JP4353369B2 - SiC semiconductor and manufacturing method thereof - Google Patents

SiC semiconductor and manufacturing method thereof Download PDF

Info

Publication number
JP4353369B2
JP4353369B2 JP2004168105A JP2004168105A JP4353369B2 JP 4353369 B2 JP4353369 B2 JP 4353369B2 JP 2004168105 A JP2004168105 A JP 2004168105A JP 2004168105 A JP2004168105 A JP 2004168105A JP 4353369 B2 JP4353369 B2 JP 4353369B2
Authority
JP
Japan
Prior art keywords
sic
single crystal
thickness
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168105A
Other languages
Japanese (ja)
Other versions
JP2005347666A (en
Inventor
俊一 鈴木
芳久 阿部
純 小宮山
徹 喜多
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2004168105A priority Critical patent/JP4353369B2/en
Publication of JP2005347666A publication Critical patent/JP2005347666A/en
Application granted granted Critical
Publication of JP4353369B2 publication Critical patent/JP4353369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、Si(シリコン、ケイ素)単結晶基板上にβ−SiC(立方晶炭化ケイ素)単結晶薄膜を形成してなり、次世代電子素子、高速高温動作可能電子素子、太陽光発電素子等としての応用が期待されているSiC半導体及びその製造方法に関する。   The present invention comprises a β-SiC (cubic silicon carbide) single crystal thin film formed on a Si (silicon, silicon) single crystal substrate, a next-generation electronic device, an electronic device capable of high-speed and high-temperature operation, a photovoltaic power generation device, etc. The present invention relates to a SiC semiconductor that is expected to be applied as a semiconductor device and a manufacturing method thereof.

SiC(炭化ケイ素)は、広いバンドギャップ、高い電子移動度、及び高い耐熱性を有し、構成元素の資源量が豊富でかつ環境汚染への懸念が小さい等の特徴を持つ化合物半導体である。   SiC (silicon carbide) is a compound semiconductor having characteristics such as a wide band gap, high electron mobility, high heat resistance, abundant amounts of constituent elements, and low concern about environmental pollution.

従来、SiC半導体及びその製造方法としては、電子素子の基板(Si単結晶基板)上にCVD(Chemical Vapor Deposition :化学的気相成長)法によりβ−SiC単結晶薄膜を1200℃以下の温度領域で2段の成長温度に分けて成長させてなるものが知られている(特許文献1参照)。
このSiC半導体によれば、結晶性に優れた高品質のものが得られる、というものである。
Conventionally, as a SiC semiconductor and a manufacturing method thereof, a β-SiC single crystal thin film is formed on a substrate of an electronic element (Si single crystal substrate) by a CVD (Chemical Vapor Deposition) method at a temperature range of 1200 ° C. or lower. In this case, it is known that the growth is performed by dividing the growth temperature into two stages (see Patent Document 1).
According to this SiC semiconductor, a high-quality one having excellent crystallinity can be obtained.

しかし、従来のSiC半導体及びその製造方法では、Si単結晶基板表面の凹凸が欠陥要因となり、β−SiC単結晶薄膜の結晶品質が低下する不具合がある。
又、SiC/Si界面へ空隙を残したり、多数の欠陥を発生させることにより、SiC on Siデバイスとしての使用を困難にしている。
Si単結晶基板の表面に凹凸が生じるのは、1200℃までのSi単結晶基板の加熱過程において、Si単結晶基板の表面がH2O(水蒸気)やO2(酸素ガス)等の不純物ガスにより800℃付近からエッチングされ、エッチピットが生成されることによるものである。
However, the conventional SiC semiconductor and the manufacturing method thereof have a defect that the unevenness of the surface of the Si single crystal substrate becomes a defect factor and the crystal quality of the β-SiC single crystal thin film is deteriorated.
In addition, leaving voids at the SiC / Si interface or generating a large number of defects makes it difficult to use as a SiC on Si device.
Irregularities occur on the surface of the Si single crystal substrate because the surface of the Si single crystal substrate is heated to 1200 ° C., while the surface of the Si single crystal substrate is an impurity gas such as H 2 O (water vapor) or O 2 (oxygen gas). This is because etching is performed from around 800 ° C. to generate etch pits.

上述したSi単結晶基板表面のエッチングの抑制には、β−SiC単結晶薄膜の成膜の前にSi単結晶基板表面を炭化して形成したSiC単結晶層が有効であるが、表面炭化のみで形成される10nm程度の極薄の層では、エッチングを完全に防止することができない。
特開2003−212694号公報
The SiC single crystal layer formed by carbonizing the surface of the Si single crystal substrate before the formation of the β-SiC single crystal thin film is effective for suppressing the above-described etching of the Si single crystal substrate surface. Etching cannot be completely prevented with an extremely thin layer of about 10 nm formed by (1).
JP 2003-212694 A

本発明は、β−SiC単結晶薄膜を結晶性に優れた高品質なものとし得るSiC半導体及びその製造方法の提供を課題とする。   An object of the present invention is to provide a SiC semiconductor capable of making a β-SiC single crystal thin film of high quality with excellent crystallinity and a method for producing the same.

本発明のSiC半導体は、Si単結晶基板上にアモルファスを含む厚さ3〜20nmの第1SiC層及び多数のβ−SiC成長核からなる厚さ10〜50nmの第2SiC層を順に介在して厚さ1μm以上のβ−SiC単結晶薄膜が形成されていることを特徴とする。   The SiC semiconductor of the present invention is formed by sequentially interposing a first SiC layer having a thickness of 3 to 20 nm containing amorphous and a second SiC layer having a thickness of 10 to 50 nm composed of a number of β-SiC growth nuclei on an Si single crystal substrate. A β-SiC single crystal thin film having a thickness of 1 μm or more is formed.

一方、SiC半導体の製造方法は、Si単結晶基板上にCVD法により第1SiC層を成長温度500〜700℃で3〜20nmの厚さに成長させた後、第1SiC層上にCVD法により第2SiC層を成長温度780〜950℃で10〜50nmの厚さに成長させ、しかる後に、第2SiC層上にCVD法によりβ−SiC単結晶薄膜を成長温度1100℃以上で1μm以上の厚さに成長させることを特徴とする。   On the other hand, the SiC semiconductor manufacturing method is such that after a first SiC layer is grown on a Si single crystal substrate by a CVD method to a thickness of 3 to 20 nm at a growth temperature of 500 to 700 ° C., the first SiC layer is grown on the first SiC layer by a CVD method. The 2SiC layer is grown to a thickness of 10 to 50 nm at a growth temperature of 780 to 950 ° C., and then a β-SiC single crystal thin film is grown on the second SiC layer by a CVD method to a thickness of 1 μm or more at a growth temperature of 1100 ° C. or more. It is characterized by growing.

本発明のSiC半導体及びその製造方法によれば、不純物ガスによるSi単結晶基板表面のエッチング開始温度以下で成長させられてアモルファスを含む第1SiC層が、エッチング開始温度付近でのSi単結晶基板表面のエッチングを防止するエッチング防止層として機能すると共に、その結晶配列の乱れがSiとβ−SiCとの格子不整合を緩和するバッファ層として機能する一方、不純物ガスによるSi単結晶基板表面のエッチング開始温度又はそれよりも高い温度で成長させられて多数のβ−SiC成長核からなる第2SiC層が、1100℃以上の高温域までSi単結晶基板のエッチングを防止するエッチング防止層として機能すると共に、β−SiC成長核がβ−SiC単結晶薄膜の成長を良好とし、かつ、二次元成長化を促進するので、β−SiC単結晶薄膜を結晶性に優れた極めて高品質なものとすることができ、しかも表面性に優れたものとすることができる。   According to the SiC semiconductor and the manufacturing method thereof of the present invention, the first SiC layer grown at a temperature lower than or equal to the etching start temperature of the Si single crystal substrate surface by the impurity gas and containing the amorphous is the surface of the Si single crystal substrate near the etching start temperature. In addition to functioning as an anti-etching layer that prevents the etching of silicon, the disorder of the crystal arrangement functions as a buffer layer that alleviates lattice mismatch between Si and β-SiC, while etching of the Si single crystal substrate surface by impurity gas begins. The second SiC layer made of a large number of β-SiC growth nuclei grown at a temperature or higher than the temperature functions as an etching prevention layer for preventing the etching of the Si single crystal substrate to a high temperature region of 1100 ° C. or higher, β-SiC growth nuclei improve the growth of β-SiC single crystal thin films and promote two-dimensional growth Since, beta-SiC single crystal thin film can be excellent and very high quality ones in crystallinity, moreover can be provided with excellent surface properties.

Si単結晶基板は、Si(100)又はSi(111)が好ましい。   The Si single crystal substrate is preferably Si (100) or Si (111).

第1SiC層の厚さが、3nm未満であると、Siエッチング開始温度(800℃)付近でのエッチング防止効果が得られない。一方、20nmを超えると、エッチング防止効果は向上するが、その後の結晶成長を阻害し結晶性を低下させる要因となる。
第1SiC層の厚さは、5〜15μmがより好ましい。
When the thickness of the first SiC layer is less than 3 nm, the effect of preventing etching near the Si etching start temperature (800 ° C.) cannot be obtained. On the other hand, if the thickness exceeds 20 nm, the etching prevention effect is improved, but it hinders subsequent crystal growth and causes a decrease in crystallinity.
As for the thickness of a 1st SiC layer, 5-15 micrometers is more preferable.

第2SiC層の厚さが、10nm未満であると、1100℃以上の高温まで昇温する際のエッチング防止効果が得られない。一方、50nmを超えると、結晶性低下の要因となる。
第2SiC層の厚さは、15〜30nmがより好ましい。
When the thickness of the second SiC layer is less than 10 nm, the effect of preventing etching when the temperature is raised to a high temperature of 1100 ° C. or higher cannot be obtained. On the other hand, when it exceeds 50 nm, it becomes a factor of crystallinity fall.
The thickness of the second SiC layer is more preferably 15 to 30 nm.

β−SiC単結晶薄膜の厚さが、1μm未満であると、Si単結晶基板の影響を受け易く格子不整合による応力や欠陥が多い領域となる。
β−SiC単結晶薄膜の厚さは、5μm以上がより好ましい。
β−SiC単結晶薄膜の厚さは、いくら厚くてもよいが、300μmを超えると実用的でない。
When the thickness of the β-SiC single crystal thin film is less than 1 μm, it is easily affected by the Si single crystal substrate and becomes a region having many stresses and defects due to lattice mismatch.
The thickness of the β-SiC single crystal thin film is more preferably 5 μm or more.
The β-SiC single crystal thin film may be as thick as possible, but it is not practical when it exceeds 300 μm.

Si単結晶基板は、ケミカルエッチング等により表面を平坦にしたものを用いることが好ましい。
又、Si単結晶基板には、第1SiC層の成長前に、水素アニーリングにより表面クリーニングを施すことが望ましい。
It is preferable to use a Si single crystal substrate whose surface is flattened by chemical etching or the like.
Further, it is desirable to perform surface cleaning of the Si single crystal substrate by hydrogen annealing before the growth of the first SiC layer.

CVD法としては、MOCVD(Metal Organic Chemical Vapor Deposition :有機金属化学的気相成長)法、その他が挙げられる。   Examples of the CVD method include MOCVD (Metal Organic Chemical Vapor Deposition) method and others.

第1SiC層の成長温度が、500℃未満であると、成長速度が極端に遅くなる又は成長しない。一方、700℃を超えると、Siエッチング温度に近づくことからエッチング抑制のための成膜制御困難となる。
第1SiC層の成長温度は、600〜680℃がより好ましい。
第1SiC層の成長原料としては、SiH3CH3(MMS:モノメチルシラン)、その他が用いられる。
If the growth temperature of the first SiC layer is less than 500 ° C., the growth rate becomes extremely slow or does not grow. On the other hand, when the temperature exceeds 700 ° C., film formation control for suppressing etching becomes difficult because the temperature approaches the Si etching temperature.
The growth temperature of the first SiC layer is more preferably 600 to 680 ° C.
As a growth raw material for the first SiC layer, SiH 3 CH 3 (MMS: monomethylsilane) and others are used.

第2SiC層の成長温度が、780℃未満であると、アモルファス成分が多くなることによりその後の結晶成長における結晶性劣化の原因となる。一方、950℃を超えると、第1SiC層だけではエッチング防止できない。
第2SiC層の成長温度は、800〜900℃がより好ましい。
第2SiC層の成長原料としては、SiH3CH3、その他が用いられる。
When the growth temperature of the second SiC layer is lower than 780 ° C., the amorphous component increases, which causes crystallinity deterioration in the subsequent crystal growth. On the other hand, if the temperature exceeds 950 ° C., the first SiC layer alone cannot prevent etching.
The growth temperature of the second SiC layer is more preferably 800 to 900 ° C.
SiH 3 CH 3 and others are used as the growth raw material for the second SiC layer.

β−SiC単結晶薄膜の成長温度が、1100℃未満であると、アモルファス成分が残留する。
β−SiC単結晶薄膜の成長温度は、成長表面マイグレーション(移動)を考慮しなるべく高温であることが好ましいが、1400℃を超えると、Si単結晶基板が軟化する。
β−SiC単結晶薄膜の成長用原料としては、SiH4(モノシラン)及びC38(プロパン)、その他が用いられる。
If the growth temperature of the β-SiC single crystal thin film is less than 1100 ° C., the amorphous component remains.
The growth temperature of the β-SiC single crystal thin film is preferably as high as possible in consideration of growth surface migration (movement), but when it exceeds 1400 ° C., the Si single crystal substrate is softened.
As a raw material for growing the β-SiC single crystal thin film, SiH 4 (monosilane), C 3 H 8 (propane), and others are used.

図1は、本発明に係るSiC半導体の実施例1を示す概念的な断面図である。   FIG. 1 is a conceptual cross-sectional view showing a first embodiment of an SiC semiconductor according to the present invention.

このSiC半導体1は、(100)Si単結晶基板からなる厚さ630μmのSi単結晶基板2上に、アモルファス(非晶質)を含む厚さ5nmの第1SiC層3、及び多数のβ−SiC成長核からなる厚さ18nmの第2SiC層4を順に介在して厚さ10μmのβ−SiC単結晶薄膜5が形成されているものである。   The SiC semiconductor 1 includes a first SiC layer 3 having a thickness of 5 nm including amorphous (amorphous), and a large number of β-SiCs on a Si single crystal substrate 2 made of a (100) Si single crystal substrate and having a thickness of 630 μm. A β-SiC single crystal thin film 5 having a thickness of 10 μm is formed by sequentially interposing a second SiC layer 4 having a thickness of 18 nm made of growth nuclei.

上述したSiC半導体1を製造するには、(100)Si基板からなり、表面をケミカルエッチングしたSi単結晶基板2を準備し、先ず、Si単結晶基板2を基板ホルダーに載せ、反応管(共に図示せず)内の成長領域にセットする。   In order to manufacture the SiC semiconductor 1 described above, a Si single crystal substrate 2 made of a (100) Si substrate and having a chemically etched surface is prepared. First, the Si single crystal substrate 2 is placed on a substrate holder, and a reaction tube (both (Not shown) in the growth region.

次に、ガス導入管からキャリアガスとしてH2(水素ガス)を供給しながら、Si単結晶基板2を1100℃に昇温して基板表面のクリーニングを行う。 Next, while supplying H 2 (hydrogen gas) as a carrier gas from the gas introduction tube, the Si single crystal substrate 2 is heated to 1100 ° C. to clean the substrate surface.

次いで、基板温度を650℃まで降温し、安定したところで原料ガスとしてSiH3CH3を15分間供給して(図2(a)参照)、第1SiC層3(図2(b)参照)を5nmの厚さに成長させる。 Next, the substrate temperature is lowered to 650 ° C., and when stable, SiH 3 CH 3 is supplied as a raw material gas for 15 minutes (see FIG. 2A), and the first SiC layer 3 (see FIG. 2B) is 5 nm. Grow to a thickness of.

次に、基板温度を830℃まで昇温し、安定したところで原料ガスとしてSiH3CH3を10分間供給して(図2(b)参照)、第2SiC層4(図2(c)参照)を18nmの厚さに成長させる。
なお、第1、第2SiC層3,4の成長は、ガス供給量を、H2:12slm、SiH3CH3:2sccmとして25Torrの圧力雰囲気下で行った。
Next, the substrate temperature is raised to 830 ° C., and when stable, SiH 3 CH 3 is supplied as a source gas for 10 minutes (see FIG. 2B), and the second SiC layer 4 (see FIG. 2C). Is grown to a thickness of 18 nm.
The first and second SiC layers 3 and 4 were grown in a pressure atmosphere of 25 Torr with gas supply amounts of H 2 : 12 slm and SiH 3 CH 3 : 2 sccm.

最後に、基板温度を1200℃まで昇温し、原料ガスとしてSiH4及びC38をそれぞれ4.8sccm供給して(図2(c)参照)、8時間かけてβ−SiC単結晶薄膜5(図1参照)を10μmの厚さに成長させる。 Finally, the substrate temperature is raised to 1200 ° C., and 4.8 sccm of SiH 4 and C 3 H 8 are supplied as source gases (see FIG. 2C), and the β-SiC single crystal thin film is taken over 8 hours. 5 (see FIG. 1) is grown to a thickness of 10 μm.

得られたSiC半導体1は、Si単結晶基板2とβ−SiC単結晶薄膜5の界面にエッチピットが存在せず、表面も非常に平坦であった。
又、低温からSiC形成したことにより、界面からの不純物の混入も少なく、成長させたβ−SiC単結晶薄膜5の結晶性も良好であった。
なお、SiC(200)ピークに対するFWHM(Full Width at Half Maximum:半値全幅)は、0.1°であった。
The obtained SiC semiconductor 1 had no etch pits at the interface between the Si single crystal substrate 2 and the β-SiC single crystal thin film 5, and the surface was very flat.
Further, since SiC was formed from a low temperature, impurities were not mixed from the interface, and the crystallinity of the grown β-SiC single crystal thin film 5 was good.
The FWHM (Full Width at Half Maximum) for the SiC (200) peak was 0.1 °.

比較例1Comparative Example 1

実施例1における第1、第2SiC層3,4を形成せずに、その他は実施例1と同様に製造してSiC半導体を得た。   The first and second SiC layers 3 and 4 in Example 1 were not formed, and the others were manufactured in the same manner as in Example 1 to obtain a SiC semiconductor.

得られたSiC半導体は、界面に多数のエッチピットが存在し、SiC(100)ピークが存在する多結晶であった。   The obtained SiC semiconductor was polycrystalline with a large number of etch pits at the interface and a SiC (100) peak.

比較例2Comparative Example 2

基板表面のクリーニングまでは実施例1と同様とし、その後、基板温度650℃まで下げたところでC3 H8 を50sccm供給しながら、昇温速度を200℃/minとして基板温度を1200℃まで昇温し、この温度を5分間保持して炭化層を形成した後、実施例1と同様の条件によりβ−SiC単結晶薄膜を成長させてSiC半導体を得た。   The substrate surface was cleaned in the same manner as in Example 1, and then the substrate temperature was raised to 1200 ° C. at a rate of temperature rise of 200 ° C./min while supplying 50 sccm of C3 H8 when the substrate temperature was lowered to 650 ° C. After maintaining this temperature for 5 minutes to form a carbonized layer, a β-SiC single crystal thin film was grown under the same conditions as in Example 1 to obtain a SiC semiconductor.

得られたSiC半導体は、実施例1と同程度のFWHMとなり、結晶性は良好であったが、界面に数100個/cm2 のエッチピットが存在した。   The obtained SiC semiconductor had a FWHM comparable to that of Example 1 and had good crystallinity, but had several hundreds / cm 2 of etch pits at the interface.

比較例3Comparative Example 3

基板表面のクリーニングまでは実施例1と同様とし、その後、基板温度を800℃まで下げ、安定したところで原料ガスとしてSiH3CH3を10分間供給して、中間SiC単結晶層を10nmの厚さに成長させる。
この際の成長は、ガス供給量を、H2:12slm、SiH3CH3:2sccmとして25Torrの圧力雰囲気下で行った。
The substrate surface is cleaned in the same manner as in Example 1. Thereafter, the substrate temperature is lowered to 800 ° C., and when stable, SiH 3 CH 3 is supplied as a source gas for 10 minutes, and the intermediate SiC single crystal layer has a thickness of 10 nm. To grow.
The growth at this time was performed in a pressure atmosphere of 25 Torr with gas supply amounts of H 2 : 12 slm and SiH 3 CH 3 : 2 sccm.

次に、基板温度を1200℃まで昇温し、実施例1と同様の条件によりβ−SiC単結晶薄膜を成長させてSiC半導体を得た。   Next, the substrate temperature was raised to 1200 ° C., and a β-SiC single crystal thin film was grown under the same conditions as in Example 1 to obtain a SiC semiconductor.

得られたSiC半導体は、実施例1と同程度のFWHMとなり、結晶性は良好であったが、界面に数10個/cm2のエッチピットが存在した。
なお、中間SiC単結晶層の成長時間を延長してその厚さを15nmとした場合、SiC(200)ピークに対するFWHMが0.8°となり結晶性が低下した。逆に成長時間を短縮して厚さを5nmとした場合には、エッチピットが増加した。
The obtained SiC semiconductor had a FWHM similar to that of Example 1 and had good crystallinity, but there were several tens / cm 2 of etch pits at the interface.
When the growth time of the intermediate SiC single crystal layer was extended to a thickness of 15 nm, the FWHM with respect to the SiC (200) peak was 0.8 ° and the crystallinity was lowered. Conversely, when the growth time was shortened to a thickness of 5 nm, etch pits increased.

比較例4Comparative Example 4

基板表面のクリーニングまでは実施例1と同様とし、その後、基板温度を200℃まで降温してから、原料ガスとしてSiH3CH3の供給を開始、ガス供給しながら昇温速度200℃/minで800℃まで昇温して中間SiC単結晶層を20nmの厚さに成長させる。
この際の成長は、ガス供給量を、H2:12slm、SiH3CH3:2sccmとして25Torrの圧力雰囲気下で行った。
The substrate surface is cleaned in the same manner as in Example 1. Thereafter, after the substrate temperature is lowered to 200 ° C., supply of SiH 3 CH 3 as a raw material gas is started, and the temperature rise rate is 200 ° C./min while supplying the gas. The temperature is raised to 800 ° C., and an intermediate SiC single crystal layer is grown to a thickness of 20 nm.
The growth at this time was performed in a pressure atmosphere of 25 Torr with gas supply amounts of H 2 : 12 slm and SiH 3 CH 3 : 2 sccm.

次に、基板温度を1200℃まで昇温し、実施例1と同様の条件でβ−SiC単結晶薄膜を成長させてSiC半導体を得た。   Next, the substrate temperature was raised to 1200 ° C., and a β-SiC single crystal thin film was grown under the same conditions as in Example 1 to obtain a SiC semiconductor.

得られたSiC半導体は、界面にエッチピットが数10個/cm2存在し、SiC(200)ピークに対するFWHMが0.3°であった。
なお、中間SiC単結晶層の厚さを10nmとした場合、FWHMが低下し、結晶性は向上したが、エッチピット数が増加した。
又、昇温速度を80℃/minと遅くした場合、エッチピット数は減少したが、FWHMが1.1°となり、結晶性が低下した。
The obtained SiC semiconductor had several tens of etch pits / cm 2 at the interface, and the FWHM with respect to the SiC (200) peak was 0.3 °.
When the thickness of the intermediate SiC single crystal layer was 10 nm, FWHM decreased and crystallinity improved, but the number of etch pits increased.
Further, when the rate of temperature increase was slowed down to 80 ° C./min, the number of etch pits was reduced, but the FWHM was 1.1 ° and the crystallinity was lowered.

本発明に係るSiC半導体の実施例1を示す概念的な断面図である。1 is a conceptual cross-sectional view showing Example 1 of an SiC semiconductor according to the present invention. 図1のSiC半導体の製造方法を示すもので、(a)は第1工程説明図、(b)は第2工程説明図、(c)は最終工程説明図である。FIGS. 1A and 1B show a method of manufacturing the SiC semiconductor of FIG. 1, in which FIG. 1A is a first process explanatory diagram, FIG. 1B is a second process explanatory diagram, and FIG.

符号の説明Explanation of symbols

1 SiC半導体
2 SiC単結晶基板
3 第1SiC層
4 第2SiC層
5 β−SiC単結晶薄膜
DESCRIPTION OF SYMBOLS 1 SiC semiconductor 2 SiC single crystal substrate 3 1st SiC layer 4 2nd SiC layer 5 (beta) -SiC single crystal thin film

Claims (2)

Si単結晶基板上にアモルファスを含む厚さ3〜20nmの第1SiC層及び多数のβ−SiC成長核からなる厚さ10〜50nmの第2SiC層を順に介在して厚さ1μm以上のβ−SiC単結晶薄膜が形成されていることを特徴とするSiC半導体。   A β-SiC having a thickness of 1 μm or more is formed by sequentially interposing a first SiC layer having a thickness of 3 to 20 nm containing amorphous and a second SiC layer having a thickness of 10 to 50 nm composed of a large number of β-SiC growth nuclei on an Si single crystal substrate. A SiC semiconductor, wherein a single crystal thin film is formed. Si単結晶基板上にCVD法により第1SiC層を成長温度500〜700℃で3〜20nmの厚さに成長させた後、第1SiC層上にCVD法により第2SiC層を成長温度780〜950℃で10〜50nmの厚さに成長させ、しかる後に、第2SiC層上にCVD法によりβ−SiC単結晶薄膜を成長温度1100℃以上で1μm以上の厚さに成長させることを特徴とするSiC半導体の製造方法。
A first SiC layer is grown on a Si single crystal substrate by a CVD method at a growth temperature of 500 to 700 ° C. to a thickness of 3 to 20 nm, and then a second SiC layer is grown on the first SiC layer by a CVD method at a growth temperature of 780 to 950 ° C. And then growing a β-SiC single crystal thin film on the second SiC layer by a CVD method to a thickness of 1 μm or more at a growth temperature of 1100 ° C. or more. Manufacturing method.
JP2004168105A 2004-06-07 2004-06-07 SiC semiconductor and manufacturing method thereof Expired - Fee Related JP4353369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168105A JP4353369B2 (en) 2004-06-07 2004-06-07 SiC semiconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168105A JP4353369B2 (en) 2004-06-07 2004-06-07 SiC semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005347666A JP2005347666A (en) 2005-12-15
JP4353369B2 true JP4353369B2 (en) 2009-10-28

Family

ID=35499722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168105A Expired - Fee Related JP4353369B2 (en) 2004-06-07 2004-06-07 SiC semiconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4353369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403265A (en) 2014-12-22 2020-07-10 信越化学工业株式会社 Composite substrate, method for producing nanocarbon film, and nanocarbon film
JP7259906B2 (en) * 2021-09-21 2023-04-18 信越半導体株式会社 Manufacturing method of heteroepitaxial wafer
JP7218832B1 (en) * 2022-06-14 2023-02-07 信越半導体株式会社 Manufacturing method of heteroepitaxial wafer

Also Published As

Publication number Publication date
JP2005347666A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4850960B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP4719314B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5013859B2 (en) Semiconductor device and thin layer strain relaxation buffer growth method
WO2012144614A1 (en) Epitaxial silicon carbide single-crystal substrate and process for producing same
WO2014077039A1 (en) Method for manufacturing silicon carbide semiconductor device
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP2007273524A (en) Manufacturing method of multilayer-structured silicon carbide substrate
JP5997258B2 (en) Stacked substrate of silicon single crystal and group III nitride single crystal having off-angle, and method for manufacturing the same
JP2015078093A (en) 3C-SiC EPITAXIAL LAYER MANUFACTURING METHOD, 3C-SiC EPITAXIAL SUBSTRATE, AND SEMICONDUCTOR DEVICE
US9882010B2 (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP4353369B2 (en) SiC semiconductor and manufacturing method thereof
JP2008028277A (en) Manufacturing method for semiconductor substrate
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
JP2006222402A (en) Gallium nitride system compound semiconductor and method for manufacturing the same
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
CN113089091A (en) Boron nitride template and preparation method thereof
JP3909690B2 (en) Method for producing SiC film by epitaxial growth
JP2009274899A (en) Method for manufacturing substrate for epitaxy of silicon carbide
KR100643155B1 (en) Method of preparing silicon substrate-gallium nitride thin film laminated body
JP2005223215A (en) Method for producing silicon carbide single crystal film on si substrate and silicon carbide semiconductor device produced by using same
JP2010225733A (en) Method of manufacturing semiconductor substrate
JP2010225734A (en) Method of manufacturing semiconductor substrate
JP3055158B2 (en) Method for manufacturing silicon carbide semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

R150 Certificate of patent or registration of utility model

Ref document number: 4353369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees