JPS6390833A - Manufacture of compound thin film of group ii and vi elements - Google Patents
Manufacture of compound thin film of group ii and vi elementsInfo
- Publication number
- JPS6390833A JPS6390833A JP23653386A JP23653386A JPS6390833A JP S6390833 A JPS6390833 A JP S6390833A JP 23653386 A JP23653386 A JP 23653386A JP 23653386 A JP23653386 A JP 23653386A JP S6390833 A JPS6390833 A JP S6390833A
- Authority
- JP
- Japan
- Prior art keywords
- group
- source
- thin film
- compound
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 32
- 239000010409 thin film Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims abstract description 31
- 239000010408 film Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910021476 group 6 element Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 abstract description 36
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052717 sulfur Inorganic materials 0.000 abstract description 25
- 239000011593 sulfur Substances 0.000 abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical group CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 abstract description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 abstract 1
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 229920001021 polysulfide Polymers 0.000 abstract 1
- 239000005077 polysulfide Substances 0.000 abstract 1
- 150000008117 polysulfides Polymers 0.000 abstract 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- -1 alkyl compound Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はII族およびVI族からなる化合物薄膜の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a thin film of a compound consisting of Group II and Group VI.
ZnS、Zn5e等のff−VI族化合物はエレクトロ
ルミネセンス材料として古くから注目されている。近年
M B E 、 M OCV D 、 A L E法等
の薄膜成長技術の進歩によりI[−Vf族化合物薄膜の
品質改善が進んでいる。これにともないデバイスへの応
用が活発に検討されるようになった。新しい成膜技術の
中でMOCVD法及びガスソースALE法は大面積化が
比較的容易であることから、特に注目されている。M
OCV D法は、有機金属液体くあるいは固体)を気化
し、これを基板成長面上で熱分解することにより成膜す
る方法である。FF-VI group compounds such as ZnS and Zn5e have long been attracting attention as electroluminescent materials. In recent years, the quality of I[-Vf group compound thin films has been improved due to advances in thin film growth techniques such as MBE, MOCVD, and ALE methods. As a result, applications to devices have been actively investigated. Among new film forming techniques, MOCVD and gas source ALE are attracting particular attention because they are relatively easy to increase in area. M
The OCV D method is a method of forming a film by vaporizing an organic metal liquid or solid and thermally decomposing it on the growth surface of a substrate.
一般に、このMOCVD法は低温成長法であるため、管
壁等よりの不純物混入が少なく、かつ空孔等の真性欠陥
が生じにくいという特徴を有している。このために高品
質な結晶性を有するII族およびVI族からなる化合物
薄膜の形成手段として注目されている成長技術である。Generally, since this MOCVD method is a low-temperature growth method, it has the characteristics that there is little contamination of impurities from the tube wall, etc., and that intrinsic defects such as pores are less likely to occur. For this reason, this growth technique is attracting attention as a means of forming thin films of Group II and Group VI compounds having high quality crystallinity.
MOCVD法によるII族およびVI族からなる化合物
薄膜形成には、−般に■族アルキル化合物と■放水素化
物が使用される。For forming a thin film of a group II and VI compound by the MOCVD method, a group (1) alkyl compound and (2) a hydrogen hydride are generally used.
一方、ALE法の原理は、得ようとする化合物構成元素
あるいはその元素を含む化合物を交互に供給し、単原子
層づつ堆積させ化合物薄膜を形成するものである。AL
E法は化合物構成元素の単原子層吸着を積極的に利用す
る成膜方法である。On the other hand, the principle of the ALE method is to alternately supply constituent elements of the compound to be obtained or compounds containing the elements, and deposit monoatomic layers one by one to form a compound thin film. AL
The E method is a film forming method that actively utilizes monoatomic layer adsorption of compound constituent elements.
単原子吸着層を形成するためには、基板温度を比較的高
く設定し、下地層との化学結合に寄与しない2層目以上
の原子(あるいは分子)を再蒸発させることにより得ら
れると考えられている。In order to form a monoatomic adsorption layer, it is thought that it can be obtained by setting the substrate temperature to a relatively high temperature and reevaporating atoms (or molecules) in the second and higher layers that do not contribute to chemical bonding with the underlying layer. ing.
ALE法では前述したように、単原子層のみ吸着堆積す
る製造条件が選択される。このような条件下で化合物薄
膜を形成するALE法は、導入物質量に依荏せず、広い
面積にわたり原子層オーダーで化合物薄膜を形成させる
ことができる。膜厚は交互に導入する物質のサイクル数
によって正確に制御できる。また、A L E法を用い
ると、非晶質基板上でもダレインサイズの大きな多結晶
薄膜が得られ、薄膜El−素子への応用が検討されてい
る。In the ALE method, as described above, manufacturing conditions are selected in which only a monoatomic layer is adsorbed and deposited. The ALE method for forming a compound thin film under such conditions is not dependent on the amount of introduced substance and can form a compound thin film on the order of atomic layers over a wide area. The film thickness can be precisely controlled by the number of cycles of alternating introduction of substances. Further, when the ALE method is used, a polycrystalline thin film with a large dalein size can be obtained even on an amorphous substrate, and its application to a thin film El-element is being considered.
ガスソースA L、 E法は、ZnCffz 、H2S
等をガス状にして形成する方法である。この方法は制御
性および大面積化が容易であると考えられている。Gas source A L, E method is ZnCffz, H2S
This is a method of forming a gaseous material. This method is considered to be easy to control and to increase the area.
■−■族化合物薄膜のうちでZnS及びその混晶である
Z n S x S e )−xは、青色発光素子ある
いは薄膜エレクトロルミネセンス素子用材料として重要
である。従来■族ソースとしてジメチル亜鉛等のアルキ
ル化合物が使用されている。このアルキル化合物は10
0〜200℃の低温で分解する。一方、■族ソースのう
ちH2S、ジエチル・イオウ、ジメチルイオウ、チオフ
ェン等がイオウ供給源として使用されている。しかし、
上述のイオウ供給源は■族ソースに比べ熱的に安定であ
る。Among the thin films of group (1)-(2) compounds, ZnS and its mixed crystal ZnS x S e )-x are important as materials for blue light emitting devices or thin film electroluminescent devices. Conventionally, an alkyl compound such as dimethylzinc has been used as a group III source. This alkyl compound has 10
Decomposes at low temperatures between 0 and 200°C. On the other hand, among the group (III) sources, H2S, diethyl sulfur, dimethyl sulfur, thiophene, etc. are used as sulfur sources. but,
The above-mentioned sulfur sources are thermally stable compared to Group III sources.
このため、膜中への、イオウとり込み率が小さく、■族
ソース分圧に比べ、イオウ供給源の分圧あるいは導入量
を増加させなければならなかった。MOCVD法では、
イオウ供給源の供給量で成膜速度が決定され、200℃
程度の成長温度では成膜速度が著しく低下した。一方、
ALE法ではイオウ供給源、の供給量あるいは供給時間
を■族ソース導入時間に比べ長く設定しなければならな
かった。For this reason, the rate of sulfur incorporation into the film is low, and the partial pressure of the sulfur source or the amount introduced must be increased compared to the partial pressure of the group II source. In the MOCVD method,
The film formation rate is determined by the supply amount of the sulfur source, and the temperature is 200°C.
At a growth temperature of 100%, the film formation rate decreased significantly. on the other hand,
In the ALE method, the supply amount or supply time of the sulfur source had to be set longer than the time for introducing the group III source.
このため、■族ソースと■族ソースを交互に導入するガ
スソースALE法ではプロセス時間が非常に長くなって
いた。従って、イオウの膜中へとり込み率を上昇させ、
プロセス時間を短くすることが強く望まれている。イオ
ウ供給源の供給量を多くすることは次の点で不利である
。■MOCVD法では■族ソースとのガス混合の均一性
がみだれる。■ガスソースALEではガス切り変え時間
が長くなることにより膜中に不純物が導入され、膜の品
質が低下する。したがって小量のイオウ供給源によって
成長表面上に充分イオウ濃度を高くする必要があるが、
従来技術では困難であった。For this reason, the process time is extremely long in the gas source ALE method in which a group Ⅰ source and a group Ⅱ source are introduced alternately. Therefore, increasing the rate of sulfur incorporation into the film,
It is highly desirable to shorten the process time. Increasing the supply amount of the sulfur source is disadvantageous in the following respects. (2) In the MOCVD method, the uniformity of gas mixing with the (2) group source deteriorates. (2) In gas source ALE, impurities are introduced into the film due to the long gas switching time, which deteriorates the quality of the film. Therefore, it is necessary to obtain a sufficiently high sulfur concentration on the growth surface with a small amount of sulfur source.
This was difficult with conventional technology.
本発明の目的は、従来より低温で良質な薄膜が高い成長
速度で得られ、ガスソースA L E法では成膜時間を
従来より大幅に低下させることが可能で、更に好ましく
ない不純物混入を低下させることが可能で、薄膜品質の
向上が得られるII族およびVI族からなる化合物薄膜
の製造方法を提供することにある。The purpose of the present invention is to be able to obtain a high-quality thin film at a higher growth rate at a lower temperature than conventional methods, to be able to significantly reduce the film formation time in the gas source ALE method compared to conventional methods, and to further reduce undesirable impurity contamination. It is an object of the present invention to provide a method for producing a thin film of a compound composed of Group II and Group VI compounds, which can improve the quality of the thin film.
本発明のII族およびVI族からなる化合物薄膜の製造
方法は少なくとも1つの■族元素を含む1種以上の化合
物気体と、少なくとも1つの■族元素を含む1種以上の
化合物気体とを同時あるいは交互に基板上に導入するこ
とにより形成するII族およびVI族からなる化合物薄
膜の製造方法において、前記■族元素を含む化合物気体
としてH2S2 、H2S3 、H2S4のうちいずれ
か一種又は二種以上の気体を用いることを特徴として構
成される。The method for producing a thin film of a compound consisting of Group II and Group VI elements according to the present invention involves simultaneous or In the method for producing a thin film of a compound consisting of Group II and Group VI elements, which is formed by alternately introducing the Group II and VI elements onto a substrate, one or more gases of H2S2, H2S3, and H2S4 are used as the compound gas containing the Group (I) element. It is characterized by the use of .
本発明は■族ソースの1つであるイオウ供給源としてH
2S2.H2S3.トl2S4の化合物液体を気化して
、II族およびVI族からなる化合物薄膜を形成するこ
とを特徴としている。ポリ硫化水素と呼ばれるH2 S
2 、H2S3 、Hz S4は加熱、光照射等により
容易にイオウを放出する。従来イオウ供給源を加熱等に
より分解した後成長基板上に導入したり、又イオウ濃度
を高くするためイオウ洪給源の供給量を多くしていた。The present invention uses H as a sulfur source, which is one of the group III sources.
2S2. H2S3. The method is characterized in that a compound liquid of 12S4 is vaporized to form a thin film of a compound consisting of Group II and Group VI. H2S called polyhydrogen sulfide
2, H2S3, and Hz S4 easily release sulfur when heated, irradiated with light, etc. Conventionally, the sulfur source was decomposed by heating or the like before being introduced onto the growth substrate, or the amount of the sulfur source was increased in order to increase the sulfur concentration.
ポリ硫化水素を用いることにより、小量でも充分に基板
上のイオウ濃度を高くすることが可能となった。By using polyhydrogen sulfide, it has become possible to sufficiently increase the sulfur concentration on the substrate even with a small amount.
本発明によるII族およびVI族からなる化合物薄膜の
製造方法では、H2S2.H2S3.H2S4のポリ硫
化水素と呼ばれる液体を気化し、これをイオウ供給ガス
源として使用している。In the method for producing a thin film of a compound consisting of Group II and Group VI according to the present invention, H2S2. H2S3. A liquid called polyhydrogen sulfide (H2S4) is vaporized and used as a sulfur supply gas source.
この方法により従来より大幅に基板表面上のイオウ濃度
を高くすることが可能となった。その結果M。This method has made it possible to significantly increase the sulfur concentration on the substrate surface compared to the conventional method. As a result, M.
CVD法では成膜温度を下げても良質な薄膜が、高い成
長速度で形成可能となった。また、イオウソースの高温
熱分解過程も存在しないため、熱分解時に伴う不純物混
入も少なくなり、薄膜の高品質化に寄与している。With the CVD method, it has become possible to form a high-quality thin film at a high growth rate even if the film-forming temperature is lowered. Furthermore, since there is no high-temperature thermal decomposition process of sulfur sources, the amount of impurities mixed in during thermal decomposition is reduced, contributing to higher quality thin films.
一方、ガスソースALE法ではイオウソース導入時間が
従来の半分で充分イオウの吸着層が形成されるためプロ
セス時間の大幅な短縮が可能となった。また同時に膜中
の不純物濃度も減少することが確認できた。On the other hand, in the gas source ALE method, a sufficient sulfur adsorption layer is formed in half the sulfur source introduction time compared to the conventional method, making it possible to significantly shorten the process time. At the same time, it was confirmed that the impurity concentration in the film also decreased.
次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例を説明するための製造装置
の概略図である。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a manufacturing apparatus for explaining one embodiment of the present invention.
第1図に示すように反応管1は石英製で10Torr台
まで減圧可能であり、10は排気手段である。ヒーター
付の基板保持台2は直径5(=1程度で550℃まで加
熱可能である。ガス導入部は3木のガス導入管3,4.
5より成っている。本実施例では、■族ソースとし、て
ジエチル亜鉛13.VI族ソースとしてH2S215を
それぞれ100%の状態で使用しそれぞれガス導入管3
及び5より導入するようにした。これらは常温で液体で
あるため、減圧することにより気化させている。上記装
置を用い、ガスソースA L E法でZnS膜形成につ
いて以下述べる。As shown in FIG. 1, a reaction tube 1 is made of quartz and can reduce the pressure to 10 Torr, and 10 is an exhaust means. The substrate holding stand 2 with a heater has a diameter of about 5 (=1) and can be heated up to 550°C.The gas introduction section has three gas introduction pipes 3, 4.
It consists of 5. In this example, diethyl zinc 13. H2S215 was used at 100% as a group VI source, and each gas introduction tube 3
and 5. Since these are liquids at room temperature, they are vaporized by reducing the pressure. The formation of a ZnS film by the gas source ALE method using the above apparatus will be described below.
G aA s 、 S i等結晶性基板あるいはガラス
等非晶質基板をヒータ付基板保持台2上にセラ1−し、
500℃に設定する。このとき圧力は10Torr台で
ある。水素ガスあるいはアルゴンガス]4をガス導入管
4より導入し、反応管内圧を0゜5 Torrとする。A crystalline substrate such as GaAs or Si or an amorphous substrate such as glass is placed on a substrate holding table 2 with a heater,
Set to 500°C. At this time, the pressure is on the order of 10 Torr. Hydrogen gas or argon gas] 4 is introduced from the gas introduction pipe 4, and the internal pressure of the reaction tube is set to 0°5 Torr.
電極6.7及びこれに接続された高周波電源8によりプ
ラズマを生じさせる。これにより基板表面のクリーニン
グを数分間おこなう。その後、水素ガスI SCCM、
H2S z 10 !IccM反応管内圧1.0X1
0 Torrの状態に、基板温度2(10℃になるま
で待つ。基板温度が定常状態に達した後、ト1□S2ガ
ス導入をストップさせ、2.5秒間水素ガスだけを流す
。その後ジエチル亜鉛を10 sccM、3秒間流す。Plasma is generated by the electrode 6.7 and the high frequency power source 8 connected thereto. This cleans the substrate surface for several minutes. After that, hydrogen gas I SCCM,
H2S z 10! IccM reaction tube internal pressure 1.0X1
0 Torr, wait until the substrate temperature reaches 2 (10°C). After the substrate temperature reaches a steady state, stop introducing S2 gas and flow only hydrogen gas for 2.5 seconds. Then, diethyl zinc Flow for 3 seconds at 10 sccM.
ジエチル亜鉛導入をストップさせ、水素ガスだけを2.
5秒間流す。2. Stop introducing diethylzinc and supply only hydrogen gas.
Run for 5 seconds.
その後このサイクルをくり返すことにより、広い面積に
わたり均一なZnS薄膜が得られる。成膜時間は500
サイクルで、1時間半弱であり、従来の半分以下の時間
である。By repeating this cycle, a uniform ZnS thin film can be obtained over a wide area. Film forming time is 500
The cycle time is just under one and a half hours, which is less than half of the conventional time.
■族ソースと■族ソースを同時に流ずMOCVD法では
膜厚分布が生じたものの、基板温度250℃で良質なZ
nS膜が作製できた。Although a film thickness distribution occurred in the MOCVD method without flowing the group III source and the group III source at the same time, good quality Z was obtained at a substrate temperature of 250°C.
An nS film was completed.
なお、本実施例ではl−1282を使用したが他のH2
S3 、H2S4でも同様な効果が認められた。Note that although l-1282 was used in this example, other H2
Similar effects were observed with S3 and H2S4.
また、ZnSに限らず、Z n S x S e l−
X等イオウを含むII−Vl族化合物の成膜に本発明に
よる製造、方法は有効であることが認められた。Moreover, not only ZnS but also ZnS
It has been confirmed that the production and method of the present invention are effective for forming films of II-Vl group compounds containing sulfur such as X.
(発明の効果〕
以上説明したように、本発明はH2S2 、 H2S3
.H2S、のポリ硫化水素を気化し、これをイオウ供給
ガス源として使用しているので、従来より低温で良質な
薄膜が高い成長速度で得られる。(Effect of the invention) As explained above, the present invention provides H2S2, H2S3
.. Since polyhydrogen sulfide (H2S) is vaporized and used as a sulfur supply gas source, a high-quality thin film can be obtained at a higher growth rate at a lower temperature than conventional methods.
ガスソースALE法では成膜時間を従来より大幅に低下
させることが可能となった。更に好ましくない不純物混
入を低下させることが可能となり、薄膜品質の向上が図
られた。With the gas source ALE method, it has become possible to significantly reduce the film formation time compared to the conventional method. Furthermore, it became possible to reduce the amount of undesirable impurities mixed in, and the quality of the thin film was improved.
第1図は本発明の一実施例に使用する″3A造装置の概
略図である。FIG. 1 is a schematic diagram of a ``3A manufacturing apparatus'' used in an embodiment of the present invention.
Claims (1)
物気体と、少なくとも1つのVI族元素を含む1種以上の
化合物気体とを同時あるいは交互に基板上に導入するこ
とにより形成するII族およびVI族からなる化合物薄膜の
製造方法において、前記VI族元素を含む化合物気体とし
てH_2S_2、H_2S_3、H_2S_4のうちい
ずれか一種又は二種以上の気体を用いることを特徴とす
るII族およびVI族からなる化合物薄膜の製造方法。(1) A group II group formed by simultaneously or alternately introducing one or more compound gases containing at least one group II element and one or more compound gases containing at least one group VI element onto a substrate. and a method for producing a thin film of a compound consisting of a Group VI element, characterized in that one or more gases among H_2S_2, H_2S_3, and H_2S_4 are used as the compound gas containing the Group VI element. A method for producing a thin compound film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23653386A JPS6390833A (en) | 1986-10-03 | 1986-10-03 | Manufacture of compound thin film of group ii and vi elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23653386A JPS6390833A (en) | 1986-10-03 | 1986-10-03 | Manufacture of compound thin film of group ii and vi elements |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6390833A true JPS6390833A (en) | 1988-04-21 |
Family
ID=17002085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23653386A Pending JPS6390833A (en) | 1986-10-03 | 1986-10-03 | Manufacture of compound thin film of group ii and vi elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6390833A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
-
1986
- 1986-10-03 JP JP23653386A patent/JPS6390833A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US9012334B2 (en) | 2001-02-02 | 2015-04-21 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07147251A (en) | Growth of crystalline silicon carbide film | |
JPS6364993A (en) | Method for growing elemental semiconductor single crystal thin film | |
JPS5820151B2 (en) | Hatsukoudaio - Donoseizouhouhou | |
JPS6345371A (en) | Formation of deposited film | |
US3941647A (en) | Method of producing epitaxially semiconductor layers | |
JPH02172895A (en) | Method for growing semiconductor crystal | |
JPH02267197A (en) | Method for growing silicon carbide | |
JPS6390833A (en) | Manufacture of compound thin film of group ii and vi elements | |
JPH02185026A (en) | Selective forming method of al thin-film | |
JP4363383B2 (en) | Raw material liquid for metal organic chemical vapor deposition method and method for producing Hf-Si-containing composite oxide film using the raw material liquid | |
JPH01280323A (en) | Vapor phase epitaxial growth system | |
JPH0492893A (en) | Vapor-phase synthesis of diamond thin film | |
JPS6115150B2 (en) | ||
JPH03185716A (en) | Method of growing compound semiconductor crystal | |
JPS62186528A (en) | Deposited film forming method | |
JPS62189721A (en) | Semiconductor film forming method and apparatus therefor | |
Liua et al. | Metal oxides and metal thin films by atomic layer deposition (ALD), liquid-ALD, and successive ionic layer adsorption and reaction methods for THR applications | |
JPS61223186A (en) | Production of thin carbon film | |
JPS62185880A (en) | Formation of deposited film | |
JPS59164697A (en) | Vapor growth method | |
JPH0547518B2 (en) | ||
JPH03112127A (en) | Method of forming silicon carbide | |
JPH0270061A (en) | Production of superconducting thin film | |
JPH0564849B2 (en) | ||
JPH02175874A (en) | Production of oxide superconducting thin film |