JPH0222814A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH0222814A
JPH0222814A JP17231188A JP17231188A JPH0222814A JP H0222814 A JPH0222814 A JP H0222814A JP 17231188 A JP17231188 A JP 17231188A JP 17231188 A JP17231188 A JP 17231188A JP H0222814 A JPH0222814 A JP H0222814A
Authority
JP
Japan
Prior art keywords
crystal
gas
grown
substrate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17231188A
Other languages
Japanese (ja)
Inventor
Gokou Hatano
波多野 吾紅
Kazuhiro Eguchi
和弘 江口
Yasuo Oba
康夫 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17231188A priority Critical patent/JPH0222814A/en
Publication of JPH0222814A publication Critical patent/JPH0222814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To extremely reduce carbon injected into a grown crystal, to suppress a hillock in the crystal, and to obtain the crystal having high quality and high purity even in high Al composition by employing AlH(CH3)2 as an aluminum material. CONSTITUTION:A GaAs substrate 15 in which its surface is purified is placed on a susceptor 14, high purity hydrogen is introduced from a gas inlet 12, and the atmosphere in a reaction tube 11 is replaced. Then, a gas outlet 13 is connected to a rotary pump, and the tube 11 is evacuated. Thereafter, arsine gas from the inlet 12 is introduced, the susceptor 14 and the substrate 15 are heated by a high frequency coil 16, and the surface of the substrate is cleaned. Then, the introduction of the arsine is stopped, phosphine gas is introduced, sufficiently replaced, AlH(CH3)2, In(CH3)3, Ga(C2H5)3 prepared beforehand at a predetermined mixture ratio (e.g., 0.25:0.5:0.25) are introduced, and an InGaAlP layer is grown. Thus, the introduction of carbon into the grown crystal is extremely reduced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、有機金属化学気相成長法 (MOCVD法)による化合物半導体層の製造方法に係
わり、特に原料ガスの最適化をはかった化合物半導体層
の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a compound semiconductor layer by metal organic chemical vapor deposition (MOCVD), and in particular to optimization of raw material gas. The present invention relates to a method for manufacturing a compound semiconductor layer.

(従来の技術) 近年、GaAsやInP等の化合物半導体基板上に化合
物半導体層を成長する技術が種々開発されている。特に
、MOCVD法によるInGaAIP層、InGaAl
As層の成長は、光、電子素子等への応用上極めて重要
である。
(Prior Art) In recent years, various techniques have been developed for growing compound semiconductor layers on compound semiconductor substrates such as GaAs and InP. In particular, InGaAIP layer by MOCVD method, InGaAl
Growth of the As layer is extremely important for applications such as optical and electronic devices.

MOCVD法によるInGaAIPの成長には、アルミ
ニウム原料としてトリメチルアルミニウム[A l  
(CHi ) 3 ]  ガリウム原料としてGa(C
Hl)i若しくはG a (C2H5) 3、インジウ
ム原料としてIn(CHi)3、燐原料としてPH,が
用いられている。しかし、アルミニウム原料としてA 
1  (CH3) 3を用いた成長では、成長結晶への
炭素の取り込まれが多く、A1組成が増大するに従いヒ
ロック密度が増大する。このため、結晶欠陥の少ない高
A1組成のInGaAIP結晶を得ることは困難であっ
た。
In the growth of InGaAIP by the MOCVD method, trimethylaluminum [Al
(CHi) 3 ] Ga(C
Hl)i or Ga (C2H5) 3, In(CHi)3 as an indium raw material, and PH as a phosphorus raw material are used. However, as an aluminum raw material, A
In the growth using 1 (CH3) 3, a large amount of carbon is incorporated into the growing crystal, and the hillock density increases as the A1 composition increases. For this reason, it has been difficult to obtain an InGaAIP crystal with a high A1 composition and few crystal defects.

また、MOCVD法によるI nGaA IAsの成長
には、アルミニウム原料としてトリメチルアルミニウム
[A l  (CH3) 3 ] 、砒素原料としてA
sH,、他の原料としてはInGaAIPの場合と同様
のガスが用いられている。しかし、アルミニウム原料と
してA l  (CH3) 3を用いた成長では、原料
のアルキル基に起因する結晶への炭素の取り込まれが多
く、高純度で良質の結晶を得ることは困難であった。
In addition, for the growth of InGaA IAs by the MOCVD method, trimethylaluminum [A l (CH3) 3 ] is used as the aluminum raw material, and A as the arsenic raw material.
sH, and the same gases as in the case of InGaAIP are used as other raw materials. However, in the growth using Al (CH3) 3 as the aluminum raw material, a large amount of carbon is incorporated into the crystal due to the alkyl group of the raw material, making it difficult to obtain crystals with high purity and good quality.

(発明が解決しようとする課題) このように従来、MOCVD法で InGaAIP層やInGaAlAs層を成長する場合
、成長結晶への炭素の取り込まれが生じ、これが成長結
晶の品質、純度を劣化させるという問題があった。
(Problems to be Solved by the Invention) Conventionally, when growing an InGaAIP layer or an InGaAlAs layer using the MOCVD method, carbon is incorporated into the grown crystal, which deteriorates the quality and purity of the grown crystal. was there.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、結晶内のヒロック原因を取り除き、
高A1組成においても制御性良く高品質・高純度のI 
nGaA I P結晶又はInGaAlAs結晶を得る
ことのできる化合物半導体層の製造方法を提供すること
にある。
The present invention has been made in consideration of the above circumstances, and its purpose is to eliminate the cause of hillocks within the crystal,
High quality and high purity I with good controllability even in high A1 compositions
An object of the present invention is to provide a method for manufacturing a compound semiconductor layer that can obtain an nGaA I P crystal or an InGaAlAs crystal.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、MOCVD法で用いる原料ガスの最適
化をはかり、成長結晶中への炭素の取り込まれを低減す
ることにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to optimize the raw material gas used in the MOCVD method and to reduce the incorporation of carbon into the growing crystal.

即ち本発明は、GaAs等の半導体基板を収容した反応
管内にIn、Ga、Al、Pを含む原料ガスを導入し、
有機金属気相成長法により半導体基板上にInGaAI
Pを成長する化合物半導体層の製造方法において、前記
原料ガス中のアルミニウムの原料として、A I H(
CH3) 2 ヲ用いるようにした方法である。
That is, the present invention introduces a raw material gas containing In, Ga, Al, and P into a reaction tube containing a semiconductor substrate such as GaAs,
InGaAI is deposited on a semiconductor substrate by metal organic vapor phase epitaxy.
In the method for manufacturing a compound semiconductor layer in which P is grown, A I H (
This method uses CH3) 2.

また本発明は、InP等の半導体基板を収容した反応管
内にIn、Ga、AI、Asを含む原料ガスを導入し、
有機金属気相成長法により半導体基板上にI nGaA
 IAsを成長する化合物半導体層の製造方法において
、前記原料ガス中のアルミニウムの原料として、A I
 H(CH3) 2を用いるようにした方法である。
Further, the present invention introduces a raw material gas containing In, Ga, AI, and As into a reaction tube containing a semiconductor substrate such as InP,
InGaA was deposited on a semiconductor substrate by metal organic vapor phase epitaxy.
In the method for manufacturing a compound semiconductor layer in which IAs is grown, A I
This method uses H(CH3) 2.

(作 用) 本発明によれば、アルミニウム原料としてA I H(
CH3)2を用いることにより、成長結晶中に取り込ま
れる炭素が極めて少なくなる。従って、炭素の取り込ま
れに起因する結晶内のヒロック発生が抑制され、高A1
組成においても高品質・高純度の結晶を得ることが可能
となる。
(Function) According to the present invention, AIH (
By using CH3)2, very little carbon is incorporated into the growing crystal. Therefore, the occurrence of hillocks in the crystal due to carbon uptake is suppressed, and the high A1
It is also possible to obtain crystals of high quality and high purity in terms of composition.

(実施例) まず、本発明の詳細な説明する前に、ヒロック発生の原
理について説明する。本発明者等の研究によれば、In
GaAIP成長におけるヒロックの発生は絶対的なもの
ではなく、原料その他の成長条件の選択により減少でき
ることが判明している。例えば、A1組成の増大が結晶
内への炭素の取り込まれを増大させ、その結果ヒロック
が大量に発生するとして、炭素の取り込まれが少ないと
されているAl(C2H5)3をAlの原料として成長
を行うことにより、ヒロック密度を大幅に減少すること
ができた。ところが、A I  (C2Hs ) 3は
蒸気圧がA I  (CH3) 3に比べて1桁低く制
御し難い。また、Al(C2H5)3とIn(CHi)
iの室温でのアルキル基の交換反応により得られるIn
(C2H5)  はPH,と中間反応を起こすので、成
長の制御が非常に困難である。
(Example) First, before explaining the present invention in detail, the principle of hillock generation will be explained. According to the research of the present inventors, In
It has been found that the occurrence of hillocks in GaAIP growth is not absolute and can be reduced by selecting raw materials and other growth conditions. For example, an increase in the Al composition increases carbon incorporation into the crystal, resulting in the generation of large amounts of hillocks. By doing this, we were able to significantly reduce the hillock density. However, the vapor pressure of A I (C2Hs) 3 is one order of magnitude lower than that of A I (CH3) 3, making it difficult to control. Also, Al(C2H5)3 and In(CHi)
In obtained by the exchange reaction of the alkyl group of i at room temperature
Since (C2H5) causes an intermediate reaction with PH, it is very difficult to control its growth.

そこで本発明者等は、アルミニウム原料としてA I 
H(CH3) 2を用い MOCVD法でInGaAI
P層の成長を行った。その結果、高A1組成においても
制御性良く高品質のInGaAIP結晶を得ることがで
きた。これは、A I H(CH3) 2を用いた場合
に成長結晶中への炭素の取り込まれが少なく、且つAl
H(CH3)2がA I (CH3) 3と同程度の蒸
気圧を持つからであると考えられる。
Therefore, the present inventors used A I as an aluminum raw material.
InGaAI by MOCVD method using H(CH3) 2
The P layer was grown. As a result, it was possible to obtain a high quality InGaAIP crystal with good controllability even at a high A1 composition. This is because when A I H(CH3) 2 is used, less carbon is incorporated into the growing crystal, and Al
This is thought to be because H(CH3)2 has a vapor pressure comparable to that of A I (CH3)3.

また、炭素の取り込まれによる結晶品質の低下はI n
GaA IAsの場合も同様である。
In addition, the decrease in crystal quality due to the incorporation of carbon is In
The same applies to GaA IAs.

そこで本発明者等゛は、MOCVD法による1 nGa
A IAsの成長に、アルミニウム原料としてA IH
(CH3)2を用いた。その結果、1nGaAIPの場
合と同様に、高AI組成においても制御性良く高品質・
高純度の I nGaA IAs結晶を得ることができた。
Therefore, the present inventors developed 1 nGa by MOCVD method.
A IH is used as an aluminum raw material for the growth of A IAs.
(CH3)2 was used. As a result, as in the case of 1nGaAIP, even with high AI compositions, high quality and high quality can be achieved with good controllability.
High purity InGaA IAs crystals could be obtained.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例方法に使用した成長装置を示
す概略構成図である。図中11は石英製の反応管(反応
炉)であり、この反応管11内にはガス導入口12から
原料混合ガスが導入される。
FIG. 1 is a schematic diagram showing a growth apparatus used in an embodiment of the present invention. In the figure, reference numeral 11 denotes a reaction tube (reactor) made of quartz, into which a raw material mixed gas is introduced from a gas inlet 12.

そして、反応管11内のガスはガス排気口13から排気
されるものとなっている。反応管11内にはカーボン製
のサセプタ14が配置されており、試料基板15はこの
サセプタ14上に載置される。
The gas within the reaction tube 11 is then exhausted from the gas exhaust port 13. A carbon susceptor 14 is placed inside the reaction tube 11, and the sample substrate 15 is placed on this susceptor 14.

また、サセプタ14は、反応炉11の外部に設けた高周
波コイル16により誘導加熱されるものとなっている。
Further, the susceptor 14 is heated by induction by a high frequency coil 16 provided outside the reactor 11.

なお、図中17はサセプタ14の温度を検出するための
温度センサーを示している。
Note that 17 in the figure indicates a temperature sensor for detecting the temperature of the susceptor 14.

次に、上記装置を用いたInGaAIPの結晶成長方法
について説明する。
Next, a method for growing InGaAIP crystals using the above apparatus will be described.

まず、化学エツチングにより表面清浄化したGaAs基
板15を前記サセプタ14上に載置する。ガス導入口1
2から高純度水素を毎分1g導入し、反応管11内の大
気を置換する。次いで、ガス排気口13をロータリーポ
ンプに接続し、反応管11内を減圧し、内部の圧力を1
5〜35 Torrの範囲に設定する。その後、ガス導
入口12から10%アルシンガス(AsHi)を導入し
、高周波コイル16によりサセプタ14及び基板15を
加熱し、基板温度600〜800℃で30分間保持して
基板表面の洗浄を行う。
First, a GaAs substrate 15 whose surface has been cleaned by chemical etching is placed on the susceptor 14 . Gas inlet 1
1 g of high-purity hydrogen per minute is introduced from No. 2 to replace the atmosphere inside the reaction tube 11. Next, the gas exhaust port 13 is connected to a rotary pump, and the pressure inside the reaction tube 11 is reduced to 1.
Set in the range of 5 to 35 Torr. Thereafter, 10% arsine gas (AsHi) is introduced from the gas inlet 12, the susceptor 14 and the substrate 15 are heated by the high frequency coil 16, and the substrate temperature is maintained at 600 to 800° C. for 30 minutes to clean the substrate surface.

次いで、アルシンの導入を停止し、ホスフィンガス(P
H3)の導入を開始した後、反応管11内のアルシンを
十分置換するために約1秒間の間をおき、予め所定の混
合比(例えば0.25:0.5:0.25)に調整した
AlH(CH3)2.In(CH3)s *  Ga 
(C2H5)3を導入シテInGaAIP層の成長を行
う。
Then, the introduction of arsine was stopped and phosphine gas (P
After starting the introduction of H3), wait for about 1 second to sufficiently replace arsine in the reaction tube 11, and adjust the mixture ratio to a predetermined mixture ratio (for example, 0.25:0.5:0.25) in advance. AlH(CH3)2. In(CH3)s*Ga
A (C2H5)3-introduced InGaAIP layer is grown.

本発明者等は、上記方法により、基板温度750℃1反
応管内圧力25Torr 、成長速度3 u m / 
h 、反応管内流速70car/secにて、ヒロック
密度100の一3以下のInGaAIP結晶を得た。こ
れは、成長結晶中への炭素の取り込まれが極めて少なく
なり、キャリア濃度が低くなったからである。また、こ
の値は成長温度BOO〜800℃の範囲で殆ど変化がな
かった。この結果は、アルミニウムの原料としてA l
 (CH3) 3を用いて成長した場合に殆どの温度範
囲で得られる100100O’を越えるヒロック密度よ
り明らかに小さく、本発明による方法が、高品質のIn
GaAIP層の成長において十分有効であることが実証
された。
The present inventors used the above method at a substrate temperature of 750°C, a reaction tube internal pressure of 25 Torr, and a growth rate of 3 um/m.
h, InGaAIP crystals with a hillock density of 100 or less were obtained at a flow rate of 70 car/sec in the reaction tube. This is because the amount of carbon incorporated into the grown crystal is extremely low, resulting in a low carrier concentration. Moreover, this value hardly changed in the growth temperature range of BOO to 800°C. This result shows that Al as a raw material for aluminum
This is clearly lower than the hillock density of over 100100 O' obtained in most temperature ranges when grown using (CH3)
It has been demonstrated that it is sufficiently effective in growing GaAIP layers.

次に、本発明の他の実施例方法について説明する。Next, another example method of the present invention will be described.

この実施例では、まず化学エツチングにより表面清浄化
したInP基ダ15を前記セサプタ14上に載置する。
In this embodiment, first, an InP substrate 15 whose surface has been cleaned by chemical etching is placed on the sensor receptor 14 .

ガス導入口12から高純度水素を毎分1g導入し、反応
管11内の大気を置換する。
High-purity hydrogen is introduced from the gas inlet 12 at a rate of 1 g per minute to replace the atmosphere inside the reaction tube 11.

次いで、ガス排気口13をロータリーポンプに接続し、
反応管11内を減圧し、内部の圧力を200〜300 
Torrの範囲に設定する。その後、ガス導入口12か
らホスフィンガスを導入し、高周波コイル16によりサ
セプタ及び基板15を加熱し、基板温度600〜800
℃で30分間保持して基板表面の清浄化を行う。
Next, connect the gas exhaust port 13 to the rotary pump,
The pressure inside the reaction tube 11 is reduced to 200 to 300.
Set to a range of Torr. After that, phosphine gas is introduced from the gas inlet 12, and the susceptor and the substrate 15 are heated by the high frequency coil 16 to a temperature of 600 to 800.
The substrate surface is cleaned by holding at ℃ for 30 minutes.

次いで、ホスフィンの導入を停止し、アルシンガスの導
入を開始した後、反応管11内のホスフィンを十分置換
するために約1秒間の間をおき、予め所定の混合比(例
えば0.25:0.5:0.25)に調整したIn (
CH3)3.0a (C2H%) 3とA I H(C
H3) 2を導入して成長を行う。
Next, after stopping the introduction of phosphine and starting the introduction of arsine gas, there is a pause of about 1 second in order to sufficiently replace the phosphine in the reaction tube 11, and then a predetermined mixing ratio (for example, 0.25:0. In (
CH3)3.0a (C2H%) 3 and A I H(C
H3) Introduce 2 and grow.

本発明者等は、上記実施例方法により、基板温度850
℃1反応管内圧力200Torr、成長速度1.5μm
/hにて、キャリア濃度101101b’以下のInG
aAlAs結晶を得た。この値は、アルミニウムの原料
としてA I  (CH3) 3を用いて成長した場合
に得られる1G”am−3より明らかに小さく、従って
本発明による方法が、高純度のInGaAlAs結晶の
成長においても十分有効であることが実証された。
The present inventors have determined that the substrate temperature is 850 by using the method of the above embodiment.
℃1 reaction tube pressure 200 Torr, growth rate 1.5 μm
/h, InG with a carrier concentration of 101101b' or less
aAlAs crystal was obtained. This value is clearly smaller than 1 G"am-3 obtained when aluminum is grown using A I (CH3) 3 as the raw material, and therefore the method according to the present invention is sufficient even for the growth of high-purity InGaAlAs crystals. It has been proven to be effective.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば成長する結晶はInGaAIPやInGa
AlAsに限るものではなく、InGaAlSb、その
他アルミニウムを構成元素として含む■−v族化合物半
導体の結晶成長に適用することが可能である。また、各
種原料ガスの流量や混合比等の条件は、成長すべき結晶
組成に応じて適宜室めればよい。その他、本発明の要旨
を逸脱しない範囲で、種々変形して実施することができ
る。
Note that the present invention is not limited to the embodiments described above. For example, the growing crystal is InGaAIP or InGa
The present invention is not limited to AlAs, but can be applied to the crystal growth of InGaAlSb and other group ■-v compound semiconductors containing aluminum as a constituent element. Further, conditions such as flow rates and mixing ratios of various raw material gases may be adjusted as appropriate depending on the crystal composition to be grown. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果コ 以上詳述したように本発明によれば、従来技術では困難
であった高純度、高品質のInGaAIP、InGaA
lAs結晶を再現性良く得ることができ、今後の高性能
電子素子の作成に極めて有効である。
[Effects of the Invention] As detailed above, according to the present invention, high purity and high quality InGaAIP, InGaA
It is possible to obtain lAs crystals with good reproducibility and is extremely effective for the production of future high-performance electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に使用したMOCVD法
による結晶成長装置を示す概略構成図である。
FIG. 1 is a schematic diagram showing a crystal growth apparatus by MOCVD method used in an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板を収容した反応管内に所定の原料ガス
を導入し、有機金属気相成長法により該半導体基板上に
In_1_−_X_YGa_XAl_YP(0≦x<1
、0<yく1)を成長する化合物半導体層の製造方法に
おいて、前記原料ガス中のアルミニウムの原料として、
AlH(CH_3)_2を用いたことを特徴とする化合
物半導体層の製造方法。
(1) A predetermined raw material gas is introduced into a reaction tube containing a semiconductor substrate, and In_1_-_X_YGa_XAl_YP (0≦x<1
, 0<y 1) In the method for manufacturing a compound semiconductor layer in which aluminum is grown in the raw material gas,
A method for manufacturing a compound semiconductor layer, characterized in that AlH(CH_3)_2 is used.
(2)半導体基板を収容した反応管内に所定の原料ガス
を導入し、有機金属気相成長法により該半導体基板上に
In_1_−_X_YGa_XAl_YAs(0≦x<
1、0<y<1)を成長する化合物半導体層の製造方法
において、前記原料ガス中のアルミニウムの原料として
、AlH(CH_3)_2を用いたことを特徴とする化
合物半導体層の製造方法。
(2) A predetermined raw material gas is introduced into a reaction tube containing a semiconductor substrate, and In_1_-_X_YGa_XAl_YAs (0≦x<
1. A method for manufacturing a compound semiconductor layer in which AlH(CH_3)_2 is used as a raw material for aluminum in the raw material gas in the method for manufacturing a compound semiconductor layer in which 0<y<1) is grown.
JP17231188A 1988-07-11 1988-07-11 Manufacture of compound semiconductor device Pending JPH0222814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17231188A JPH0222814A (en) 1988-07-11 1988-07-11 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17231188A JPH0222814A (en) 1988-07-11 1988-07-11 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH0222814A true JPH0222814A (en) 1990-01-25

Family

ID=15939564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17231188A Pending JPH0222814A (en) 1988-07-11 1988-07-11 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0222814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026798A (en) * 2007-07-17 2009-02-05 Hitachi Cable Ltd Epitaxial wafer for light-emitting element, its manufacturing method, and light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026798A (en) * 2007-07-17 2009-02-05 Hitachi Cable Ltd Epitaxial wafer for light-emitting element, its manufacturing method, and light-emitting element

Similar Documents

Publication Publication Date Title
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JPH0222814A (en) Manufacture of compound semiconductor device
JPH0654764B2 (en) Method for forming semi-insulating gallium arsenide
JPH01220432A (en) Manufacture of compound semiconductor layer
JPH03215390A (en) Method for epitaxial growth and doping of compound crystal
JP2528912B2 (en) Semiconductor growth equipment
JP2736655B2 (en) Compound semiconductor crystal growth method
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
Smith Epitaxial growth of GaAs by low-pressure MOCVD
JPS6115150B2 (en)
JPH0323294A (en) Method for growing compound semiconductor crystal
JP3406504B2 (en) Semiconductor manufacturing method
JPH02122521A (en) Manufacture of compound semiconductor crystal layer
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0457640B2 (en)
JPH01173708A (en) Semiconductor device
JPH04139096A (en) Vapor growth method for organic metal
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JP2982333B2 (en) Vapor growth method
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPS647487B2 (en)
JPS5922320A (en) Vapor growth of high-purity 3-5 group semiconductor
JPH03112127A (en) Method of forming silicon carbide
JPS6187318A (en) Doping method in gallium-aluminum-arsenic layer