JPS6218708A - Growing method for silicon carbide layer - Google Patents

Growing method for silicon carbide layer

Info

Publication number
JPS6218708A
JPS6218708A JP60159086A JP15908685A JPS6218708A JP S6218708 A JPS6218708 A JP S6218708A JP 60159086 A JP60159086 A JP 60159086A JP 15908685 A JP15908685 A JP 15908685A JP S6218708 A JPS6218708 A JP S6218708A
Authority
JP
Japan
Prior art keywords
layer
sic
substrate
flow rate
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60159086A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Tsutomu Nakazawa
中沢 努
Kikuo Ito
伊藤 喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60159086A priority Critical patent/JPS6218708A/en
Publication of JPS6218708A publication Critical patent/JPS6218708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To grow an SiC layer having good bondability by CVD-reacting with H2 gas as carrier while regulating the ratio of SiHCl2 to SiCH3Cl3 or Si(CH3)3 Cl of reaction gas. CONSTITUTION:The flow rate of SiCH3Cl3 or Si(CH3)3Cl is initially set to zero on an Si substrate 1, and only SiHCl3 is epitaxially grown as reaction gas to grown an Si layer 2. Then, the flow rate of the SiCH3Cl3 or Si(CH3)3Cl is raised as time goes, thereby eventually growing an SiC layer 3. Thus, a transferring layer which gradually transfers from the layer 2 to the layer 3 is formed to epitaxially grow the layer 3 having good bondability. Thus, the mass-production of SiC growth can be performed.

Description

【発明の詳細な説明】 〔概要〕 シリコン基板上に最初はトリクロールシランを反応ガス
とし、最後はモノメチルトリクロールシラン或いはトリ
メチルモノクロ−ルシランが反応ガスとなるように順次
構成比を変化させて化学気相成長を行うことにより、シ
リコン基板上にシリコンから次第に炭化硅素に遷移する
半導体層をエピタキシャル成長させる方法。
[Detailed Description of the Invention] [Summary] A chemical reaction is performed on a silicon substrate by sequentially changing the composition ratio so that trichlorosilane is used as a reaction gas at first, and monomethyltrichlorosilane or trimethylmonochlorosilane is used as a reaction gas at the end. A method of epitaxially growing a semiconductor layer that gradually transitions from silicon to silicon carbide on a silicon substrate using vapor phase growth.

〔産業上の利用分野〕[Industrial application field]

本発明はシリコン基板上に密着性よく炭化硅素層を成長
せしめる方法に関する。
The present invention relates to a method for growing a silicon carbide layer with good adhesion on a silicon substrate.

炭化硅素(以下SiCと略記)は融点が2700℃以上
とシリコン(以下Siと略記)に較べて這かに高い絶縁
物であり、禁制帯の幅が2.20eVとSiの167e
Vに較べて温かに大きく、また化学気相成長法(CVD
法)などによって導電型がp型およびn型の半導体が得
られることから将来の半導体材料として脚光を浴びてい
る。
Silicon carbide (hereinafter abbreviated as SiC) is a much higher insulator than silicon (hereinafter abbreviated as Si) with a melting point of 2700°C or higher, and the width of the forbidden band is 2.20eV, which is 167e compared to that of Si.
It is warmer and larger than V, and chemical vapor deposition (CVD)
Since semiconductors with p-type and n-type conductivity can be obtained by methods such as the method (method), they are attracting attention as future semiconductor materials.

すなわち、このようなSiC単結晶を用いることによっ
て可視領域で発光するレーザや高温での動作が可能なバ
イポーラトランジスタなどの開発が可能となる。
That is, by using such a SiC single crystal, it becomes possible to develop lasers that emit light in the visible region, bipolar transistors that can operate at high temperatures, and the like.

ここでSiC単結晶はSiと同様に引き上げ法或いは気
相エピタキシャル成長法により育成が可能であるが、 ■処理温度が高いためにコストが高くつく。
Here, like Si, SiC single crystal can be grown by the pulling method or vapor phase epitaxial growth method, but (1) the cost is high because the processing temperature is high.

■良質の単結晶基板が得られに(い。■It is difficult to obtain a high-quality single-crystal substrate.

■大口径の基板が現状では得られない。■Large diameter substrates are currently not available.

などの問題がある。There are problems such as.

そこでこれらの問題を解決する方法としてSi基板上に
ヘテロエピタキシャル成長させる製法の実用化が推進さ
れている。
Therefore, as a method to solve these problems, the practical use of a manufacturing method of heteroepitaxial growth on a Si substrate is being promoted.

〔従来の技術〕[Conventional technology]

SiCには立方晶系と大方晶系のものがあり、前者はβ
−3iC,また後者はα−5tCと区別されているが、
β−5iCは300Kにおける電子の易動度が1000
cm2/ Vsecとα−5iCの460cm 2/ 
Vsecに較べて優れているので半導体デバイスにはβ
−5iCが専ら使用されている。
There are two types of SiC: cubic and macrogonal, and the former has a β
-3iC, and although the latter is distinguished from α-5tC,
β-5iC has an electron mobility of 1000 at 300K.
cm2/ Vsec and α-5iC 460cm2/
Since it is superior to Vsec, β is suitable for semiconductor devices.
-5iC is used exclusively.

さて、従来Si基板上にβ−5iC(以下略して5iC
)を成長させる方法として炭化法が使われている。
Now, conventionally, β-5iC (hereinafter abbreviated as 5iC) is
) is used as a method of growing carbonization.

この方法は化学気相成長装置(CVD装置)を用い、S
i基板を1340〜1360℃の高温に加熱した状態で
常圧で炭化水素例えばプロパン(C3H8)を供給し、
熱分解させることによりSi基板上にSiCを成長させ
る方法である。
This method uses a chemical vapor deposition device (CVD device),
Supplying a hydrocarbon such as propane (C3H8) at normal pressure while heating the i-substrate to a high temperature of 1340 to 1360°C,
This is a method of growing SiC on a Si substrate by thermal decomposition.

この成長機構はS1原子が膜形成したSiC内の格子欠
陥を通って基板表面に拡散し、表面で分解した炭素(C
)原子と結合してSiCが成長することが確かめられて
いる。
This growth mechanism is that S1 atoms diffuse to the substrate surface through lattice defects in the SiC film, and carbon (C) decomposes on the surface.
) It has been confirmed that SiC grows by bonding with atoms.

この方法では数μmの厚さまで結晶成長が可能であるが
、膜が厚くなるのに従って結晶性が悪くなり、良好な結
晶性をもつものは約1μmまでに限られている。
Although this method allows crystal growth up to a thickness of several micrometers, as the thickness of the film increases, the crystallinity deteriorates, and good crystallinity is limited to a thickness of about 1 micrometer.

またこの方法の問題は量産に適さないことである。Another problem with this method is that it is not suitable for mass production.

すなわちCVD温度が1300℃以上の高温になると炉
材および発熱体が限定されて作業性が劣り、また高精度
の温度3)1節ができなくなるために品質と収率が低下
してしま・う。
In other words, when the CVD temperature reaches a high temperature of 1,300°C or higher, the furnace material and heating element are limited, resulting in poor workability, and the quality and yield are reduced because high-precision temperature control is no longer possible. .

またC31(8のような可燃性の炭化水素を常圧でCV
D装置に供給するためには大形の排気系が必要になり、
また爆発の危険性がある。
Also, CV of flammable hydrocarbons such as C31 (8) at normal pressure.
A large exhaust system is required to supply equipment D.
There is also a risk of explosion.

更にこのようにしてヘテロエピタキシャル成長させて得
たSiC膜の問題は基板から剥離し易いことである。
Furthermore, a problem with the SiC film obtained by heteroepitaxial growth in this manner is that it is easily peeled off from the substrate.

すなわち両者の格子常数は25℃でSiは5.4306
人。
In other words, the lattice constant of both is 25°C and Si is 5.4306
Man.

SiCは4.349人と約20%の不整合が存在するた
め剥離が起こり易く、改良が必要であった。
Since SiC has a mismatch of 4.349 and approximately 20%, peeling is likely to occur, and improvements were needed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来の炭化法は量産工程には適当でな
く、またSi基板との間に剥離を生じ易いことが問題で
ある。
As described above, the conventional carbonization method is not suitable for mass production processes, and there is a problem in that peeling easily occurs between the carbonization method and the Si substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題はSi基板を化学気相成長装置に装着し、装
置内を減圧しながら水素ガスをキャリアとし、トリクロ
ールシランとモノメチルトリクロールシラン或いはトリ
メチルモノクロ−ルシランとからなる反応ガスを最初は
トリクロールシランを成分ガスとし、最後はモノメチル
トリクロールシラン或いはトリメチルモノクロ−ルシラ
ンが成分ガスとなるように反応ガスの構成比を変えなが
ら該反応ガスを加熱したSi基板上に供給して化学気相
反応を行わしめ、該Si基板上に組成がSiよりSiC
に次第に変化するエピタキシャル成長層を形成すること
を特徴とする半専体層の成長方法により解決することが
できる。
The above problem can be solved by attaching a Si substrate to a chemical vapor deposition apparatus, using hydrogen gas as a carrier while reducing the pressure inside the apparatus, and initially using a reaction gas consisting of trichlorosilane and monomethyltrichlorosilane or trimethylmonochlorosilane to A chemical vapor phase reaction is carried out by supplying the reaction gas onto a heated Si substrate while changing the composition ratio of the reaction gas such that chlorosilane is used as the component gas and monomethyltrichlorosilane or trimethylmonochlorosilane becomes the final component gas. was carried out, and the composition was changed from Si to SiC on the Si substrate.
This problem can be solved by a method of growing a semi-dedicated layer, which is characterized by forming an epitaxially grown layer that gradually changes.

〔作用〕[Effect]

本発明は1000℃程度の作業性の良い温度でSiCを
エピタキシャル成長させると共にSi基板と密着性の良
い膜成長を行う方法として反応ガスとしてモノメチルト
リクロールシラン(SiCH3CHコ)或いはトリメチ
ルモノクロ−ルシラン(Si(CH3)3C1)を用い
ると共にSi基板との密着性を良くする方法としてトリ
クロールシラン(SiHClx )を用いるものである
The present invention uses monomethyltrichlorosilane (SiCH3CH) or trimethylmonochlorosilane (Si( In addition to using CH3)3C1), trichlorosilane (SiHClx) is used to improve adhesion to the Si substrate.

すなわち本発明は水素(H2)をキャリアとし、反応ガ
スである5illC13と5iCH3C13或いはSi
(CH] ) 3 C1との比率を調節しなからCVD
反応を行うことによりSt基板上に当初はStだけを、
また最後はSiCだけが成長するように構成比率を変え
てエピタキシャル成長することにより上記の目的式的に
示すものである。
That is, the present invention uses hydrogen (H2) as a carrier and reactant gases 5illC13 and 5iCH3C13 or Si
(CH] ) 3 CVD without adjusting the ratio with C1
By performing the reaction, only St was initially placed on the St substrate,
Finally, the above objective formula is shown by epitaxially growing the composition ratio so that only SiC grows.

すなわちSi基板1の上に当初5iCH3C13或いは
5i(CH3) 3 C1の流量を零とし、5iHC1
3のみを反応ガスとしてエピタキシャル成長を行うこと
により第1図で右下りの斜線で示す5iFJ2を成長せ
しめ、次に5iC83C13の流量を上げることにより
最終的には左下りの斜線で示す5iCPi3を成長せし
める。
That is, the flow rate of 5iCH3C13 or 5i(CH3) 3 C1 is initially set to zero on the Si substrate 1, and 5iHC1
By performing epitaxial growth using only 3 as a reaction gas, 5iFJ2 shown by the diagonal line downward to the right in FIG.

そのためこの中間領域においては流量比に応じてSiと
SICとが混在することとなる。
Therefore, in this intermediate region, Si and SIC coexist depending on the flow rate ratio.

第2図はCVD成長中における両者の構成比率の推移を
示すもので、CVD開始点における5iCIl 3C1
3の流量は零であるが、処理時間の経過と共に5iC1
13C10或いは5i(CI+ 3 ) 3 C1の流
量は増し、一定時間経過後には5iCH3C13或いは
5i(CH3)コC1のみを反応ガスとしてSiC層3
の成長が行われることになる。
Figure 2 shows the transition of the composition ratio of both during CVD growth, showing that 5iCIl 3C1 at the CVD starting point
The flow rate of 3 is zero, but as the processing time passes, the flow rate of 5iC1
The flow rate of 13C10 or 5i(CI+3)3C1 increases, and after a certain period of time, the SiC layer 3 is filled with only 5iCH3C13 or 5i(CH3)C1 as a reaction gas.
growth will take place.

このようにSi層2からSiC層3に徐々に変化する遷
移層を作ることにより、密着性の良いSiC層3をエピ
タキシャル成長させることができる。
By creating a transition layer that gradually changes from the Si layer 2 to the SiC layer 3 in this manner, it is possible to epitaxially grow the SiC layer 3 with good adhesion.

〔実施例〕〔Example〕

5illC1コの反応ガスは液状の5iHChにH2ガ
スを通過(バブリング)させて飽和させたものを準備し
、これを10〜Occ/分の範囲に流量を調節した。
The reaction gas for 5illC1 was prepared by passing H2 gas through (bubbling) liquid 5iHCh to saturate it, and the flow rate was adjusted to a range of 10 to Occ/min.

また5iCH3Clコ或いは5i(CI+ 3 ) 3
 C1の反応ガスは同様にH2ガスをバブリングさせ0
〜1.0β/minの範囲で変化させた。
Also 5iCH3Cl or 5i(CI+3) 3
Similarly, the reaction gas of C1 is bubbled with H2 gas to generate 0
It was changed in the range of ~1.0β/min.

またキャリアガスとしてはH2を用い、この流量は61
/分に固定した。
In addition, H2 was used as the carrier gas, and the flow rate was 61
Fixed at /min.

次にSi基板としては径4インチ、厚さ500 μIの
Si基板を用い、従来と同様な表面処理と清浄化処理を
行った後、CVD装置に装着して減圧し、キャリアガス
を流しながら界温し、基板温度を1000℃に保持した
状態で当初5iHCI3をIQcc/分また5iCH3
Clコ或いは5i(Cllコ)、CIの流量は零とし、
気圧を2torrに保持した。
Next, we used a Si substrate with a diameter of 4 inches and a thickness of 500 μI, and after performing the same surface treatment and cleaning treatment as conventional methods, we placed it in a CVD device and reduced the pressure, and while flowing a carrier gas, we Initially, 5iHCI3 was heated to IQcc/min and 5iCH3 was heated while maintaining the substrate temperature at 1000℃.
Cl or 5i (Cll), the flow rate of CI is zero,
Air pressure was maintained at 2 torr.

以降第2図に示すように5iHC13の流量を減らすと
共に5iC)13 C13或いは5i(Cl 3) 3
 C1の流量を増して20分間に互ってCνD成長を行
い、厚さ約8000人の膜成長を行った。
Thereafter, as shown in Fig. 2, the flow rate of 5iHC13 is reduced and 5iC)13 C13 or 5i(Cl3)3
CvD growth was performed alternately for 20 minutes by increasing the flow rate of C1, and a film with a thickness of approximately 8000 was grown.

なおCVD成長開始後20分経過後においては5iHC
13の流量は零となるように調節した。
Note that 5iHC after 20 minutes from the start of CVD growth.
The flow rate of No. 13 was adjusted to zero.

第3図はこのようにして得たCVD膜について、赤外線
による吸収特性を示すもので、縦軸にはアドミッタンス
(相対吸収感度)をまた横軸には1/波長(カイザ)を
目盛っである。
Figure 3 shows the infrared absorption characteristics of the CVD film obtained in this way, with admittance (relative absorption sensitivity) on the vertical axis and 1/wavelength (Kaiser) on the horizontal axis. .

そして図から判るように800 cm−’において顕著
な吸収を示しているが、これは基板表面に5i−Cの結
合が形成されていることを示している。
As can be seen from the figure, significant absorption is shown at 800 cm-', which indicates that 5i-C bonds are formed on the substrate surface.

このようにSi基板1からSiC層3へ組成を順次変化
させてエピタキシャル成長させることにより成長層の1
AIJ ZMが無くなり、また反応ガスとして5iHc
13と5iCII 3 、C13或いは5i(CH:l
 ) 3 C1とを使用することにより1000℃程度
の作業性の良い温度でのSiC成長が可能となる。
By epitaxially growing the Si substrate 1 to the SiC layer 3 while sequentially changing the composition, one of the grown layers is grown.
AIJ ZM is gone, and 5iHc is used as a reaction gas.
13 and 5i CII 3 , C13 or 5i (CH:l
) 3 C1, it becomes possible to grow SiC at a temperature of about 1000° C. with good workability.

〔発明の効果〕〔Effect of the invention〕

以上記したように従来のSiC成長が1340〜136
0℃と作業性の悪い高温で、また反応ガスの圧力を常圧
にして行うため量産工程には適さなかったが、本発明の
実施によりSiC成長の量産が可能となる。
As mentioned above, conventional SiC growth is 1340~136
This method was not suitable for mass production because it was carried out at a high temperature of 0° C., which is difficult to work with, and at normal pressure of the reaction gas, but by carrying out the present invention, mass production of SiC growth becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る成長層の構造を示す断面図、 第2図は反応ガスの構成比率を示す模式図、第3図は成
長層の赤外線吸収感度図、 である。 図において、 1はSi基板、       2はSiN、3は5iC
Jii。 である。
FIG. 1 is a cross-sectional view showing the structure of a grown layer according to the present invention, FIG. 2 is a schematic diagram showing the composition ratio of reactive gases, and FIG. 3 is an infrared absorption sensitivity diagram of the grown layer. In the figure, 1 is a Si substrate, 2 is SiN, 3 is 5iC
Jiii. It is.

Claims (1)

【特許請求の範囲】[Claims]  シリコン基板を化学気相成長装置に装着し、装置内を
減圧しながら水素ガスをキャリアとし、トリクロールシ
ランの分圧に対してモノメチルトリクロールシラン或い
はトリメチルモノクロールシランの分圧が時間と共に高
くなるように反応ガスを制御し、該反応ガスを加熱した
シリコン基板上に供給して化学気相反応を行わしめ、該
シリコン基板上に組成がシリコンより炭化硅素に次第に
変化するエピタキシャル成長層を形成することを特徴と
する炭化硅素層の成長方法。
The silicon substrate is mounted in a chemical vapor deposition apparatus, and hydrogen gas is used as a carrier while reducing the pressure inside the apparatus, and the partial pressure of monomethyltrichlorosilane or trimethylmonochlorosilane increases with time compared to the partial pressure of trichlorosilane. Controlling the reactive gas in such a manner, supplying the reactive gas onto a heated silicon substrate to perform a chemical vapor phase reaction, and forming an epitaxial growth layer on the silicon substrate whose composition gradually changes from silicon to silicon carbide. A method for growing a silicon carbide layer characterized by:
JP60159086A 1985-07-18 1985-07-18 Growing method for silicon carbide layer Pending JPS6218708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159086A JPS6218708A (en) 1985-07-18 1985-07-18 Growing method for silicon carbide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159086A JPS6218708A (en) 1985-07-18 1985-07-18 Growing method for silicon carbide layer

Publications (1)

Publication Number Publication Date
JPS6218708A true JPS6218708A (en) 1987-01-27

Family

ID=15685924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159086A Pending JPS6218708A (en) 1985-07-18 1985-07-18 Growing method for silicon carbide layer

Country Status (1)

Country Link
JP (1) JPS6218708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518271A (en) * 2017-09-18 2019-03-26 上海新昇半导体科技有限公司 A kind of pretreatment of SiC epitaxial surface and epitaxial growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518271A (en) * 2017-09-18 2019-03-26 上海新昇半导体科技有限公司 A kind of pretreatment of SiC epitaxial surface and epitaxial growth method

Similar Documents

Publication Publication Date Title
Nishino et al. Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices
KR920004173B1 (en) Method of growing a single crystalline beta-sic layer on a silicon substrate
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
JP2018522412A (en) Growth of epitaxial 3C-SiC on single crystal silicon
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
US4137108A (en) Process for producing a semiconductor device by vapor growth of single crystal Al2 O3
WO2023079880A1 (en) Method for producing heteroepitaxial wafer
JPS6218708A (en) Growing method for silicon carbide layer
JPS6120514B2 (en)
JP2550024B2 (en) Low pressure CVD equipment
JPH02157196A (en) Method for growing semiconductor crystal
JPS638296A (en) Formation of 3c-sic crystal
JP2002016004A (en) Method of manufacturing silicon epitaxial wafer
CN115058700B (en) Preparation method of molybdenum disulfide film and molybdenum disulfide film
JPS6115150B2 (en)
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JPH04214099A (en) Manufacture of silicon carbide single crystal
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2001262346A (en) METHOD FOR MANUFACTURING SiC COATED GRAPHITE MEMBER WITH REDUCE PINHOLES
JPH03112127A (en) Method of forming silicon carbide
JPH0343240B2 (en)
JP2704224B2 (en) Semiconductor device and manufacturing method thereof