領域はHe−Neガスレーザと同レベ
ルの630nm帯へと移行しつつある。さらに将来、記
憶容量の増大に伴って、赤色より短波長の青・緑色から
紫外域にわたった半導体レーザ実現が切望されており、
p型導電型制御が可能となったことを契機に2-6族系
半導体レーザの研究が急速に進展してきている。一方、
窒化ガリウム(GaN)は、約3.4eVの広エネルギー
ギャップを持つ直接遷移型の化合物半導体で青色から紫
外領域にわたる発光素子として有望な材料であるがGa
Nバルク基板結晶が容易に作製できず、ほかに良質な基
板結晶がないことから半導体レーザとしての開発はあま
り進展していなかった。
2. Description of the Related Art In 1988, 670 nm band AlGaIn
Since the P-based red semiconductor laser was commercialized, short-wavelength semiconductor lasers have been actively developed as light sources for information processing devices such as laser printers and optical disks. Initially, the center of development was 670-690 nm, but with the demand for improved bar code reader visibility and higher density optical discs, the wavelength range has shifted to the 630 nm band, which is the same level as He-Ne gas lasers. I am doing it. Further, in the future, with the increase in storage capacity, there is a long-awaited realization of a semiconductor laser ranging from blue and green having a shorter wavelength than red to an ultraviolet region.
With the possibility of controlling the p-type conductivity, research on group 2-6 semiconductor lasers has been rapidly progressing. on the other hand,
Gallium nitride (GaN) is a direct transition type compound semiconductor having a wide energy gap of about 3.4 eV and is a promising material as a light emitting element in a blue to ultraviolet region.
Development of a semiconductor laser has not progressed much because N bulk substrate crystals cannot be easily produced and there is no other good substrate crystal.

【0003】GaN薄膜の作製方法としては、αーAl
23(サファイア)基板上にMOVPE法(有機金属気
相成長法)により気相成長する方法が一般的に用いられ
ている。これは、例えばトリメチルガリウムとアンモニ
アを1050℃程度に加熱した基板、例えば、サファイ
ア表面上で分解、反応させ、GaN薄膜を成長しようと
するものである。最近サファイアの(0001)C面を
用い、GaNやAlN非単結晶層を介して比較的良質の
GaN薄膜を形成できることが実証された。しかし、サ
ファイアC面とGaNとの間には13.8%という極め
て大きな格子不整合や大きな熱膨張係数の差があるの
で、非単結晶層を介した場合においては格子不整合の緩
和は効率的におこるものの依然として108cm-2以上
のミスフィット転位が存在し高品質な薄膜形成ができな
かった。
As a method for producing a GaN thin film, α-Al
A method of vapor phase growth on a 2 O 3 (sapphire) substrate by MOVPE (metal organic chemical vapor deposition) is generally used. This is to decompose and react trimethylgallium and ammonia on a substrate heated to about 1050 ° C., for example, a sapphire surface to grow a GaN thin film. Recently, it has been demonstrated that a (0001) C plane of sapphire can be used to form a relatively high-quality GaN thin film via a GaN or AlN non-single-crystal layer. However, since there is a very large lattice mismatch of 13.8% and a large difference in thermal expansion coefficient between the sapphire C-plane and GaN, the relaxation of the lattice mismatch through the non-single-crystal layer is efficient. still 10 8 cm -2 or more misfit dislocations but occur could not exist a high-quality thin film formative.

【0004】Al、Inを含むAlGaInN四元混晶
薄膜を結晶成長する上での問題点は、上述のように格子
整合する良質な基板結晶が存在しないことのほかは、窒
素原料として用いられるアンモニアの分解効率が低いこ
と、及びAlN、GaNの成長温度に比較してInNの
分解温度がそれらよりも低温であることに集約される。
[0004] The problems in crystal growth of AlGaInN quaternary mixed crystal thin films containing Al and In are that, besides the fact that there is no good substrate crystal lattice-matching as described above, ammonia The decomposition efficiency of InN is low, and the decomposition temperature of InN is lower than those of AlN and GaN.

【0005】アンモニアの分解には高温を要するため、
上述のように基板温度を900〜1100℃にする必要
があった。このため、膜中に多数の窒素の空孔が生じ、
成長したGaN層はそのままではn型伝導性を示す薄膜
となってしまい、高抵抗のGaN薄膜が得られにくいと
いう欠点があった。したがって、3族と5族の供給比、
いわゆる3/5比を1000から5000と他の材料系
に比べて1桁から2桁大きくする必要があった。できる
だけ低温で成長を行うことが望ましいが、アンモニアは
分解温度が非常に高いので、低温で成長を行う場合で
も、極めて大量のアンモニアが必要であり、実用的に供
給できる範囲を超えていた。
Since the decomposition of ammonia requires a high temperature,
As described above, it was necessary to set the substrate temperature to 900 to 1100 ° C. For this reason, many nitrogen vacancies are generated in the film,
The grown GaN layer becomes a thin film exhibiting n-type conductivity as it is, and has a drawback that it is difficult to obtain a high-resistance GaN thin film. Therefore, the supply ratio of group 3 and group 5,
The so-called 3/5 ratio had to be increased from 1000 to 5000 by one to two orders of magnitude compared to other material systems. It is desirable to grow at a temperature as low as possible, but since ammonia has a very high decomposition temperature, an extremely large amount of ammonia is required even when growing at a low temperature, which is beyond the range that can be supplied practically.

【0006】また、アンモニアを用いて1000℃程度
でAlGaInNの成長を行った場合、アンモニアは分
解効率が低いため、Inは基板表面から脱離しやすい。
InNの分解によってInの取り込み量が著しく少ない
ため、組成の制御が困難で、表面のモホロジーの劣化を
もたらし、高品質のAlGaInN薄膜が得られにくい
という欠点があった。
In the case where AlGaInN is grown at about 1000 ° C. using ammonia, In is easily desorbed from the substrate surface because ammonia has a low decomposition efficiency.
Since the amount of In incorporated by the decomposition of InN is remarkably small, control of the composition is difficult, and the morphology of the surface is deteriorated, so that it is difficult to obtain a high-quality AlGaInN thin film.

【0007】[0007]

【発明が解決しようとする課題】上述の従来技術によれ
ば、窒化膜の結晶成長には、その窒素の原料としてアン
モニアを用いたため、比較的低温度で成長を行うことが
できなかった。したがって、MOVPE成長時に、基板
上で大きな熱対流が発生し、基板上への均一な原料供給
が困難であり、不純物ドープによる伝導型の制御、すな
わちp型伝導の窒化膜の成長も困難であった。本発明
は、低温で制御性に優れた結晶成長を可能にして、窒素
の空孔が少ない良質のAlGaInN薄膜を得ることが
可能で、不純物ドープにより容易にn型伝導型ないしは
p型伝導性にし得る伝導型制御の可能なAlGaInN
薄膜の形成方法を提供することを目的とする。特にIn
を含むAlGaInN薄膜の形成方法を提供することを
主な目的としている。
According to the above prior art, the crystal growth of the nitride film could not be performed at a relatively low temperature because ammonia was used as a nitrogen source for the crystal growth. Therefore, large thermal convection occurs on the substrate during MOVPE growth, making it difficult to supply a uniform raw material onto the substrate and controlling the conduction type by impurity doping, ie, growing a p-type conduction nitride film. Was. The present invention enables crystal growth with excellent controllability at a low temperature to obtain a high-quality AlGaInN thin film having few nitrogen vacancies, and easily converts the n-type or p-type conductivity by impurity doping. AlGaInN with controllable conduction type
It is an object to provide a method for forming a thin film. Especially In
It is a main object of the present invention to provide a method for forming an AlGaInN thin film containing.

【0008】また従来技術によれば、窒化膜とサファイ
ア基板の格子定数の整合性は悪く、また、熱膨張係数の
差も大きいため、成長した窒化膜にはピットやクラック
が入りやすく、均一で平坦性のよい窒化膜の成長が困難
であった。
Further, according to the prior art, the lattice constant of the nitride film and that of the sapphire substrate are poorly matched, and the difference in thermal expansion coefficient is large. It was difficult to grow a nitride film having good flatness.

【0009】本発明は、従来より低温で薄膜形成でき、
転位が少なく平坦性のよいAlGaInN薄膜の形成方
法を提供することを目的とする。
According to the present invention, a thin film can be formed at a lower temperature than before,
An object of the present invention is to provide a method for forming an AlGaInN thin film having few dislocations and good flatness.

【0010】さらに従来技術によれば、サファイアが基
板として用いられていたが、加工が困難でデバイスの作
製が容易ではなかった。本発明は、安価で加工の容易な
基板上に均一で平坦性のよいAlGaInN薄膜の形成
方法を提供することを目的とする。
Furthermore, according to the prior art, sapphire was used as a substrate, but processing was difficult and device fabrication was not easy. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an AlGaInN thin film that is uniform and has good flatness on a substrate that is inexpensive and easy to process.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の半導体薄膜の形成方法は、加熱され
た基板表面上に3族構成元素を含む原料および窒素を含
む原料を供給して緩衝層を介してAlGaInN薄膜を
形成する方法において、900℃以上の基板温度でGa
N層を形成し、前記GaN層上に300〜900℃の範
囲内に設定した基板温度でAlGaInN層を形成する
方法であって、前記AlGaInN層の形成は、ヒドラ
ジン系物質とアンモニアとの混合原料、またはアルキル
アミン系物質とアンモニアとの混合原料を窒素原料と
し、前記AlGaInN層は3族構成元素を含む原料の
供給を間欠的に行い、InN層とAlGaN層を構成す
る原料の繰り返し供給により形成することを特徴とす
る。
According to a first aspect of the present invention, there is provided a method for forming a semiconductor thin film, comprising supplying a raw material containing a group 3 constituent element and a raw material containing nitrogen onto a heated substrate surface. To form an AlGaInN thin film through a buffer layer,
A method of forming an N layer and forming an AlGaInN layer on the GaN layer at a substrate temperature set within a range of 300 to 900 ° C., wherein the AlGaInN layer is formed by mixing a hydrazine-based material with ammonia. Or a mixed raw material of an alkylamine-based substance and ammonia as a nitrogen raw material
The AlGaInN layer is made of a raw material containing a group 3 constituent element.
Supply is performed intermittently to form the InN layer and the AlGaN layer.
It is formed by repeatedly supplying raw materials .

【0012】請求項2記載の半導体薄膜形成方法は、
加熱された基板表面上に3族構成元素を含む原料および
窒素を含む原料を供給して緩衝層を介してAlx1Gay1
Inz1N層/Alx2Gay2Inz2N層/Alx3Gay3In
z3N層(Eg2<Eg1、Eg3:Egはバンドギャッ
プ)からなる多層のAlGaInN薄膜を形成する方法
において、900℃以上の基板温度でGaN層を形成
し、前記GaN層上に300〜900℃の範囲内に設定
した基板温度で前記GaN層に格子整合するAlx1Ga
y1Inz1N層と2%以下の格子不整合するAlx2Gay2
Inz2N層と前記GaN層に格子整合するAlx3Gay3
Inz3N層を形成する方法であって、前記AlGaIn
N多層膜の形成は、ヒドラジン系物質とアンモニアとの
混合原料、またはアルキルアミン系物質とアンモニアと
の混合原料を窒素原料とすることを特徴とする。
According to a second aspect of the present invention, there is provided a method of forming a semiconductor thin film .
A raw material containing a Group 3 constituent element and a raw material containing nitrogen are supplied onto the heated substrate surface, and Al x1 Ga y1 is supplied through a buffer layer.
An In z1 N layer / Al x2 Ga y2 In z2 N layer / Al x3 Ga y3 In
z3 N layer (Eg 2 <Eg 1, Eg 3: Eg is the band gap) in a method of forming a multilayer AlGaInN thin film made to form a GaN layer at 9 00 ° C. above the substrate temperature, on the GaN layer 300 Al x1 Ga lattice-matched to the GaN layer at a substrate temperature set within a range of 900900 ° C.
Al x2 Ga y2 lattice-mismatched with y1 In z1 N layer by 2% or less
Al x3 Gay 3 lattice-matched to the In z2 N layer and the GaN layer
A method for forming a an In z3 N layer, said AlGaIn
The formation of the N multilayer film is based on the formation of a hydrazine-based material and ammonia.
A mixed raw material or a mixed raw material of an alkylamine-based substance and ammonia is used as a nitrogen raw material.

【0013】請求項3記載の半導体薄膜の形成方法は、
加熱された基板表面上に3族構成元素を含む原料および
窒素を含む原料を供給して緩衝層を介してGaN層を形
成し、前記GaN層上にAlGaInN薄膜を形成する
方法において、前記GaN層中もしくはGaN層上にA
lGaInN層からなる歪超格子構造を配置し、前記A
lGaInN層は3族構成元素を含む原料の供給を間欠
的に行い、InN層とAlGaN層を構成する原料の繰
り返し供給により形成することを特徴とする。
According to a third aspect of the present invention, there is provided a method of forming a semiconductor thin film.
A method for forming a GaN layer through a buffer layer by supplying a raw material containing a Group 3 constituent element and a raw material containing nitrogen on a heated substrate surface, and forming an AlGaInN thin film on the GaN layer. A on the middle or on the GaN layer
Place the strained superlattice structure consisting of lGaInN layer, the A
1GaInN layer intermittently supplies raw materials containing group 3 elements
Of the raw materials constituting the InN layer and the AlGaN layer
It is characterized by being formed by repeated supply .

【0014】請求項4記載の半導体薄膜の形成方法は、
加熱された基板表面上に3族構成元素を含む原料および
窒素を含む原料を供給して緩衝層を介してAlGaIn
N薄膜を形成する方法において、炭素を含む原料の雰囲
気中で前記基板を加熱し前記基板表面上に形成した炭化
層と次いで、ヒドラジン系物質とアンモニアとの混合原
料、またはアルキルアミン系物質とアンモニアとの混合
原料を含む雰囲気中で前記炭化層表面上に形成した窒化
層を少なくとも緩衝層とすることを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of forming a semiconductor thin film.
A raw material containing a group 3 constituent element on the heated substrate surface;
Supplying a nitrogen-containing raw material and supplying AlGaIn through a buffer layer
In a method of forming an N thin film, the atmosphere of a carbon-containing material is
Heating the substrate in air to form carbonized
Layer and then a mixture of hydrazine-based material and ammonia
Or mixture of alkylamine-based substance and ammonia
Nitriding formed on the surface of the carbonized layer in an atmosphere containing raw materials
It is characterized in that the layer is at least a buffer layer .

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【作用】AlGaInN薄膜の結晶成長における問題点
の一つは、AlN、GaNの成長温度に比較してInN
の分解温度がそれらよりも低温であることである。すな
わち、アンモニアを用いて、AlGaN薄膜の成長温度
でAlGaInN薄膜の成長を行った場合、アンモニア
は分解効率が低いため、Inは基板表面から脱離しやす
い。InNの分解によってInの取り込み量が著しく少
ないため、組成の制御が困難で、表面のモホロジーの劣
化をもたらす。
One of the problems in crystal growth of an AlGaInN thin film is that the growth temperature of InN is lower than that of AlN and GaN.
Is lower than them. That is, when the AlGaInN thin film is grown at the growth temperature of the AlGaN thin film using ammonia, ammonia is low in the decomposition efficiency, so that In is easily desorbed from the substrate surface. Since the amount of In taken in by the decomposition of InN is extremely small, it is difficult to control the composition and the morphology of the surface is deteriorated.

【0020】請求項1または2の半導体薄膜の形成方法
によれば、分解温度の低いアルキルアミン系、またはヒ
ドラジン系を少なくとも含む窒素原料を用いたので、比
較的低温で成長でき、成長温度が高いことによるガス対
流の抑制、Inの解離の抑制が可能となる。よって従来
よりも低温で高品質なAlGaInN薄膜もしくはAl
GaInN多層膜の形成が可能となる。それとともに、
ヒドラジン系もしくはアルキルアミン系とアンモニアと
の混合原料を含む窒素原料を用いて低温で例えばIn、
N/N/Ga、Al、N/Nのように原料ガスを交互に
基板上に供給することにより、窒素空孔が少なくInの
取り込まれが安定となるため、従来よりも低温で高品質
なAlGaInN薄膜もしくはAlGaInN多層膜の
形成が可能となる。
According to the method for forming a semiconductor thin film according to the first or second aspect, since a nitrogen source containing at least an alkylamine-based or hydrazine-based material having a low decomposition temperature is used, it can be grown at a relatively low temperature and has a high growth temperature. As a result, gas convection can be suppressed, and dissociation of In can be suppressed. Therefore, a higher quality AlGaInN thin film or Al
A GaInN multilayer film can be formed. With it,
Hydrazine or alkylamine and ammonia
At low temperature using a nitrogen source containing a mixed source of, for example, In,
Alternate source gases such as N / N / Ga, Al, N / N
By supplying on the substrate, nitrogen vacancies are reduced and In
Higher quality at lower temperatures than before, due to stable incorporation
AlGaInN thin film or AlGaInN multilayer film
Formation is possible.

【0021】請求項3の半導体薄膜の形成方法によれ
ば、AlGaInN薄膜形成する前に歪みを含有するA
lGaInN超格子を配置するので、基板界面から発生
した転位は面内方向への運動成分が大きくなるため、上
部層への伝搬を効率的に抑制でき高品質なAlGaIn
N薄膜を形成できる。それとともに、ヒドラジン系もし
くはアルキルアミン系とアンモニアとの混合原料を含む
窒素原料を用いて低温で例えばIn、N/N/Ga、A
l、N/Nのように原料ガスを交互に基板上に供給する
ことにより、窒素空孔が少なくInの取り込まれが安定
となるため、従来よりも低温で高品質なAlGaInN
薄膜の形成が可能となる。
According to the method of forming a semiconductor thin film according to the third aspect, before forming an AlGaInN thin film, A containing a strain is used.
Since the 1GaInN superlattice is arranged, the dislocation generated from the substrate interface has a large in-plane motion component, so that the propagation to the upper layer can be suppressed efficiently and high quality AlGaIn
An N thin film can be formed. At the same time, if hydrazine
Or a mixture of alkylamines and ammonia
For example, In, N / N / Ga, A
1, raw material gas is alternately supplied on the substrate like N / N
As a result, there are few nitrogen vacancies and stable incorporation of In
Therefore, AlGaInN, which is higher in quality at a lower temperature than in the past,
A thin film can be formed.

【0022】AlGaInN薄膜の結晶成長における問
題点の一つは、格子整合基板がないことである。従来
は、サファイア基板上にAlNやGaNの非単結晶層を
介して窒化物薄膜の形成を行っていたが、サファイア基
板は加工が困難で半導体素子用基板としては不向きであ
る。しかも、AlNやGaN非単結晶層との間には、依
然として大きな格子不整合や熱歪みが存在しているた
め、基板との界面で発生した転位の伝搬を十分抑制する
ことはできない。
One of the problems in crystal growth of the AlGaInN thin film is that there is no lattice matching substrate. Conventionally, a nitride thin film has been formed on a sapphire substrate via a non-single-crystal layer of AlN or GaN. However, the sapphire substrate is difficult to process and is not suitable as a substrate for a semiconductor device. Moreover, since large lattice mismatch and thermal strain still exist between the AlN and GaN non-single-crystal layers, the propagation of dislocations generated at the interface with the substrate cannot be sufficiently suppressed.

【0023】[0023]

【0024】請求項の半導体薄膜の形成方法によれ
ば、例えばシリコン基板上にAlGaInN薄膜を形成
する前に行う熱処理中に基板内に炭素が拡散し、基板内
からシリコンが解離することにより、シリコンからSi
Cへと連続的な組成変化をする炭化層を形成できる。S
iCの格子定数は窒化物の格子定数と近いため、転位の
発生が抑制され、また熱歪みの緩和にも効果があるた
め、AlGaInN薄膜への転位の伝搬を大幅に低減で
きる。
According to the method of forming a semiconductor thin film according to claim 4, for example, carbon is diffused into the substrate during the heat treatment performed before forming the AlGaInN thin on a silicon substrate, by silicon from the substrate to dissociate, Silicon to Si
A carbonized layer having a continuous composition change to C can be formed. S
Since the lattice constant of iC is close to the lattice constant of nitride, the generation of dislocations is suppressed and the effect of reducing thermal strain is also effective, so that the propagation of dislocations to the AlGaInN thin film can be greatly reduced.

【0025】[0025]

【0026】このようにサファイアをはじめ、それ以外
の加工の容易な基板、例えばシリコン基板やGaP基板
上にも高品質なAlGaInN薄膜の形成が可能であ
る。
As described above, it is possible to form a high-quality AlGaInN thin film on a sapphire or other substrate which can be easily processed, for example, a silicon substrate or a GaP substrate.

【0027】したがって、本発明は発光効率の高い青色
発光ダイオードや情報処理装置用光源などに用いること
のできる青色半導体レーザ素子製造に極めて有用であ
る。
Therefore, the present invention is extremely useful for manufacturing a blue semiconductor laser device which can be used for a blue light emitting diode having a high luminous efficiency, a light source for an information processing device, and the like.

【0028】[0028]

【実施例】以下、実施例で本発明を説明する。なお、以
下同一部分については同一符号を記す。
The present invention will be described below with reference to examples. Hereinafter, the same reference numerals are used for the same parts.

【0029】AlGaInN薄膜の製造には、図1に概
略的に示すMOVPE装置を用いた。ここで、石英製反
応管1の内部には石英製ガス導入管2が取り付けられて
いる。石英製ガス導入管からは3族構成元素を含む原料
および窒素を含む原料を同時に供給できるようになって
いる。石英製反応管1の外周には高周波加熱用コイル3
が設置され、また、内部にはSiCコートされたグラフ
ァイト製サセプター4が設置されている。グラファイト
製サセプター4はモーターによって1000回転/分程
度に回転可能なサセプター支持棒5により支持されてい
る。グラファイト製サセプター4上面には、石英製トレ
ー6上に搭載された基板7が設置できるような構成とな
っている。また、石英製反応管1の底部には真空ポンプ
に接続された排気口8が設けられていて、石英製反応管
1内の圧力調整及びガスの排気ができるようになってい
る。
For manufacturing the AlGaInN thin film, a MOVPE apparatus schematically shown in FIG. 1 was used. Here, a quartz gas introduction tube 2 is attached inside the quartz reaction tube 1. A raw material containing a Group 3 constituent element and a raw material containing nitrogen can be simultaneously supplied from a quartz gas introduction tube. A high frequency heating coil 3 is provided on the outer periphery of the quartz reaction tube 1.
A susceptor 4 made of graphite coated with SiC is provided inside. The graphite susceptor 4 is supported by a susceptor support rod 5 that can rotate at about 1000 revolutions / minute by a motor. On the upper surface of the graphite susceptor 4, a substrate 7 mounted on a quartz tray 6 can be installed. An exhaust port 8 connected to a vacuum pump is provided at the bottom of the quartz reaction tube 1 so that the pressure in the quartz reaction tube 1 can be adjusted and gas can be exhausted.

【0030】(実施例1)図2に本発明の第一の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。図1のMOVPE装
置を用いたAlGaInN薄膜の形成方法について、順
を追って説明する。
(Embodiment 1) FIG. 2 shows an AlG film formed by the method of forming an AlGaInN thin film according to the first embodiment of the present invention.
1 shows a cross-sectional structure diagram of an aInN thin film. A method of forming an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0031】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。基板温度を600℃まで降温し
た後、石英製ガス導入管2からシリコン基板11面上に
V族原料としてヒドラジンを導入し、1分後に3族原料
としてトリメチルガリウムを導入した。膜厚20nmの
非単結晶GaN層12を堆積した後、トリメチルガリウ
ムの導入を停止した。これを緩衝層として用いた。次い
で、基板温度を1000℃に昇温し、V族原料としてヒ
ドラジンに加えてアンモニアを導入し、1分後に3族原
料としてトリメチルガリウムを導入した。膜厚3μmの
GaN層13を成長した後、トリメチルガリウムの導入
を停止した。3μm成長すると、GaN層13表面は平
坦となり、基板界面から発生した欠陥の伝搬は著しく低
減された。次いで、基板温度を800℃に降温し、トリ
メチルガリウム、トリメチルアルミニウムとトリメチル
インジウムを同時に導入し、膜厚0.5μmのAl0.45
Ga0.5In0.05N層14を成長した。トリメチルガリ
ウム、トリメチルアルミニウムとトリメチルインジウム
の導入を停止した後、基板温度を降温し300℃以下の
温度になったところでヒドラジンとアンモニアの導入を
停止した。基板の温度を室温まで降下させた後、石英製
反応管1内より基板を取り出した。
After the (111) plane silicon substrate 11 was organically washed, it was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material. After depositing the non-single-crystal GaN layer 12 having a thickness of 20 nm, the introduction of trimethylgallium was stopped. This was used as a buffer layer. Next, the substrate temperature was raised to 1000 ° C., ammonia was added to hydrazine as a Group V raw material, and trimethylgallium was introduced as a Group 3 raw material one minute later. After growing the GaN layer 13 having a thickness of 3 μm, the introduction of trimethylgallium was stopped. After the growth of 3 μm, the surface of the GaN layer 13 became flat, and propagation of defects generated from the substrate interface was significantly reduced. Then, the substrate temperature is decreased to 800 ° C., it was introduced trimethyl gallium, trimethyl aluminum and trimethyl indium simultaneously, the thickness of 0.5 [mu] m Al 0.45
A Ga 0.5 In 0.05 N layer 14 was grown. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0032】グラファイト製サセプター4を10回転/
分で回転させた場合は、石英製ガス導入管2に多量の反
応生成物が付着し、得られた結晶表面は凸凹で四元混晶
層のIn組成が0.02であったのに対し、本実施例の
場合は、石英製ガス導入管2への反応生成物の付着は少
なく、鏡面でホール効果によるとキャリア濃度は10 15
cm-3と極めて欠陥の少ない四元混晶が得られた。ま
た、In組成は0.05となり、800回転/分の高速
回転によりInの取り込まれ率が増大することを確認し
た。800℃と低温でありながら、1000℃で成長し
たGaN層より高品質な四元混晶が得られた。これらの
結果は、ヒドラジンとアンモニアを同時に導入したこと
による窒素空孔の低減及びInの解離の抑制効果であ
り、高速回転によるガス流の対流抑制及び原料の効率的
な取り込まれによると考えられる。
The graphite susceptor 4 is rotated 10 times /
When rotated in minutes, a large amount of
Reaction products adhere, and the resulting crystal surface is uneven and quaternary mixed crystal
While the In composition of the layer was 0.02,
In this case, adhesion of the reaction product to the quartz gas introduction pipe 2 is small.
And the carrier concentration is 10 according to the Hall effect on the mirror surface. Fifteen
cm-3And a quaternary mixed crystal having extremely few defects was obtained. Ma
In addition, the In composition becomes 0.05, and the rotation speed is 800 rpm.
Confirm that the incorporation rate of In increases due to rotation.
Was. It grows at 1000 ° C while it is as low as 800 ° C
A quaternary mixed crystal of higher quality than the GaN layer obtained was obtained. these
The result is that hydrazine and ammonia were introduced at the same time.
Is effective in reducing nitrogen vacancies and suppressing the dissociation of In.
Control of gas flow by high-speed rotation and efficient raw material
It is thought that it is due to the incorporation.

【0033】(実施例2)図3に本発明の第二の実施例
のAlGaInN多層膜の形成方法により作製したAl
GaInN多層膜の断面構造図である。図1のMOVP
E装置を用いたAlGaInN多層膜の形成方法につい
て、順を追って説明する。
(Embodiment 2) FIG. 3 shows an Al film formed by the method for forming an AlGaInN multilayer film according to a second embodiment of the present invention.
FIG. 3 is a sectional structural view of a GaInN multilayer film. MOVP of FIG.
A method for forming an AlGaInN multilayer film using the E apparatus will be described step by step.

【0034】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。基板温度を600℃まで降温し
た後、石英製ガス導入管2からシリコン基板11面上に
V族原料としてヒドラジンを導入し、1分後に3族原料
としてトリメチルガリウムを導入した。
After the (111) plane silicon substrate 11 was organically washed, it was arranged as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material.

【0035】膜厚20nmの非単結晶GaN層12を堆
積した後、トリメチルガリウムの導入を停止した。これ
を緩衝層として用いた。次いで、基板温度を1000℃
に昇温し、V族原料としてヒドラジンに加えてアンモニ
アを導入し、1分後に3族原料としてトリメチルガリウ
ムを導入した。膜厚3μmのGaN層13を成長した
後、トリメチルガリウムの導入を停止した。
After depositing the non-single-crystal GaN layer 12 having a thickness of 20 nm, the introduction of trimethylgallium was stopped. This was used as a buffer layer. Next, the substrate temperature is set to 1000 ° C.
Then, ammonia was introduced in addition to hydrazine as a Group V raw material, and one minute later, trimethylgallium was introduced as a Group 3 raw material. After growing the GaN layer 13 having a thickness of 3 μm, the introduction of trimethylgallium was stopped.

【0036】3μm成長すると、GaN層13表面は平
坦となり、基板界面から発生した欠陥の伝搬は著しく低
減された。次いで、基板温度を800℃に降温し、トリ
メチルガリウム、トリメチルアルミニウムとトリメチル
インジウムを同時に導入し、GaN層13に格子整合し
た膜厚1.0μmのAl0.45Ga0.5In0.05N層15
を成長した。トリメチルガリウム、トリメチルアルミニ
ウムとトリメチルインジウムの導入を停止した後、基板
温度を700℃まで降温し、トリメチルガリウムとトリ
メチルインジウムを同時に導入し、格子不整をもつ膜厚
0.01μmのGa0.8In0.2N層16を成長した。次
いで、トリメチルガリウムとトリメチルインジウムの導
入を停止した後、基板温度を800℃まで昇温し、トリ
メチルガリウム、トリメチルアルミニウムとトリメチル
インジウムを同時に導入し、GaN層13に格子整合し
た膜厚1.0umのAl0.45Ga0.5In0.05N層17
を再度成長した。トリメチルガリウム、トリメチルアル
ミニウムとトリメチルインジウムの導入を停止した後、
基板温度を降温し300℃以下の温度になったところで
ヒドラジンとアンモニアの導入を停止した。基板の温度
を室温まで降下させた後、石英製反応管1内より基板を
取り出した。
After the growth of 3 μm, the surface of the GaN layer 13 became flat, and the propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature was lowered to 800 ° C., trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced, and a 1.0 μm-thick Al 0.45 Ga 0.5 In 0.05 N layer 15 lattice-matched to the GaN layer 13.
Grew. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the substrate temperature is lowered to 700 ° C., trimethylgallium and trimethylindium are simultaneously introduced, and a Ga 0.8 In 0.2 N layer having a lattice irregularity having a thickness of 0.01 μm is formed. 16 grew. Next, after stopping the introduction of trimethylgallium and trimethylindium, the substrate temperature was raised to 800 ° C., trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced, and a 1.0 μm thick film lattice-matched to the GaN layer 13 was formed. Al 0.45 Ga 0.5 In 0.05 N layer 17
Grew again. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium,
When the substrate temperature was lowered to 300 ° C. or less, the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0037】得られたAlGaInN多層膜の表面は鏡
面であり、フォトルミネッセンス測定の結果、Ga0.8
In0.2N層16からの強い発光を確認した。
The surface of the obtained AlGaInN multilayer film is a mirror surface, and as a result of photoluminescence measurement, Ga 0.8
Strong light emission from the In 0.2 N layer 16 was confirmed.

【0038】グラファイト製サセプター4を10回転/
分で回転させた場合は、石英製ガス導入管2に多量の反
応生成物が付着し、得られた結晶表面は凸凹でGaIn
N層のIn組成が0.12であったのに対し、本実施例
の場合は、石英製ガス導入管2への反応生成物の付着は
少なく、In組成は0.2となり800回転/分の回転
によりInの取り込まれ率の増大を確認した。800℃
と低温でありながら、1000℃で成長したGaNより
高品質なInを含む多層膜が得られた。これらの結果
は、ヒドラジンとアンモニアを同時に導入したことによ
る窒素空孔の低減及びInの解離の抑制効果であり、高
速回転によるガス流の対流抑制及び原料の効率的な取り
込まれによると考えられる。
The graphite susceptor 4 was rotated 10 times /
When rotated in minutes, a large amount of reaction products adhere to the quartz gas introduction tube 2, and the resulting crystal surface is uneven and GaIn
While the In composition of the N layer was 0.12, in the case of the present embodiment, adhesion of the reaction product to the quartz gas introduction tube 2 was small, and the In composition was 0.2, which was 800 rpm. It was confirmed that the rate of In was increased by the rotation of. 800 ° C
Thus, a multilayer film containing In of higher quality than GaN grown at 1000 ° C. at a low temperature was obtained. These results are the effects of reducing nitrogen vacancies and suppressing the dissociation of In due to simultaneous introduction of hydrazine and ammonia, and are considered to be due to suppression of convection of the gas flow by high-speed rotation and efficient incorporation of raw materials.

【0039】また、格子不整のあるGaInNを導入し
ても格子整合混晶と同程度の結晶性を維持しながら、多
層膜の形成が可能であった。
Further, even when GaInN having a lattice irregularity is introduced, a multilayer film can be formed while maintaining the same crystallinity as that of a lattice-matched mixed crystal.

【0040】(実施例3)図4に本発明の第三の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。図1のMOVPE装
置を用いたAlGaInN薄膜の製造方法について、順
を追って説明する。
(Embodiment 3) FIG. 4 shows an AlG film formed by a method of forming an AlGaInN thin film according to a third embodiment of the present invention.
1 shows a cross-sectional structure diagram of an aInN thin film. A method for manufacturing an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0041】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。基板温度を600℃まで降温し
た後、石英製ガス導入管2からシリコン基板11面上に
V族原料としてヒドラジンを導入し、1分後に3族原料
としてトリメチルガリウムを導入した。膜厚20nmの
非単結晶GaN層12を堆積した後、トリメチルガリウ
ムの導入を停止した。これを緩衝層として用いた。
After the (111) plane silicon substrate 11 was organically washed, it was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material. After depositing the non-single-crystal GaN layer 12 having a thickness of 20 nm, the introduction of trimethylgallium was stopped. This was used as a buffer layer.

【0042】次いで、基板温度を1000℃に昇温し、
V族原料としてヒドラジンに加えてアンモニアを導入
し、1分後に3族原料としてトリメチルガリウムを導入
した。膜厚3μmのGaN層13を成長した後、トリメ
チルガリウムの導入を停止した。3μm成長すると、G
aN層13表面は平坦となり、基板界面から発生した欠
陥の伝搬は著しく低減された。次いで、基板温度を80
0℃に降温し、トリメチルガリウムとトリメチルアルミ
ニウムを同時に導入し、膜厚2nmのAl0.3Ga0.7
層18を成長した。トリメチルガリウムとトリメチルア
ルミニウムの導入を停止した後、トリメチルガリウムと
トリメチルインジウムを同時に導入し、膜厚2nmのG
0.8In0.2N層19を成長した。連続して40周期の
Al0.3Ga0.7N/Ga0.8In0.2N歪超格子20を成
長した後、再度トリメチルガリウムを導入し膜厚2μm
のGaN層21を成長してトリメチルガリウムの導入を
停止した。次いで、トリメチルガリウム、トリメチルア
ルミニウムとトリメチルインジウムを同時に導入し、膜
厚0.5μmのAl0.45Ga0.5In0.05N層14を成
長した。トリメチルガリウム、トリメチルアルミニウム
とトリメチルインジウムの導入を停止した後、基板温度
を降温し300℃以下の温度になったところでヒドラジ
ンとアンモニアの導入を停止した。基板の温度を室温ま
で降下させた後、石英製反応管1内より基板を取り出し
た。
Next, the substrate temperature was raised to 1000 ° C.
Ammonia was introduced in addition to hydrazine as a Group V raw material, and one minute later, trimethylgallium was introduced as a Group 3 raw material. After growing the GaN layer 13 having a thickness of 3 μm, the introduction of trimethylgallium was stopped. When growing 3 μm, G
The surface of the aN layer 13 became flat, and the propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature is set to 80
The temperature was lowered to 0 ° C., and trimethylgallium and trimethylaluminum were simultaneously introduced to form a 2 nm-thick Al 0.3 Ga 0.7 N
Layer 18 was grown. After stopping the introduction of trimethylgallium and trimethylaluminum, trimethylgallium and trimethylindium were simultaneously introduced, and a G film having a thickness of 2 nm was formed.
An a 0.8 In 0.2 N layer 19 was grown. After growing the continuously 40 cycles of Al 0.3 Ga 0.7 N / Ga 0.8 In 0.2 N strained superlattice 20, thickness 2μm introducing trimethylgallium again
And the introduction of trimethylgallium was stopped. Next, trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced to grow an Al 0.45 Ga 0.5 In 0.05 N layer 14 having a thickness of 0.5 μm. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0043】Al0.3Ga0.7N/Ga0.8In0.2N歪超
格子20を導入することによって基板界面から発生した
欠陥の伝搬は著しく抑制され、実施例1の場合に比べて
さらに2桁程度の欠陥が低減された。得られた結晶表面
は鏡面でホール効果によるとキャリア濃度は1015cm
-3以下であり、成長温度が800℃と低温でありながら
1000℃で成長したGaN層、さらには実施例1の場
合よりもより高品質な四元混晶が得られた。
By introducing the Al 0.3 Ga 0.7 N / Ga 0.8 In 0.2 N strained superlattice 20, the propagation of the defect generated from the substrate interface is remarkably suppressed. Was reduced. According to the Hall effect, the carrier concentration is 10 15 cm.
-3 or less, a GaN layer grown at 1000 ° C. while the growth temperature was as low as 800 ° C., and a quaternary mixed crystal of higher quality than in Example 1 were obtained.

【0044】(実施例4)図5に本発明の第四の実施例
のAlGaInN多層膜の形成方法により作製したAl
GaInN多層膜の断面構造図である。図1のMOVP
E装置を用いたAlGaInN多層膜の形成方法につい
て、順を追って説明する。
(Embodiment 4) FIG. 5 shows an Al fabricated by a method of forming an AlGaInN multilayer film according to a fourth embodiment of the present invention.
FIG. 3 is a sectional structural view of a GaInN multilayer film. MOVP of FIG.
A method for forming an AlGaInN multilayer film using the E apparatus will be described step by step.

【0045】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。基板温度を600℃まで降温し
た後、石英製ガス導入管2からシリコン基板11面上に
V族原料としてヒドラジンを導入し、1分後に3族原料
としてトリメチルガリウムを導入した。膜厚20nmの
非単結晶GaN層12を堆積した後、トリメチルガリウ
ムの導入を停止した。これを緩衝層として用いた。
After the (111) plane silicon substrate 11 was organically washed, it was placed on a quartz tray 6 as a crystal growth substrate and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material. After depositing the non-single-crystal GaN layer 12 having a thickness of 20 nm, the introduction of trimethylgallium was stopped. This was used as a buffer layer.

【0046】次いで、基板温度を1000℃に昇温し、
V族原料としてヒドラジンに加えてアンモニアを導入
し、1分後に3族原料としてトリメチルガリウムを導入
した。膜厚3μmのGaN層13を成長した後、トリメ
チルガリウムの導入を停止した。3μm成長すると、G
aN層13表面は平坦となり、基板界面から発生した欠
陥の伝搬は著しく低減された。次いで、基板温度を80
0℃に降温し、トリメチルガリウム、トリメチルアルミ
ニウムとトリメチルインジウムを同時に導入し、GaN
層13に格子整合した膜厚1.0μmのAl0.45Ga
0.5In0.05N層15を成長した。トリメチルガリウ
ム、トリメチルアルミニウムとトリメチルインジウムの
導入を停止した後、基板温度を600℃まで降温した。
次いで、図6(a)の原料ガスの供給手順に示すよう
に、トリメチルインジウムを導入しInN22を1nm
成長した後、トリメチルインジウムを停止し、トリメチ
ルガリウムとトリメチルアルミニウムを導入し、1nm
のAlGaN23を成長した。このようにして30回交
互に供給した。
Next, the substrate temperature is raised to 1000 ° C.
Ammonia was introduced in addition to hydrazine as a Group V raw material, and one minute later, trimethylgallium was introduced as a Group 3 raw material. After growing the GaN layer 13 having a thickness of 3 μm, the introduction of trimethylgallium was stopped. When growing 3 μm, G
The surface of the aN layer 13 became flat, and the propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature is set to 80
The temperature was lowered to 0 ° C., and trimethylgallium, trimethylaluminum and trimethylindium were introduced simultaneously,
1.0 μm-thick Al 0.45 Ga lattice-matched to layer 13
A 0.5 In 0.05 N layer 15 was grown. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the substrate temperature was lowered to 600 ° C.
Next, as shown in the source gas supply procedure of FIG. 6A, trimethylindium was introduced and InN22 was changed to 1 nm.
After the growth, trimethylindium was stopped, trimethylgallium and trimethylaluminum were introduced, and 1 nm
Of AlGaN 23 was grown. In this way, the mixture was alternately supplied 30 times.

【0047】これにより疑似的なAlGaInN層24
を形成した。トリメチルガリウムとトリメチルアルミニ
ウムの導入を停止した後、基板温度を800℃まで昇温
し、トリメチルガリウム、トリメチルアルミニウムとト
リメチルインジウムを同時に導入し、GaN層13に格
子整合した膜厚1.0μmのAl0.45Ga0.5In0.0 5
N層17を再度成長した。トリメチルガリウム、トリメ
チルアルミニウムとトリメチルインジウムの導入を停止
した後、基板温度を降温し300℃以下の温度になった
ところでヒドラジンとアンモニアの導入を停止した。基
板の温度を室温まで降下させた後、石英製反応管1内よ
り基板を取り出した。
Thus, the pseudo AlGaInN layer 24
Was formed. After stopping the introduction of trimethylgallium and trimethylaluminum, the substrate temperature was raised to 800 ° C., trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced, and a 0.4 μm thick Al 0.45 lattice-matched to the GaN layer 13 was formed. Ga 0.5 In 0.0 5
The N layer 17 was grown again. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0048】得られたAlGaInN多層膜の表面は鏡
面であり、フォトルミネッセンス測定の結果、InN2
2層とAlGaN23層の歪超格子からなる擬似的なA
lGaInN層24からの強い発光を確認した。本発明
により、従来の方法や実施例2に示す形成方法に比べ
て、今までになし得なかった500nm以上の波長の長
い発光を得ることができた。
The surface of the obtained AlGaInN multilayer film is a mirror surface, and as a result of photoluminescence measurement,
A pseudo A consisting of a strained superlattice of two layers and 23 layers of AlGaN
Strong light emission from the lGaInN layer 24 was confirmed. According to the present invention, it was possible to obtain light emission having a long wavelength of 500 nm or more, which could not be achieved until now, as compared with the conventional method and the formation method shown in Example 2.

【0049】なお、図5(b)の原料ガス供給手順に示
す形成方法においても、同様な結果が得られた。
Similar results were obtained in the forming method shown in the source gas supply procedure of FIG.

【0050】(実施例5)図7に本発明の第五の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。図1のMOVPE装
置を用いたAlGaInN薄膜の形成方法について、順
を追って説明する。
(Embodiment 5) FIG. 7 shows an AlG film formed by the method of forming an AlGaInN thin film according to a fifth embodiment of the present invention.
1 shows a cross-sectional structure diagram of an aInN thin film. A method of forming an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0051】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。メタンガスを導入し基板表面に
炭化層25を形成した。基板温度を600℃まで降温し
た後、石英製ガス導入管2からシリコン基板11面上に
V族原料としてヒドラジンを導入し、1分後に3族原料
としてトリメチルガリウムを導入した。膜厚20nmの
非単結晶GaN層12を堆積した後、トリメチルガリウ
ムの導入を停止した。これを緩衝層として用いた。次い
で、基板温度を1000℃に昇温し、V族原料としてヒ
ドラジンに加えてアンモニアを導入し、1分後に3族原
料としてトリメチルガリウムを導入した。
After the (111) plane silicon substrate 11 was organically washed, it was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. Methane gas was introduced to form a carbonized layer 25 on the substrate surface. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material. After depositing the non-single-crystal GaN layer 12 having a thickness of 20 nm, the introduction of trimethylgallium was stopped. This was used as a buffer layer. Next, the substrate temperature was raised to 1000 ° C., ammonia was added to hydrazine as a Group V raw material, and trimethylgallium was introduced as a Group 3 raw material one minute later.

【0052】膜厚3μmのGaN層13を成長した後、
トリメチルガリウムの導入を停止した。3μm成長する
と、GaN層13表面は平坦となり、基板界面から発生
した欠陥の伝搬は著しく低減された。次いで、基板温度
を800℃に降温し、トリメチルガリウム、トリメチル
アルミニウムとトリメチルインジウムを同時に導入し、
膜厚0.5μmのAl0.45Ga0.5In0.05N層14を
成長した。トリメチルガリウム、トリメチルアルミニウ
ムとトリメチルインジウムの導入を停止した後、基板温
度を降温し300℃以下の温度になったところでヒドラ
ジンとアンモニアの導入を停止した。基板の温度を室温
まで降下させた後、石英製反応管1内より基板を取り出
した。
After growing a GaN layer 13 having a thickness of 3 μm,
The introduction of trimethylgallium was stopped. After the growth of 3 μm, the surface of the GaN layer 13 became flat, and propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature was lowered to 800 ° C., and trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced,
An Al 0.45 Ga 0.5 In 0.05 N layer 14 having a thickness of 0.5 μm was grown. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0053】本発明によれば、得られた結晶表面は鏡面
でホール効果によるとキャリア濃度は1015cm-3以下
であり、成長温度が800℃と低温でありながら100
0℃で成長したGaN層、さらには実施例1の場合より
もより高品質な四元混晶が得られた。また、シリコン基
板11表面を炭化することにより、基板界面からの欠陥
の発生は著しく抑制され、実施例1の場合に比べてさら
に2桁程度の欠陥が低減された。
According to the present invention, the crystal surface obtained is a mirror surface and the carrier concentration is 10 15 cm −3 or less according to the Hall effect, and the growth temperature is as low as 800 ° C. and 100 ° C.
A GaN layer grown at 0 ° C. and a quaternary mixed crystal of higher quality than in the case of Example 1 were obtained. In addition, by carbonizing the surface of the silicon substrate 11, the generation of defects from the substrate interface was significantly suppressed, and the number of defects was reduced by about two digits as compared with the case of Example 1.

【0054】この形成方法は、サファイア基板を用いた
場合には全く効果は認められず、シリコン基板の場合に
極めて有効であった。
This method has no effect when a sapphire substrate is used, and is extremely effective when a silicon substrate is used.

【0055】(実施例6)図8に本発明の第六の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。図1のMOVPE装
置を用いたAlGaInN薄膜の形成方法について、順
を追って説明する。
(Embodiment 6) FIG. 8 shows an AlGN fabricated by the method of forming an AlGaInN thin film according to a sixth embodiment of the present invention.
1 shows a cross-sectional structure diagram of an aInN thin film. A method of forming an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0056】(111)面シリコン基板11を有機洗浄
した後、石英製トレー6上に結晶成長基板として配置
し、石英製反応管1内に導入した。石英製反応管1内に
水素ガスを導入した後、石英製反応管1内圧力を1/1
0気圧に設定し、グラファイト製サセプター4を800
回転/分で回転させた。水素ガス中でグラファイト製サ
セプター4を1200℃まで昇温し、シリコン基板11
表面の清浄化を行った。メタンガスを導入し基板表面に
炭化層25を形成した。その後、メタンガスの導入を停
止し、ヒドラジンを導入し炭化層25上に窒化層26を
形成した。基板温度を600℃まで降温した後、石英製
ガス導入管2からシリコン基板11面上にV族原料とし
てヒドラジンを導入し、1分後に3族原料としてトリメ
チルガリウムを導入した。膜厚20nmの非単結晶Ga
N層12を堆積した後、トリメチルガリウムの導入を停
止した。これを緩衝層として用いた。
After the (111) plane silicon substrate 11 was organically washed, it was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. After hydrogen gas was introduced into the quartz reaction tube 1, the pressure inside the quartz reaction tube 1 was reduced to 1/1.
The pressure was set to 0 atm and the graphite susceptor 4
Rotated at rev / min. The susceptor 4 made of graphite was heated to 1200 ° C. in hydrogen gas, and the silicon substrate 11 was heated.
The surface was cleaned. Methane gas was introduced to form a carbonized layer 25 on the substrate surface. Thereafter, the introduction of methane gas was stopped, and hydrazine was introduced to form a nitrided layer 26 on the carbonized layer 25. After the temperature of the substrate was lowered to 600 ° C., hydrazine was introduced as a group V material from the quartz gas introduction tube 2 onto the surface of the silicon substrate 11, and one minute later, trimethylgallium was introduced as a group 3 material. Non-single-crystal Ga with a thickness of 20 nm
After depositing the N layer 12, the introduction of trimethylgallium was stopped. This was used as a buffer layer.

【0057】次いで、基板温度を1000℃に昇温し、
V族原料としてヒドラジンに加えてアンモニアを導入
し、1分後に3族原料としてトリメチルガリウムを導入
した。膜厚3μmのGaN層13を成長した後、トリメ
チルガリウムの導入を停止した。3μm成長すると、G
aN層13表面は平坦となり、基板界面から発生した欠
陥の伝搬は著しく低減された。次いで、基板温度を80
0℃に降温し、トリメチルガリウム、トリメチルアルミ
ニウムとトリメチルインジウムを同時に導入し、膜厚
0.5μmのAl0.45Ga0.5In0.05N層14を成長
した。トリメチルガリウム、トリメチルアルミニウムと
トリメチルインジウムの導入を停止した後、基板温度を
降温し300℃以下の温度になったところでヒドラジン
とアンモニアの導入を停止した。基板の温度を室温まで
降下させた後、石英製反応管1内より基板を取り出し
た。
Next, the substrate temperature was raised to 1000 ° C.
Ammonia was introduced in addition to hydrazine as a Group V raw material, and one minute later, trimethylgallium was introduced as a Group 3 raw material. After growing the GaN layer 13 having a thickness of 3 μm, the introduction of trimethylgallium was stopped. When growing 3 μm, G
The surface of the aN layer 13 became flat, and the propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature is set to 80
The temperature was lowered to 0 ° C., and trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced to grow an Al 0.45 Ga 0.5 In 0.05 N layer 14 having a thickness of 0.5 μm. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0058】本実施例の場合は、得られた結晶表面は鏡
面でホール効果によるとキャリア濃度は1015cm-3
下であり、成長温度が800℃と低温でありながら10
00℃で成長したGaN層、さらには実施例1の場合よ
りもより高品質な四元混晶が得られた。また、シリコン
基板11表面を炭化することにより、基板界面からの欠
陥の発生は著しく抑制された。また、表面を窒化するこ
とで容易かつ緻密にGaNが核成長するので、実施例6
の場合に比べてもさらに欠陥が低減された。
In the case of this embodiment, the obtained crystal surface is a mirror surface and the carrier concentration is 10 15 cm −3 or less according to the Hall effect, and the growth temperature is as low as 800 ° C.
A GaN layer grown at 00 ° C., and a higher quality quaternary mixed crystal than in Example 1 were obtained. Further, by carbonizing the surface of the silicon substrate 11, the generation of defects from the substrate interface was significantly suppressed. In addition, since GaN grows easily and densely by nucleating the surface by nitriding,
Defects were further reduced as compared with the case of.

【0059】この形成方法は、サファイア基板を用いた
場合には全く効果は認められず、シリコン基板の場合に
極めて有効であった。
This method has no effect when a sapphire substrate is used, and is extremely effective when a silicon substrate is used.

【0060】(実施例7)図9に本発明の第七の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。図1のMOVPE装
置を用いたAlGaInN薄膜の形成方法について、順
を追って説明する。
(Embodiment 7) FIG. 9 shows an AlGN fabricated by the method of forming an AlGaInN thin film according to a seventh embodiment of the present invention.
1 shows a cross-sectional structure diagram of an aInN thin film. A method of forming an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0061】(111)面GaP基板27を有機洗浄し
た後、石英製トレー6上に結晶成長基板として配置し、
石英製反応管1内に導入した。石英製反応管1内に水素
ガスを導入した後、石英製反応管1内圧力を1/10気
圧に設定し、グラファイト製サセプター4を800回転
/分で回転させた。ホスフィン雰囲気中でグラファイト
製サセプター4を800℃まで昇温し、GaP基板27
表面の清浄化を行った。ホスフィンの導入を停止し、ヒ
ドラジンを導入し基板表面に窒化層28を形成した。基
板温度を600℃まで降温した後、石英製ガス導入管2
からGaP基板27面上に3族原料としてトリメチルガ
リウムを導入した。膜厚20nmの非単結晶GaN層1
2を堆積した後、トリメチルガリウムの導入を停止し
た。これを緩衝層として用いた。次いで、基板温度を1
000℃に昇温し、V族原料としてヒドラジンに加えて
アンモニアを導入し、1分後に3族原料としてトリメチ
ルガリウムを導入した。
After the (111) -plane GaP substrate 27 is organically washed, it is placed on a quartz tray 6 as a crystal growth substrate.
It was introduced into the reaction tube 1 made of quartz. After introducing hydrogen gas into the quartz reaction tube 1, the pressure in the quartz reaction tube 1 was set to 1/10 atm, and the graphite susceptor 4 was rotated 800 times.
Rotated at / min. The susceptor 4 made of graphite was heated to 800 ° C. in a phosphine atmosphere, and the GaP substrate 27 was heated.
The surface was cleaned. The introduction of phosphine was stopped, hydrazine was introduced, and a nitride layer 28 was formed on the substrate surface. After lowering the substrate temperature to 600 ° C., the quartz gas introduction pipe 2
Introduced trimethylgallium as a Group 3 raw material on the surface of the GaP substrate 27. Non-single-crystal GaN layer 1 having a thickness of 20 nm
After the deposition of 2, the introduction of trimethylgallium was stopped. This was used as a buffer layer. Then, the substrate temperature was set to 1
The temperature was raised to 000 ° C., ammonia was introduced in addition to hydrazine as a Group V raw material, and one minute later, trimethylgallium was introduced as a Group 3 raw material.

【0062】膜厚3μmのGaN層13を成長した後、
トリメチルガリウムの導入を停止した。3μm成長する
と、GaN層13表面は平坦となり、基板界面から発生
した欠陥の伝搬は著しく低減された。次いで、基板温度
を800℃に降温し、トリメチルガリウム、トリメチル
アルミニウムとトリメチルインジウムを同時に導入し、
膜厚0.5μmのAl0.45Ga0.5In0.05N層14を
成長した。トリメチルガリウム、トリメチルアルミニウ
ムとトリメチルインジウムの導入を停止した後、基板温
度を降温し300℃以下の温度になったところでヒドラ
ジンとアンモニアの導入を停止した。基板の温度を室温
まで降下させた後、石英製反応管1内より基板を取り出
した。
After growing a GaN layer 13 having a thickness of 3 μm,
The introduction of trimethylgallium was stopped. After the growth of 3 μm, the surface of the GaN layer 13 became flat, and propagation of defects generated from the substrate interface was significantly reduced. Next, the substrate temperature was lowered to 800 ° C., and trimethylgallium, trimethylaluminum and trimethylindium were simultaneously introduced,
An Al 0.45 Ga 0.5 In 0.05 N layer 14 having a thickness of 0.5 μm was grown. After stopping the introduction of trimethylgallium, trimethylaluminum and trimethylindium, the temperature of the substrate was lowered to a temperature of 300 ° C. or less, and the introduction of hydrazine and ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out of the quartz reaction tube 1.

【0063】本発明によれば、得られた結晶表面は鏡面
でホール効果によるとキャリア濃度は1015cm-3以下
であり、基板にGaPを用いたが、サファイア上に形成
したAlGaInNと同程度の高品質な四元混晶が得ら
れた。また、GaP基板27表面を窒化することによ
り、基板界面からの欠陥の発生は著しく抑制され、サフ
ァイア基板と同程度まで欠陥が低減された。
According to the present invention, the obtained crystal surface is a mirror surface and the carrier concentration is 10 15 cm −3 or less according to the Hall effect, and GaP is used for the substrate, but the same as AlGaInN formed on sapphire. Of quaternary mixed crystal of high quality was obtained. Further, by nitriding the surface of the GaP substrate 27, the generation of defects from the substrate interface was significantly suppressed, and the defects were reduced to the same extent as the sapphire substrate.

【0064】この形成方法は、GaP基板の場合に極め
て有効であった。なお、本発明は上述した実施例に限定
されるものではない。たとえば、用いる基板は上述の基
板には限定されない。また、結晶成長に用いた原料も上
述の限りではない。AlGaInN多層膜の構成も限定
されるものでない。
This forming method was extremely effective for a GaP substrate. The present invention is not limited to the embodiments described above. For example, the substrate used is not limited to the above-described substrate. The raw materials used for crystal growth are not limited to those described above. The configuration of the AlGaInN multilayer film is not limited.

【0065】[0065]

【発明の効果】このように本発明によれば、窒素原料と
してアルキルアミン系、ヒドラジン系もしくはアルキル
アミン系、ヒドラジン系とアンモニアの混合原料を用
い、基板を高速で回転させるので、窒素空孔などの点欠
陥の少ないInを含むAlGaInN薄膜を低温で容易
に形成できる。
As described above, according to the present invention, an alkylamine-based material, a hydrazine-based or alkylamine-based material, or a mixed material of hydrazine-based and ammonia is used as a nitrogen material, and the substrate is rotated at a high speed. The AlGaInN thin film containing In with few point defects can be easily formed at a low temperature.

【0066】また、InNとAlGaNを交互に形成し
た超薄膜多層膜によってAlGaInN薄膜を構成する
ので、より高品質なAlGaInN薄膜を形成できる。
Further, since the AlGaInN thin film is constituted by an ultra-thin multilayer film in which InN and AlGaN are alternately formed, a higher quality AlGaInN thin film can be formed.

【0067】また、AlGaInN薄膜形成に先立ちA
lGaInN歪超格子構造を形成するので、転位の伝搬
を著しく低減し高品質なAlGaInN薄膜を形成でき
る。
Prior to the formation of the AlGaInN thin film, A
Since the 1GaInN strained superlattice structure is formed, propagation of dislocations is significantly reduced, and a high-quality AlGaInN thin film can be formed.

【0068】また、組成が連続的に変化する炭化層や窒
化層をGaN等の非単結晶層に先立ち形成するので、転
位の伝搬を著しく低減しサファイア以外の基板上にも高
品質なAlGaInNが形成できる。
Further, since a carbonized layer or a nitrided layer whose composition continuously changes is formed prior to a non-single-crystal layer such as GaN, propagation of dislocations is remarkably reduced, and high-quality AlGaInN is formed on a substrate other than sapphire. Can be formed.

【0069】したがって、発光効率の高い青色発光ダイ
オードや情報処理装置用光源などに用いることのできる
青色半導体レーザ素子製造に極めて有用である。
Therefore, the present invention is extremely useful for manufacturing a blue semiconductor laser device which can be used for a blue light emitting diode having a high luminous efficiency, a light source for an information processing device, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の形成方法を説明するMOV
PE装置の概略図
FIG. 1 is an MOV illustrating a forming method according to an embodiment of the present invention.
Schematic diagram of PE device

【図2】この発明の第一の実施例のAlGaInN薄膜
の形成方法によるAlGaInN薄膜の断面構造図
FIG. 2 is a sectional structural view of an AlGaInN thin film formed by the method for forming an AlGaInN thin film according to the first embodiment of the present invention;

【図3】この発明の第二の実施例のAlGaInN多層
膜の形成方法によるAlGaInN多層膜の断面構造図
FIG. 3 is a sectional structural view of an AlGaInN multilayer film according to a method of forming an AlGaInN multilayer film according to a second embodiment of the present invention;

【図4】この発明の第三の実施例のAlGaInN薄膜
の形成方法によるAlGaInN薄膜の断面構造図
FIG. 4 is a sectional structural view of an AlGaInN thin film formed by a method for forming an AlGaInN thin film according to a third embodiment of the present invention;

【図5】この発明の第四の実施例のAlGaInN多層
膜の形成方法によるAlGaInN薄膜の断面構造図
FIG. 5 is a sectional structural view of an AlGaInN thin film by a method of forming an AlGaInN multilayer film according to a fourth embodiment of the present invention.

【図6】この発明の第四の実施例の原料ガスの供給手順
FIG. 6 is a supply procedure diagram of a source gas according to a fourth embodiment of the present invention.

【図7】この発明の第五の実施例のAlGaInN薄膜
の形成方法によるAlGaInN薄膜の断面構造図
FIG. 7 is a sectional structural view of an AlGaInN thin film according to a fifth embodiment of the present invention;

【図8】この発明の第六の実施例のAlGaInN薄膜
の形成方法によるAlGaInN薄膜の断面構造図
FIG. 8 is a sectional structural view of an AlGaInN thin film according to a sixth embodiment of the present invention;

【図9】この発明の第七の実施例のAlGaInN薄膜
の形成方法によるAlGaInN薄膜の断面構造図
FIG. 9 is a sectional structural view of an AlGaInN thin film formed by a method of forming an AlGaInN thin film according to a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 石英製反応管 2 石英製ガス導入管 3 高周波加熱用コイル 4 グラファイト製サセプター 5 サセプター支持棒 6 石英製トレー 7 基板 8 排気口 11 シリコン基板 12 非単結晶GaN層 13、21 GaN層 14、15、17 Al0.45Ga0.5In0.05N層 16、19 Ga0.8In0.2N層 18 Al0.3Ga0.7N層 20 Al0.3Ga0.7N/Ga0.8In0.2N歪超格子 22 InN層 23 AlGaN層 24 擬似的AlGaInN層 25 炭化層 26、28 窒化層 27 GaP基板DESCRIPTION OF SYMBOLS 1 Quartz reaction tube 2 Quartz gas introduction tube 3 High frequency heating coil 4 Graphite susceptor 5 Susceptor support rod 6 Quartz tray 7 Substrate 8 Exhaust port 11 Silicon substrate 12 Non-single-crystal GaN layer 13, 21 GaN layer 14, 15 , 17 Al 0.45 Ga 0.5 In 0.05 N layer 16, 19 Ga 0.8 In 0.2 N layer 18 Al 0.3 Ga 0.7 N layer 20 Al 0.3 Ga 0.7 N / Ga 0.8 In 0.2 N strained superlattice 22 InN layer 23 AlGaN layer 24 pseudo AlGaInN layer 25 Carbide layer 26, 28 Nitride layer 27 GaP substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−109621(JP,A) 特開 平6−196757(JP,A) 特開 平6−216409(JP,A) 特開 平4−372120(JP,A) 特開 平4−223330(JP,A) 特開 平5−41541(JP,A) 特開 平5−190903(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/205 H01S 5/00 - 5/50 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-109621 (JP, A) JP-A-6-1965757 (JP, A) JP-A-6-216409 (JP, A) JP-A-4- 372120 (JP, A) JP-A-4-223330 (JP, A) JP-A-5-41541 (JP, A) JP-A-5-190903 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01L 33/00 H01L 21/205 H01S 5/00-5/50

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱された基板表面上に3族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てAlGaInN薄膜を形成する方法において、900
℃以上の基板温度でGaN層を形成し、前記GaN層上
に300〜900℃の範囲内に設定した基板温度でAl
GaInN層を形成する方法であって、前記AlGaI
nN層の形成は、ヒドラジン系物質とアンモニアとの混
合原料、またはアルキルアミン系物質とアンモニアとの
混合原料を窒素原料とし、前記AlGaInN層は3族
構成元素を含む原料の供給を間欠的に行い、InN層と
AlGaN層を構成する原料の繰り返し供給により形成
することを特徴とする半導体薄膜の形成方法。
1. A method for forming a thin film of AlGaInN via a buffer layer by supplying a raw material containing a Group 3 constituent element and a raw material containing nitrogen on a heated substrate surface,
A GaN layer is formed at a substrate temperature of at least 300 ° C., and Al is formed on the GaN layer at a substrate temperature set within a range of 300 to 900 ° C.
A method for forming a GaInN layer, comprising:
formation of nN layer material mixture with a hydrazine-based material and ammonia, or a mixed raw material of alkyl amine-based material and ammonia as a nitrogen source, the AlGaInN layer 3 group
Supply of the raw material containing the constituent elements is performed intermittently,
Formed by repeated supply of the raw material that constitutes the AlGaN layer
A method of forming a semiconductor thin film.
【請求項2】 加熱された基板表面上に3族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てAlx1Gay1Inz1N層/Alx2Gay2Inz2N層/
Alx3Gay3Inz3N層(Eg2<Eg1、Eg3:E
gはバンドギャップ)からなるAlGaInN多層膜を
形成する方法において、900℃以上の基板温度でGa
N層を形成し、前記GaN層上に300〜900℃の範
囲内に設定した基板温度で前記GaN層に格子整合する
Alx1Gay1Inz1N層と2%以下の格子不整合するA
x2Gay2Inz2N層と前記GaN層に格子整合するA
x3Gay3Inz3N層を形成する方法であって、前記A
lGaInN多層膜の形成は、ヒドラジン系物質とアン
モニアとの混合原料、またはアルキルアミン系物質とア
ンモニアとの混合原料を窒素原料とすることを特徴とす
る半導体薄膜の形成方法。
2. An Al x1 Ga y1 In z1 N layer / Al x2 Gay y2 In z2 N layer via a buffer layer by supplying a raw material containing a group III constituent element and a raw material containing nitrogen onto a heated substrate surface. /
Al x3 Ga y3 In z3 N layer (Eg2 <Eg1, Eg3: E
g is a band gap) in the method of forming an AlGaInN multilayer film.
An N layer is formed, and on the GaN layer, an Al x1 Ga y1 In z1 N layer lattice-matched to the GaN layer at a substrate temperature set within a range of 300 to 900 ° C. and a lattice mismatch A of 2% or less.
l x2 Ga y2 In z2 N layer A lattice-matched to the GaN layer
A method of forming a l x3 Ga y3 In z3 N layer, the A
The formation of the lGaInN multilayer film is characterized in that a mixed material of a hydrazine-based material and ammonia or a mixed material of an alkylamine-based material and ammonia is used as a nitrogen material .
Method of forming a semiconductor thin film .
【請求項3】 加熱された基板表面上に3族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てGaN層を形成し、前記GaN層上にAlGaInN
薄膜を形成する方法において、前記GaN層中もしくは
GaN層上にAlGaInN層からなる歪超格子構造を
配置し、前記AlGaInN層は3族構成元素を含む原
料の供給を間欠的に行い、InN層とAlGaN層を構
成する原料の繰り返し供給により形成することを特徴と
する半導体薄膜の形成方法。
3. A GaN layer is formed via a buffer layer by supplying a raw material containing a Group 3 constituent element and a raw material containing nitrogen onto a heated substrate surface, and forming an AlGaInN layer on the GaN layer.
In the method of forming a thin film, a strained superlattice structure composed of an AlGaInN layer is arranged in or on the GaN layer, and the AlGaInN layer is an original containing a group 3 element.
The supply of material is performed intermittently, and the InN layer and the AlGaN layer are composed.
A method for forming a semiconductor thin film, wherein the semiconductor thin film is formed by repeatedly supplying a raw material to be formed.
【請求項4】 加熱された基板表面上に3族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てAlGaInN薄膜を形成する方法において 、炭素を
含む原料の雰囲気中で前記基板を加熱し前記基板表面上
に形成した炭化層と次いで、ヒドラジン系物質とアンモ
ニアとの混合原料、またはアルキルアミン系物質とアン
モニアとの混合原料を含む雰囲気中で前記炭化層表面上
に形成した窒化層を少なくとも緩衝層とすることを特徴
とする半導体薄膜の形成方法。
4. A group III constituent element on a heated substrate surface.
And a nitrogen-containing material are supplied through the buffer layer.
A method of forming a AlGaInN thin Te, carbon
Heating the substrate in the atmosphere of the raw material containing
The hydrazine-based material and the
Raw material mixed with near
On the surface of the carbonized layer in an atmosphere containing a raw material mixed with monia
Characterized in that the nitride layer formed on the substrate is at least a buffer layer.
Forming a semiconductor thin film.
JP19046794A 1994-08-12 1994-08-12 Method of forming semiconductor thin film Expired - Fee Related JP3239622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19046794A JP3239622B2 (en) 1994-08-12 1994-08-12 Method of forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19046794A JP3239622B2 (en) 1994-08-12 1994-08-12 Method of forming semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH0856015A JPH0856015A (en) 1996-02-27
JP3239622B2 true JP3239622B2 (en) 2001-12-17

Family

ID=16258605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19046794A Expired - Fee Related JP3239622B2 (en) 1994-08-12 1994-08-12 Method of forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JP3239622B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923950A (en) 1996-06-14 1999-07-13 Matsushita Electric Industrial Co., Inc. Method of manufacturing a semiconductor light-emitting device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP4524997B2 (en) * 1997-11-26 2010-08-18 日亜化学工業株式会社 Nitride semiconductor device
WO1999046822A1 (en) 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP3857417B2 (en) * 1998-05-13 2006-12-13 日亜化学工業株式会社 Nitride semiconductor device
JP3778765B2 (en) 2000-03-24 2006-05-24 三洋電機株式会社 Nitride-based semiconductor device and manufacturing method thereof
JP2003282439A (en) * 2002-03-27 2003-10-03 Seiko Epson Corp Substrate for device and manufacturing method thereof
JP3905824B2 (en) 2002-11-25 2007-04-18 大阪府 Single crystal gallium nitride localized substrate and manufacturing method thereof
US7601553B2 (en) 2003-07-18 2009-10-13 Epivalley Co., Ltd. Method of manufacturing a gallium nitride semiconductor light emitting device
WO2005022655A1 (en) * 2003-09-03 2005-03-10 Epivalley Co., Ltd. Algainn based optical device and fabrication method thereof
DE102004021578A1 (en) * 2003-09-17 2005-04-21 Aixtron Ag Method and apparatus for depositing mono- or multi-component layers and layer sequences using non-continuous injection of liquid and dissolved starting substances via a multi-channel injection unit
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
JP4544628B2 (en) * 2005-03-28 2010-09-15 独立行政法人理化学研究所 Manufacturing method of nitride semiconductor
JP5159040B2 (en) * 2005-03-31 2013-03-06 株式会社光波 Method for forming low temperature growth buffer layer and method for manufacturing light emitting device
JP4913375B2 (en) 2005-08-08 2012-04-11 昭和電工株式会社 Manufacturing method of semiconductor device
WO2007034761A1 (en) * 2005-09-20 2007-03-29 Showa Denko K.K. Semiconductor device and method for fabrication thereof
JP2007087992A (en) * 2005-09-20 2007-04-05 Showa Denko Kk Semiconductor device and its fabrication process
JP4927606B2 (en) * 2007-03-08 2012-05-09 古河電気工業株式会社 Semiconductor light emitting device
JP4497170B2 (en) * 2007-03-26 2010-07-07 住友電気工業株式会社 Epitaxial substrate manufacturing method
JP4234180B2 (en) 2007-07-02 2009-03-04 三菱電機株式会社 Nitride-based semiconductor multilayer structure manufacturing method and semiconductor optical device manufacturing method
JP5218117B2 (en) 2008-03-18 2013-06-26 三菱電機株式会社 Nitride semiconductor multilayer structure, optical semiconductor device, and manufacturing method thereof
JP2008211246A (en) * 2008-04-25 2008-09-11 Ngk Insulators Ltd Epitaxial substrate and semiconductor laminate structure
JP5169972B2 (en) 2008-09-24 2013-03-27 三菱電機株式会社 Manufacturing method of nitride semiconductor device
JP2009060140A (en) * 2008-11-20 2009-03-19 Ngk Insulators Ltd Method for manufacturing epitaxial substrate and semiconductor laminated structure
KR20120085743A (en) * 2009-08-12 2012-08-01 조지아 스테이트 유니버시티 리서치 파운데이션, 인코포레이티드 High pressure chemical vapor deposition apparatuses, methods, and compositions produced therewith
JP2011151074A (en) * 2010-01-19 2011-08-04 Mitsubishi Electric Corp Method for manufacturing nitride semiconductor device
JP5286396B2 (en) * 2011-09-14 2013-09-11 昭和電工株式会社 Semiconductor element
JP5831763B2 (en) * 2012-09-05 2015-12-09 クアーズテック株式会社 Manufacturing method of nitride semiconductor free-standing substrate
US9318600B2 (en) 2013-04-16 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device and method for manufacturing same
JP6753634B2 (en) * 2016-08-26 2020-09-09 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor devices

Also Published As

Publication number Publication date
JPH0856015A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP3239622B2 (en) Method of forming semiconductor thin film
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JP2003327497A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME
JPH04297023A (en) Crystal growth method of gallium nitride compound semiconductor
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JP3100644B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JPH08203834A (en) Semiconductor thin film and manufacture thereof
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JP2005536883A (en) MBE growth of AlGaN single layer or AlGaN multilayer structure
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JP3654307B2 (en) Manufacturing method of semiconductor device
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
JP2004307253A (en) Method for manufacturing semiconductor substrate
JP4670206B2 (en) Manufacturing method of nitride semiconductor
JPH0754806B2 (en) Method for growing compound semiconductor single crystal film
JP3870259B2 (en) Nitride semiconductor laminate and growth method thereof
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees