JP4283478B2 - Method for growing SiC single crystal on electronic device substrate - Google Patents

Method for growing SiC single crystal on electronic device substrate Download PDF

Info

Publication number
JP4283478B2
JP4283478B2 JP2002018257A JP2002018257A JP4283478B2 JP 4283478 B2 JP4283478 B2 JP 4283478B2 JP 2002018257 A JP2002018257 A JP 2002018257A JP 2002018257 A JP2002018257 A JP 2002018257A JP 4283478 B2 JP4283478 B2 JP 4283478B2
Authority
JP
Japan
Prior art keywords
single crystal
sic
sic single
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002018257A
Other languages
Japanese (ja)
Other versions
JP2003212694A (en
Inventor
俊一 鈴木
芳久 阿部
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2002018257A priority Critical patent/JP4283478B2/en
Publication of JP2003212694A publication Critical patent/JP2003212694A/en
Application granted granted Critical
Publication of JP4283478B2 publication Critical patent/JP4283478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子素子の基板上にSiC単結晶を成長させる方法に関するものである。
【0002】
【従来の技術】
SiCは、広いバンドギャップ、高い電子移動度、高い耐熱性を持っており、構成元素の資源量が豊富でかつ環境汚染への懸念が小さい等の特徴を持つ化合物半導体として、SiCは、次世代電子素子、高速高温動作可能電子素子、太陽光発電素子等としての応用が期待される材料である。特にシリコン基板上に形成されたSiC薄膜は、現在のシリコンテクノロジーを継承できることから、産業技術の開発コストにおける優位性からも、実用化が求められる材料である。
【0003】
SiC薄膜の形成法としては、各種CVD法、スパッタリング法、各種MBE法等が知られている。
【0004】
結晶性の良いSiC膜を得るためには、CVD法では1200℃以上の高温が必要であるといわれている。
【0005】
スパッタリングやMBE法においては高真空雰囲気下での成長が必要である。
これはSi−C間の結合が共有結合であるため、化学結合形成エネルギーおよびエピタキシャル結晶成長のための拡散エネルギーが、ともに大きなものになるためである。
【0006】
【発明が解決しようとする課題】
1200℃以下でのCVD法では、アモルファスSiCとなる場合が多く、良好な結晶性を得るのが難しい。
【0007】
SiとSiCの格子定数には約20%の大きな格子不整合があるため、高品質の連続した膜を成長させることが極めて難しい。
【0008】
本発明の目的は、1200℃以下の温度で良好な結晶性を得ることができる、電子素子基板上へのSiC単結晶の成長方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の解決手段を例示すると、次のとおりである。
【0010】
(1)電子素子の基板にSiC単結晶をCVD法を用いて成長させる方法において、SiC単結晶を1200℃以下の温度領域で複数の成長温度に分けて成長させ、かつ、中間層としてSiC単結晶を成長温度780〜950℃で厚みが50〜750nmになるまで成長させることを特徴とする電子素子基板上へのSiC単結晶の成長方法。
【0011】
(2)SiC単結晶がβ−SiCであることを特徴とする前述の電子素子基板上へのSiC単結晶の成長方法。
【0013】
)所望の膜厚を確保するために中間層の成形後に成長温度1000〜1200℃でSiC単結晶を成長させることを特徴とする前述の電子素子基板上へのSiC単結晶の成長方法。
【0014】
【発明の実施の形態】
本発明においては、1200℃以下の温度で2種類以上の温度域に分けて、電子素子の基板にSiC単結晶をCVD法を用いて成長させる。とくに、SiCのエピタキシャル成長を行う際に、低温でバッファ層を形成し、そのあと、高温(ただし1200℃以下)でSiC単結晶を形成する。そのことにより、MOCVD(有機金属気相成長)で高品質のSiCの単結晶を形成することができる。
【0015】
まず、SiC単結晶の成長法について説明する。
【0016】
Si基板上にMOCVD法を用いてβ−SiC半導体結晶を成長させるときに、Si基板上に第1のβ−SiC結晶を比較的低温(たとえば780℃以上でかつ950℃以下)の成長温度で50nmから750nmの膜厚になるまで形成する。その後、比較的高温(たとえば1000〜1200℃)で、第1のβ−SiC結晶層(中間バッファ層)の上に第2のβ−SiC結晶を成長させて、連続した膜を形成する。
【0017】
Si基板上に、すぐに高温で成長させようとしても、連続膜を得ることは極めて困難である。
【0018】
本発明では、図1(a)〜(b)に順に示すように、第1のSiC単結晶を比較的低温(780〜950℃)で成長させて、まず単結晶の連続膜をSi基板上に形成し、次に、そのまま、その単結晶の連続膜(これが中間バッファ層として機能する)上に、成長温度を高めて、高温(1000〜1200℃)にして、第2のSiCの単結晶を成長させて、連続膜を形成する。
【0019】
このような本発明の中間バッファ層の低温成長方法は、従来のアモルファス状SiCのバッファ層の低温形成法とは相違している。
【0020】
従来の方法では、アモルファス状SiCのバッファ層をSi基板上に形成し、その上にSiC結晶を成長させるが、この低温成長バッファ層の構成と作用は、次の通りである。すなわち、Si基板上に600℃の低温で成長するSiC層は、アモルファス状であり、このアモルファス状の層が、SiCを成長させるために1250℃の温度まで昇温する際に、部分的に単結晶化する。この単結晶化した部分が、1250℃でSiCを成長させる際に核となり、そこからSiC結晶が成長し、均一なSiC単結晶の層が成長する。中間バッファ層が無いときは、Si基板においてこの核になる部分が極めて少なく、均一なSiC層を成長させることができない。
【0021】
この結果従来の方法と、本発明のようにSiを基板としてMOCVD法で1200℃以下の温度で少くとも2種類の成長温度に分けて単結晶のSiC膜を成長させる場合とを比較すると、以下の点で異なる。
【0022】
従来方法では、最初に成長する膜がアモルファスSiC膜であるのに対し、本発明では、MOCVD法により単結晶のSiC膜を基板上に成長させる。この点で両者は大きく異なる。本発明では、第2のSiC単結晶の層を完全に二次元成長化させることができるために、より表面性にすぐれて、しかも結晶性に優れた膜を成長させることができる。
【0023】
【実施例】
本発明を明らかにするために、実施例を説明する。
【0024】
実施例1
MMS(モノメチルシランSiH3CH3)を原料とするMOCVD法を使用した。
【0025】
図3(a)に示すように、まず、Si基板の表面をケミカルエッチングして、Si基板を基板ホルダーにのせ、反応管内の成長領域にセットした。ガス導入管からキャリアガスとして水素(H2)を供給しながら、Si基板を1100℃に 昇温して基板の表面のクリーニングをおこなった。その後、830℃まで基板表面の温度を下げ、安定したところで、MMS:H2のガス流量比1:10000 にてSi基板表面のSiC成長領域にMMSとキャリアガスを供給した。30分間で約670nmの膜厚の第1のSiC層が形成できた。つぎに、MMSの供給を止め、キャリアガスだけを供給しながら基板を1050℃まで昇温した。温度が1050℃に安定したところで、再びMMS:H2のガス流量比1:1000 0にてMMSとH2ガスを供給して、第2のSiC層が形成された。このとき、 第2のSiC層は30分間の成長で11μmの膜厚が得られた。成長した第2のSiC層の表面は、非常に平坦であった。
【0026】
このようにして得られたSi(100)基板上の第1及び第2のSiC層について、X線回折によりその結晶性を調べた結果、β−SiC(200)面の単結晶からなる連続した膜が得られた。また、X線回折の結果によれば、この実施例1による方法で形成した第2のSiC膜は、非常にシャープなピークが検出され、結晶性が大幅に向上したことが確認できた。
【0027】
比較例
実際にDCS(ジクロロシランSiH2Cl2)、プロパンC38を原料とするハイドライド法を用いて1050℃でSi(100)基板上にSiCの成長をおこなったところ、図2に示すように、表面の凹凸が顕著となり、平坦な表面を有するSiC膜を得ることができなかった。また、得られた結晶のX線回折の結果、多結晶SiCが成長していた。
【0028】
【発明の効果】
以上のように、本発明によれば、MOCVD法を用いて基板上に結晶性にすぐれた高品質の半導体結晶を得ることができる。これは、1200℃以下の温度において、複数の成長温度に分けたことによる効果である。たとえば、950℃以下の低温成長で、まず平坦性に優れた単結晶を成長させ、その後、昇温して比較的高温(ただし1200℃以下の温度)で単結晶の成長速度を上げることにより、高品質の単結晶を基板上に得ることができる。
【図面の簡単な説明】
【図1】 本発明方法を示す概念図。
【図2】 従来方法を示す概念図。
【図3】 本発明の1つの実施例による単結晶成長方法の一例を概念的に示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing a SiC single crystal on a substrate of an electronic device.
[0002]
[Prior art]
SiC is a compound semiconductor with features such as a wide band gap, high electron mobility, high heat resistance, abundant amounts of constituent elements, and low concern about environmental pollution. It is a material expected to be applied as an electronic element, an electronic element capable of high-speed and high-temperature operation, a solar power generation element, and the like. In particular, an SiC thin film formed on a silicon substrate is a material that is required to be put into practical use because of its superiority in industrial technology development costs because it can inherit the current silicon technology.
[0003]
As a method for forming a SiC thin film, various CVD methods, sputtering methods, various MBE methods and the like are known.
[0004]
In order to obtain a SiC film having good crystallinity, it is said that a high temperature of 1200 ° C. or higher is necessary in the CVD method.
[0005]
In sputtering and MBE, growth in a high vacuum atmosphere is necessary.
This is because the bond between Si—C is a covalent bond, so that the chemical bond formation energy and the diffusion energy for epitaxial crystal growth are both large.
[0006]
[Problems to be solved by the invention]
In the CVD method at 1200 ° C. or lower, amorphous SiC is often obtained, and it is difficult to obtain good crystallinity.
[0007]
Since the lattice constants of Si and SiC have a large lattice mismatch of about 20%, it is extremely difficult to grow a high quality continuous film.
[0008]
An object of the present invention is to provide a method for growing a SiC single crystal on an electronic device substrate, which can obtain good crystallinity at a temperature of 1200 ° C. or lower.
[0009]
[Means for Solving the Problems]
Examples of the solving means of the present invention are as follows.
[0010]
(1) In a method of growing a SiC single crystal on a substrate of an electronic device using a CVD method, the SiC single crystal is grown at a plurality of growth temperatures in a temperature range of 1200 ° C. or lower, and an SiC single crystal is used as an intermediate layer. A method for growing a SiC single crystal on an electronic device substrate, wherein the crystal is grown at a growth temperature of 780 to 950 ° C. until the thickness reaches 50 to 750 nm .
[0011]
(2) The method for growing a SiC single crystal on the electronic device substrate described above, wherein the SiC single crystal is β-SiC.
[0013]
( 3 ) The SiC single crystal growth method on the electronic element substrate described above, wherein the SiC single crystal is grown at a growth temperature of 1000 to 1200 ° C. after forming the intermediate layer in order to ensure a desired film thickness.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a SiC single crystal is grown on a substrate of an electronic device by using a CVD method at a temperature of 1200 ° C. or lower and divided into two or more temperature ranges. In particular, when performing epitaxial growth of SiC, a buffer layer is formed at a low temperature, and thereafter, a SiC single crystal is formed at a high temperature (but 1200 ° C. or less). Thereby, a high-quality SiC single crystal can be formed by MOCVD (metal organic chemical vapor deposition).
[0015]
First, a method for growing a SiC single crystal will be described.
[0016]
When the β-SiC semiconductor crystal is grown on the Si substrate by using the MOCVD method, the first β-SiC crystal is grown on the Si substrate at a relatively low growth temperature (for example, 780 ° C. or more and 950 ° C. or less). The film is formed until the film thickness is 50 nm to 750 nm. Thereafter, a second β-SiC crystal is grown on the first β-SiC crystal layer (intermediate buffer layer) at a relatively high temperature (for example, 1000 to 1200 ° C.) to form a continuous film.
[0017]
It is extremely difficult to obtain a continuous film on a Si substrate even if it is immediately grown at a high temperature.
[0018]
In the present invention, as shown in FIGS. 1A to 1B in order, the first SiC single crystal is grown at a relatively low temperature (780 to 950 ° C.), and a single-crystal continuous film is first formed on the Si substrate. Next, the second SiC single crystal is formed on the continuous single crystal film (which functions as an intermediate buffer layer) by raising the growth temperature to a high temperature (1000 to 1200 ° C.). To form a continuous film.
[0019]
Such a low temperature growth method of the intermediate buffer layer of the present invention is different from the conventional low temperature formation method of the buffer layer of amorphous SiC.
[0020]
In the conventional method, an amorphous SiC buffer layer is formed on a Si substrate and a SiC crystal is grown thereon. The configuration and action of this low-temperature growth buffer layer are as follows. That is, the SiC layer grown on the Si substrate at a low temperature of 600 ° C. is amorphous, and when this amorphous layer is heated up to a temperature of 1250 ° C. in order to grow SiC, it is partially isolated. Crystallize. This single crystal portion becomes a nucleus when SiC is grown at 1250 ° C., from which a SiC crystal grows and a uniform SiC single crystal layer grows. When there is no intermediate buffer layer, there are very few core parts on the Si substrate, and a uniform SiC layer cannot be grown.
[0021]
As a result, a comparison between the conventional method and the case where a single crystal SiC film is grown at a temperature of 1200 ° C. or less at a temperature of 1200 ° C. or less and at least two types of growth temperatures using Si as a substrate as in the present invention is as follows. Is different.
[0022]
In the conventional method, the first grown film is an amorphous SiC film, whereas in the present invention, a single crystal SiC film is grown on the substrate by MOCVD. The two are very different in this respect. In the present invention, since the second SiC single crystal layer can be completely two-dimensionally grown, a film having better surface properties and excellent crystallinity can be grown.
[0023]
【Example】
In order to clarify the present invention, examples will be described.
[0024]
Example 1
The MOCVD method using MMS (monomethylsilane SiH 3 CH 3 ) as a raw material was used.
[0025]
As shown in FIG. 3A, first, the surface of the Si substrate was chemically etched, and the Si substrate was placed on a substrate holder and set in a growth region in the reaction tube. While supplying hydrogen (H 2 ) as a carrier gas from the gas introduction pipe, the temperature of the Si substrate was raised to 1100 ° C. to clean the surface of the substrate. Thereafter, the temperature of the substrate surface was lowered to 830 ° C., and when stabilized, MMS and carrier gas were supplied to the SiC growth region on the Si substrate surface at a gas flow ratio of 1: 10000 of MMS: H 2 . A first SiC layer having a thickness of about 670 nm was formed in 30 minutes. Next, the supply of MMS was stopped, and the substrate was heated to 1050 ° C. while supplying only the carrier gas. When the temperature was stabilized at 1050 ° C., MMS and H 2 gas were supplied again at an MMS: H 2 gas flow ratio of 1: 1000 to form a second SiC layer. At this time, the second SiC layer had a thickness of 11 μm after 30 minutes of growth. The surface of the grown second SiC layer was very flat.
[0026]
As a result of examining the crystallinity of the first and second SiC layers on the Si (100) substrate thus obtained by X-ray diffraction, a continuous crystal composed of a single crystal of β-SiC (200) plane was obtained. A membrane was obtained. Further, according to the result of X-ray diffraction, it was confirmed that the second SiC film formed by the method according to Example 1 had a very sharp peak and the crystallinity was greatly improved.
[0027]
Comparative Example When SiC was actually grown on a Si (100) substrate at 1050 ° C. using a hydride method using DCS (dichlorosilane SiH 2 Cl 2 ) and propane C 3 H 8 as raw materials, it is shown in FIG. As described above, the unevenness of the surface became remarkable, and an SiC film having a flat surface could not be obtained. Further, as a result of X-ray diffraction of the obtained crystal, polycrystalline SiC was grown.
[0028]
【The invention's effect】
As described above, according to the present invention, a high-quality semiconductor crystal having excellent crystallinity can be obtained on a substrate using the MOCVD method. This is an effect obtained by dividing the growth temperature into a plurality of growth temperatures at a temperature of 1200 ° C. or lower. For example, by growing a single crystal excellent in flatness at a low temperature growth of 950 ° C. or lower, and then raising the temperature to increase the growth rate of the single crystal at a relatively high temperature (temperature of 1200 ° C. or lower), A high quality single crystal can be obtained on a substrate.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method of the present invention.
FIG. 2 is a conceptual diagram showing a conventional method.
FIG. 3 conceptually illustrates an example of a single crystal growth method according to one embodiment of the present invention.

Claims (3)

電子素子の基板にSiC単結晶をCVD法を用いて成長させる方法において、SiC単結晶を1200℃以下の温度領域で複数の成長温度に分けて成長させ、かつ、中間層としてSiC単結晶を成長温度780〜950℃で厚みが50〜750nmになるまで成長させることを特徴とする電子素子基板上へのSiC単結晶の成長方法。In a method of growing a SiC single crystal on a substrate of an electronic device using a CVD method, the SiC single crystal is grown at a plurality of growth temperatures in a temperature region of 1200 ° C. or less , and a SiC single crystal is grown as an intermediate layer A method for growing a SiC single crystal on an electronic element substrate, wherein the growth is performed at a temperature of 780 to 950 ° C. until the thickness reaches 50 to 750 nm . SiC単結晶がβ−SiCであることを特徴とする請求項1に記載の電子素子基板上へのSiC単結晶の成長方法。  The method for growing a SiC single crystal on an electronic device substrate according to claim 1, wherein the SiC single crystal is β-SiC. 所望の膜厚を確保するために中間層の成形後に成長温度1000〜1200℃でSiC単結晶を成長させることを特徴とする請求項1又は2に記載の電子素子基板上へのSiC単結晶の成長方法。SiC single crystal to the electronic device substrate according to claim 1 or 2, characterized in that growing the SiC single crystal at a growth temperature 1000 to 1200 ° C. after forming the intermediate layer in order to ensure the desired film thickness Growth method.
JP2002018257A 2002-01-28 2002-01-28 Method for growing SiC single crystal on electronic device substrate Expired - Fee Related JP4283478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018257A JP4283478B2 (en) 2002-01-28 2002-01-28 Method for growing SiC single crystal on electronic device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018257A JP4283478B2 (en) 2002-01-28 2002-01-28 Method for growing SiC single crystal on electronic device substrate

Publications (2)

Publication Number Publication Date
JP2003212694A JP2003212694A (en) 2003-07-30
JP4283478B2 true JP4283478B2 (en) 2009-06-24

Family

ID=27653675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018257A Expired - Fee Related JP4283478B2 (en) 2002-01-28 2002-01-28 Method for growing SiC single crystal on electronic device substrate

Country Status (1)

Country Link
JP (1) JP4283478B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253617A (en) * 2005-02-14 2006-09-21 Toshiba Ceramics Co Ltd SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2009007205A (en) * 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd Method for manufacturing substrate product
JP5693946B2 (en) 2010-03-29 2015-04-01 エア・ウォーター株式会社 Method for producing single crystal 3C-SiC substrate
JP4850960B2 (en) 2010-04-07 2012-01-11 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate manufacturing method
JP5353800B2 (en) * 2010-04-07 2013-11-27 新日鐵住金株式会社 Method for manufacturing silicon carbide epitaxial film
JP2018101721A (en) * 2016-12-21 2018-06-28 株式会社ニューフレアテクノロジー Vapor growth method
JP7259906B2 (en) * 2021-09-21 2023-04-18 信越半導体株式会社 Manufacturing method of heteroepitaxial wafer
WO2023079880A1 (en) * 2021-11-08 2023-05-11 信越半導体株式会社 Method for producing heteroepitaxial wafer

Also Published As

Publication number Publication date
JP2003212694A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
CN111029246B (en) Method for reducing triangular defects in SiC epitaxial layer
CN109065438B (en) Preparation method of AlN thin film
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
JP4853364B2 (en) Method for growing SiC single crystal epitaxial thin film
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
CN104894640B (en) ZnO classifying nanos array and preparation method and application on a kind of graphene substrate
CA1337170C (en) Method for forming crystalline deposited film
JPH0513342A (en) Semiconductur diamond
WO2023079880A1 (en) Method for producing heteroepitaxial wafer
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2007210861A (en) METHOD OF MANUFACTURING SiC SUBSTRATE, SiC SUBSTRATE, AND SEMICONDUCTOR DEVICE
JPH0952798A (en) Production of silicon carbide thin film as well as silicon carbide thin film and laminated substrate
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
KR100623268B1 (en) Group ? nitride semicondoctor substrate and its manufacturing method
JP4353369B2 (en) SiC semiconductor and manufacturing method thereof
CN113089091A (en) Boron nitride template and preparation method thereof
CN112136203B (en) Method for manufacturing SiC epitaxial substrate
JP2012041204A (en) Method for manufacturing cubic silicon carbide film, and method for manufacturing substrate attached with the film
JP2007261900A (en) Method for manufacturing single crystal silicon carbide substrate
JP2005317670A (en) Fabricating method of cubic silicon carbide crystal film with orientation (100)
CN110670138A (en) Composite seed crystal for aluminum nitride single crystal growth and preparation method thereof
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP3055158B2 (en) Method for manufacturing silicon carbide semiconductor film
JP2004103671A (en) METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees