JPH03112127A - Method of forming silicon carbide - Google Patents

Method of forming silicon carbide

Info

Publication number
JPH03112127A
JPH03112127A JP25109089A JP25109089A JPH03112127A JP H03112127 A JPH03112127 A JP H03112127A JP 25109089 A JP25109089 A JP 25109089A JP 25109089 A JP25109089 A JP 25109089A JP H03112127 A JPH03112127 A JP H03112127A
Authority
JP
Japan
Prior art keywords
gas
degacl
growth
silicon carbide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25109089A
Other languages
Japanese (ja)
Inventor
Chiaki Sasaoka
千秋 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25109089A priority Critical patent/JPH03112127A/en
Publication of JPH03112127A publication Critical patent/JPH03112127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain SiC wherein the purity is high even at a growth temperature lower by 200 deg.C or more than usual growth temperature by using organic metallic gas, which has the coupling between a group III or V atom and a halogen atom within a molecule, as carbonic material in the chemical vapor growth method for silicon carbide. CONSTITUTION:As the metallic gas which has a small amount of couplings between group III or V atoms and halogen atoms within molecules, for example, diethyl potassium chloride DEGaCl is used. When growing it, DEGaCl is used. When growing it, DEGaCl 1 is kept at 60 deg.C in a cryostat 2, and is supplied, shield being bubbled, to a reaction pipe 4 using Ar gas 3. The middle pipe 4 is set to 80 deg.C by a heater to prevent the precipitation of DEGaCl, and the flow rate of gas 3 and the flow rate of SiH4 gas 6 are controlled by a flow controller 7. An Si substrate 8 is set onto a carbonic susceptor 9, and the temperature is raised to a growth temperature by high frequency heating, and the pressure within the reaction pipe 4 is kept at 2Torr by pressure controllers 10 and 11 and a pump 12. Hereupon, the substrate 8 is put to 830 deg.C in advance so as to remote a natural oxide film in advance, and the growth is done at 800 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化シリコンの成長方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for growing silicon carbide.

[従来の技術] 炭化シリコン(S i C)はバンドギャップが大きい
ため、青色の発光素子や高耐熱のトランジスタ材料とし
て注目されている。SiCの結晶構造にはいくつかある
が、このうちβ−5iCはバンドギャップが2,3eV
と大きく、他の結晶構造のものと比較し、シリコンとの
ミスマツチも少ないことからシリコンへテロバイポーラ
トランジスタのエミッタ材料として期待されている。
[Prior Art] Silicon carbide (S i C) has a large band gap and is therefore attracting attention as a material for blue light emitting elements and highly heat-resistant transistors. There are several crystal structures of SiC, among which β-5iC has a band gap of 2.3 eV.
It is expected to be used as an emitter material for silicon hetero bipolar transistors because it has a large size and has fewer mismatches with silicon than other crystal structures.

SiCの結晶成長は、液相成長法、気相成長法(CVD
)などにより行われてきた。このうち、CVDは、大面
積基板への多数枚成長が実現できることから量産化を考
える上で有利である。従来、SiCのCVDとしては、
シリコン原料としてシランやジグロルシラン、炭素原料
としてアセチレン(C,H,)、ブタン(C,H,)を
用いた成長が多数報告されている(大王はか、第36回
応用物理学関係連合講演会予稿集。
Crystal growth of SiC can be done by liquid phase growth method or vapor phase growth method (CVD).
) etc. have been carried out. Among these, CVD is advantageous in terms of mass production because it can grow a large number of substrates on large area substrates. Conventionally, CVD of SiC is
There have been many reports of growth using silane and diglorsilane as silicon raw materials, and acetylene (C, H,) and butane (C, H,) as carbon raw materials (Haka Daio, 36th Applied Physics Association Conference) Proceedings.

1a−ZL−8,249ページ)。1a-ZL-8, page 249).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ヘテロバイポーラトランジスタを作製する際、エミツタ
層は最後に形成される。したがって、シリコン基板にコ
レクタ・ベース間のpn接合が形成された後でSiCの
成長を行うことになる。C,H,。
When fabricating a heterobipolar transistor, the emitter layer is formed last. Therefore, SiC is grown after the collector-base pn junction is formed on the silicon substrate. C.H.

C,H,を炭素原料としたCVDでは、ガスの分解温度
が高いため1000℃以上の成長温度が必要である。
In CVD using C, H, as carbon raw materials, a growth temperature of 1000° C. or higher is required because the decomposition temperature of the gas is high.

このような高温においてはシリコン中の不純物拡散がか
なり大きくなり、基板中に形成された不純物プロファイ
ルがだれてしまうという欠点があった。これは特にベー
ス走行時間を減らすため薄いベースを形成する場合に大
きな問題である。
At such high temperatures, the diffusion of impurities in silicon becomes considerably large, resulting in a disadvantage that the impurity profile formed in the substrate becomes sloppy. This is a major problem especially when forming thin bases to reduce base running time.

本発明の目的は前記課題を解決した炭化シリコンの形成
方法を提供することにある。
An object of the present invention is to provide a method for forming silicon carbide that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る炭化シリコンの
形成方法は、炭化シリコンの化学気相成長法において、
炭素原料としてm族またはV広原子とハロゲン原子の結
合を分子内に少なくとも持つ有機金属ガスを用いるもの
である。
In order to achieve the above object, the method for forming silicon carbide according to the present invention includes the steps of chemical vapor deposition of silicon carbide.
As the carbon raw material, an organometallic gas having at least a bond of an M group or V broad atom and a halogen atom in the molecule is used.

〔作用] 以下、m族またはV広原子とハロゲン原子の結合を分子
内に少なくとも持つ有機金属ガスとしてジエチルガリウ
ムクロライド((C,H,)、GaCR: DEGaC
Q)を例に取って説明する。
[Function] Hereinafter, diethylgallium chloride ((C,H,), GaCR: DEGaC is used as an organometallic gas having at least a bond between an m group or V broad atom and a halogen atom in the molecule.
Let me explain using Q) as an example.

DEGaCQは熱分解により380℃以上でGaCQと
エチルラジカルに分解することが報告されている(C。
It has been reported that DEGaCQ decomposes into GaCQ and ethyl radicals at temperatures above 380°C due to thermal decomposition (C).

5asaokaほか、ジャパニーズ・ジャーナル・オブ
・アプライド6フイジツクス(Japanese Jo
urnal ofApplied Physics)、
第7巻、 1988年、 L490ページ)。
5asaoka et al., Japanese Journal of Applied Physics 6
urnal of Applied Physics),
Volume 7, 1988, page L490).

分解により生じたエチルラジカルはシリコン基板と反応
しβ−8iCを形成する。一方、GaCQはある程度高
い基板温度ではシリコン表面から脱離する。
The ethyl radicals generated by the decomposition react with the silicon substrate to form β-8iC. On the other hand, GaCQ desorbs from the silicon surface at a certain high substrate temperature.

ここで、実際にSiCが形成されること及びSiC成長
層がGaで汚染されないことを確認するため、DEGa
CQのSi表面への吸着状態をX線光電子分光法(XP
S)、反射高エネルギー電子線回折(RHEED)によ
り観察した。260℃のシリコン基板にDEGaC4を
吸着させた場合、Si、、ピークエネルギーはバルクの
シリコントと同じ99eVであり、ケミカルシフトはみ
られなかった。Ga、、ピークが観察されたことから、
基板表面にGaが存在することがわかった。一方520
℃で吸着させた場合はSt、、ピークは101eVにケ
ミカルシフトし、Gaのシグナルは全くみられなかった
。反射高エネルギー電子線回折(RHEED)観察を行
ったところβ−5iCに対応する回折スポットが得られ
た。これよりDEGaCRを炭素原料とすることにより
、520℃という低温でGaによる汚染のないSiCが
形成されることが明らかとなった。
Here, in order to confirm that SiC is actually formed and that the SiC growth layer is not contaminated with Ga, DEGa
The adsorption state of CQ on the Si surface was determined by X-ray photoelectron spectroscopy (XP
S), observed by reflection high energy electron diffraction (RHEED). When DEGaC4 was adsorbed onto a silicon substrate at 260°C, the Si peak energy was 99 eV, the same as that of bulk silicon, and no chemical shift was observed. Since a Ga peak was observed,
It was found that Ga was present on the substrate surface. On the other hand 520
When adsorbed at °C, the St peak was chemically shifted to 101 eV, and no Ga signal was observed. When reflection high energy electron diffraction (RHEED) observation was performed, a diffraction spot corresponding to β-5iC was obtained. From this, it has become clear that by using DEGaCR as a carbon raw material, SiC without Ga contamination can be formed at a low temperature of 520°C.

〔実施例〕〔Example〕

以下本発明の一実施例について、図面を用いて説明する
An embodiment of the present invention will be described below with reference to the drawings.

本実施例では、m族またはV広原子とハロゲン原子の結
合を分子内に少なくとも持つ有機金属ガスとしてジエチ
ルガリウムクロライドDEGa(j2をとりあげる。
In this example, diethyl gallium chloride DEGa (j2) is used as an organometallic gas having at least a bond between a group m or V atom and a halogen atom in its molecule.

第1図は本発明に基づ<SiC気相成長装置の概略図で
ある。図において、DEGaCQ (ジエチルガリウム
クロライド)■は恒温槽2により60℃に保った。DE
GaCQはアルゴンガス3によりバブルされ、反応管4
に供給される。途中配管はDEGaC:12の析出を防
ぐためヒーター5により80℃昇温した。アルゴンガス
3の流量及びSiH4ガス6の流量は流量制御器7によ
り制御した。基板8はカーボンサセプタ9上にセットさ
れ、高周波加熱により成長温度まで昇温される。反応管
4内の圧力は圧力制御器10.11及びポンプ12によ
り2Torrに保った。DEGaCQのキャリアガス流
量を400secm、 S i H4ガス流量を5 、
10105e、全アルゴンを2sQmとして成長を行っ
た。成長開始前にシリコン基板を830℃に昇温し自然
酸化膜を除去した後、基板温度800℃において成長を
行った。
FIG. 1 is a schematic diagram of a SiC vapor phase growth apparatus based on the present invention. In the figure, DEGaCQ (diethyl gallium chloride) ■ was kept at 60° C. in a constant temperature bath 2. D.E.
GaCQ is bubbled with argon gas 3, and then passed through the reaction tube 4.
is supplied to The temperature of the intermediate piping was raised to 80° C. by a heater 5 to prevent precipitation of DEGaC:12. The flow rate of argon gas 3 and the flow rate of SiH4 gas 6 were controlled by a flow rate controller 7. The substrate 8 is set on a carbon susceptor 9 and heated to a growth temperature by high frequency heating. The pressure inside the reaction tube 4 was maintained at 2 Torr by a pressure controller 10,11 and a pump 12. The DEGaCQ carrier gas flow rate was 400 sec, the S i H4 gas flow rate was 5,
10105e, growth was performed with total argon at 2sQm. Before starting growth, the silicon substrate was heated to 830° C. to remove the natural oxide film, and then growth was performed at a substrate temperature of 800° C.

上記成長条件の下でSiC成長膜が得られた。このとき
成長速度は150人/m f nであった。成長膜のX
線回折測定を行ったところ、成長層からβ−5iCに対
応するピークが得られた。さらに50MS測定の結果、
成長膜はGa濃度lO″’cm−”以下の高純度膜であ
ることがわかり、本発明の効果が確認できた。
A SiC grown film was obtained under the above growth conditions. At this time, the growth rate was 150 people/m f n. Growth film X
When line diffraction measurement was performed, a peak corresponding to β-5iC was obtained from the grown layer. Furthermore, as a result of 50MS measurement,
It was found that the grown film was a highly pure film with a Ga concentration of 1O''cm-'' or less, confirming the effect of the present invention.

本実施例では、m族またはV広原子とハロゲン原子の結
合を分子内に少なくとも持つ有機金属ガスとしてジエチ
ルガリウムクロライドを用いたが、本発明はこれに限定
されず、■広原子がアルミニウム、インジウムのいずれ
かであり、V広原子がヒ素、リンのいずれかである有機
金属ガスを用いても同様の効果がある。また分子内のハ
ロゲン原子が、フッ素、塩素、臭素、ヨウ素のいずれか
である有機金属ガスを用いても同様の効果が得られる。
In this example, diethyl gallium chloride was used as an organometallic gas having at least a bond between an m-group or V broad atom and a halogen atom in the molecule, but the present invention is not limited thereto. A similar effect can be obtained by using an organometallic gas in which the V-broad atom is either arsenic or phosphorus. Similar effects can also be obtained by using an organometallic gas in which the halogen atom in the molecule is one of fluorine, chlorine, bromine, and iodine.

原料有機金属分子中の有機基はエチル基に限定されず、
メチル基、ブチル基などにおいても同様の効果が得られ
ることは明らかである。
The organic group in the raw material organometallic molecule is not limited to ethyl group,
It is clear that similar effects can be obtained with methyl groups, butyl groups, etc.

r発明の効果] 本発明により、従来の行われてきた成長温度よりも20
0℃以上低い成長温度において純度の高いSiC成長を
行うことが可能となった。
rEffects of the invention] The present invention allows the growth temperature to be lowered by 20°C than the conventional growth temperature.
It has become possible to grow SiC with high purity at a growth temperature lower than 0°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるSiC成長装置を示す概略図であ
る。 l・・・ジエチルガリウムクロライド
FIG. 1 is a schematic diagram showing a SiC growth apparatus according to the present invention. l...diethyl gallium chloride

Claims (1)

【特許請求の範囲】[Claims] (1)炭化シリコンの化学気相成長法において、炭素原
料としてIII族またはV族原子とハロゲン原子の結合を
分子内に少なくとも持つ有機金属ガスを用いることを特
徴とする炭化シリコンの形成方法。
(1) A method for forming silicon carbide, which is characterized in that, in the chemical vapor deposition method of silicon carbide, an organometallic gas having at least a bond of a group III or V group atom and a halogen atom in its molecule is used as a carbon raw material.
JP25109089A 1989-09-27 1989-09-27 Method of forming silicon carbide Pending JPH03112127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25109089A JPH03112127A (en) 1989-09-27 1989-09-27 Method of forming silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25109089A JPH03112127A (en) 1989-09-27 1989-09-27 Method of forming silicon carbide

Publications (1)

Publication Number Publication Date
JPH03112127A true JPH03112127A (en) 1991-05-13

Family

ID=17217492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25109089A Pending JPH03112127A (en) 1989-09-27 1989-09-27 Method of forming silicon carbide

Country Status (1)

Country Link
JP (1) JPH03112127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171136A1 (en) * 2020-02-28 2021-09-02 株式会社半導体エネルギー研究所 Metal oxide, method for forming metal oxide film, and device for forming metal oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171136A1 (en) * 2020-02-28 2021-09-02 株式会社半導体エネルギー研究所 Metal oxide, method for forming metal oxide film, and device for forming metal oxide film

Similar Documents

Publication Publication Date Title
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH0547665A (en) Vapor growth method
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH03112127A (en) Method of forming silicon carbide
JPS6115150B2 (en)
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPS638296A (en) Formation of 3c-sic crystal
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPS60169563A (en) Manufacture and device for telluride metal
JPH01220432A (en) Manufacture of compound semiconductor layer
JPH04162418A (en) Chemical vapor growth method
JP2773369B2 (en) Method for manufacturing article having silicon carbide film
JP2650635B2 (en) Method for producing II-VI compound semiconductor thin film
JP2704224B2 (en) Semiconductor device and manufacturing method thereof
JP3112796B2 (en) Chemical vapor deposition method
JPS6218708A (en) Growing method for silicon carbide layer
JPH04124815A (en) Manufacture of silicon carbide semiconductor film
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements
JPH0547518B2 (en)
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPH0222814A (en) Manufacture of compound semiconductor device
JPS6325914A (en) Manufacture of semiconductor device