JP2006253617A - SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD - Google Patents
SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD Download PDFInfo
- Publication number
- JP2006253617A JP2006253617A JP2005078383A JP2005078383A JP2006253617A JP 2006253617 A JP2006253617 A JP 2006253617A JP 2005078383 A JP2005078383 A JP 2005078383A JP 2005078383 A JP2005078383 A JP 2005078383A JP 2006253617 A JP2006253617 A JP 2006253617A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- single crystal
- layer
- crystal substrate
- plane orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
本発明は、Si(シリコン、ケイ素)単結晶基板上にβ−SiC(立方晶炭化ケイ素)単結晶薄膜を形成してなり、次世代電子素子、高速高温動作可能電子素子、太陽光発電素子等としての応用が期待されているSiC半導体(SiC半導体基板の用途も含む)およびその製造方法に関する。 The present invention comprises a β-SiC (cubic silicon carbide) single crystal thin film formed on a Si (silicon, silicon) single crystal substrate, a next-generation electronic device, an electronic device capable of high-speed and high-temperature operation, a photovoltaic power generation device, etc. The present invention relates to a SiC semiconductor (including the use of a SiC semiconductor substrate) that is expected to be applied as a semiconductor device and a manufacturing method thereof.
SiCは、広いバンドギャップ、高い電子移動度、高耐熱性等の優れた特性を有しており、また、構成元素の資源量が豊富であり、かつ、環境汚染への懸念が小さいこと等から、次世代電子素子、高速高温動作可能電子素子、太陽光発電素子等における化合物半導体としての応用が期待される材料である。
特に、Si単結晶基板上に形成されたSiC薄膜は、現在のシリコンテクノロジーを継承することができるため、産業技術の開発コストにおける優位性からも、その実用化が求められている。
SiC has excellent characteristics such as a wide band gap, high electron mobility, and high heat resistance, is rich in the amount of constituent elements, and has little concern about environmental pollution. It is a material expected to be applied as a compound semiconductor in next-generation electronic devices, electronic devices capable of high-speed and high-temperature operation, solar power generation devices, and the like.
In particular, the SiC thin film formed on the Si single crystal substrate can inherit the current silicon technology, and therefore, its practical use is required also from the advantage in the development cost of industrial technology.
上記のようなSiC薄膜の形成方法としては、各種CVD法、スパッタリング法、各種MBE法等が用いられている。
これらの方法によって結晶性に優れたSiC膜を得るためには、Si−C間の結合が共有結合であり、化学結合形成エネルギーおよびエピタキシャル結晶成長のための拡散エネルギーがともに大きいことから、例えば、CVD法においては、1200℃以上での高温条件を要する。また、スパッタリング法、MBE法においては、高真空雰囲気下で成長させなければならない。
As a method of forming the SiC thin film as described above, various CVD methods, sputtering methods, various MBE methods and the like are used.
In order to obtain a SiC film having excellent crystallinity by these methods, the bond between Si and C is a covalent bond, and both the chemical bond formation energy and the diffusion energy for epitaxial crystal growth are large. In the CVD method, a high temperature condition of 1200 ° C. or higher is required. Further, in the sputtering method and the MBE method, it must be grown in a high vacuum atmosphere.
さらに、SiとSiCは、格子定数において約20%と格子不整合が大きく、Si単結晶基板上に高品質なSiC膜を連続して成長させることは極めて困難であるため、成膜前のSi単結晶基板表面を炭化水素雰囲気中で熱処理して極薄のSiC単結晶層を形成しておく方法等が採用されていた。 Furthermore, Si and SiC have a large lattice mismatch of about 20% in lattice constant, and it is extremely difficult to continuously grow a high-quality SiC film on a Si single crystal substrate. A method of forming a very thin SiC single crystal layer by heat-treating the surface of the single crystal substrate in a hydrocarbon atmosphere has been adopted.
また、Si単結晶基板上には、通常、該Si単結晶基板の面方位と同じ面方位の3C−SiCがエピタキシャル成長することから、面方位(111)の3C−SiC単結晶層を得るためには、面方位(111)のSi単結晶基板が用いられていた。
しかしながら、面方位(111)のSi単結晶基板上に面方位(111)の3C−SiC単結晶層を形成する場合、面方位(001)のSi単結晶基板上に成長させる場合と比べて、2倍以上もの反りが発生し、後の取扱いが困難であるという課題を有していた。
In addition, since 3C-SiC having the same plane orientation as that of the Si single crystal substrate is usually epitaxially grown on the Si single crystal substrate, a 3C-SiC single crystal layer having a plane orientation (111) is obtained. Used a Si single crystal substrate with a plane orientation (111).
However, when a 3C-SiC single crystal layer with a plane orientation (111) is formed on a Si single crystal substrate with a plane orientation (111), compared to the case of growing on a Si single crystal substrate with a plane orientation (001), Twice or more warping occurred, and there was a problem that later handling was difficult.
これに対して、非特許文献1には、面方位(110)のSi単結晶基板を用いた場合、異なる面方位(111)の3C−SiC単結晶が成長することが開示されている。
上記非特許文献1記載の方法においても、Si単結晶基板とSiC単結晶との間の格子不整合を緩和するため、炭化水素ガスを導入し、Si単結晶基板表面を炭化して薄いSiC層を形成している。
Also in the method described in
しかしながら、導入する炭化水素ガス濃度が低いと、H2OやO2等の不純物ガスにより、800℃付近を超えると、Si単結晶基板表面のエッチングが生じる。
一方、導入する炭化水素ガス濃度が高すぎると、Si単結晶基板表面における炭化反応の進行よりも供給されるCが過剰となるため、反応が不均一になり、Si単結晶基板表面の分解およびSiCの異常成長が生じ、巨大な炭化SiC粒が形成される場合がある。
特に、エッチングされる温度よりも低温から炭化水素ガスを導入して昇温する場合、炭化SiC層の形成速度よりも昇温速度が大きいと、この場合も、エッチングが生じるため、昇温速度に対する炭化水素ガス濃度の調節等の厳密な制御が必要となる。
However, when the concentration of the introduced hydrocarbon gas is low, etching of the surface of the Si single crystal substrate occurs when the temperature exceeds about 800 ° C. due to an impurity gas such as H 2 O or O 2 .
On the other hand, if the concentration of hydrocarbon gas to be introduced is too high, the supplied C becomes excessive rather than the progress of the carbonization reaction on the surface of the Si single crystal substrate. There is a case where abnormal growth of SiC occurs and huge carbonized SiC grains are formed.
In particular, when the temperature is raised by introducing a hydrocarbon gas from a temperature lower than the temperature at which etching is performed, if the temperature rise rate is larger than the formation rate of the SiC carbide layer, etching also occurs in this case. Strict control such as adjustment of hydrocarbon gas concentration is required.
CVD法においては、Si単結晶基板表面がエッチングされた場合、このエッチングによる凹凸が欠陥要因となり、その後のSiC単結晶の成長に悪影響を及ぼす。SiC/Si界面にエッチピットの空隙が残ったり、多数の欠陥が発生することによって、Si単結晶基板上にSiC単結晶を備えた、いわゆるSiC on Siデバイスとしての使用は困難となる。 In the CVD method, when the surface of the Si single crystal substrate is etched, the unevenness caused by this etching becomes a defect factor, which adversely affects the subsequent growth of the SiC single crystal. Etch pit voids remain at the SiC / Si interface or many defects occur, making it difficult to use as a so-called SiC on Si device having a SiC single crystal on a Si single crystal substrate.
また、3C−SiC単結晶の成長表面については、常圧雰囲気下で成長させた場合、拡散層が狭くなり異常成長が増加することにより、凹凸が激しくなるため、この凹凸を抑制するために、減圧雰囲気下での成長が用いられる。
しかしながら、面方位(110)のSi単結晶基板上に面方位(111)の3C−SiC単結晶を成長させる際、上記のように、成長表面の凹凸を抑制するために、減圧雰囲気下で成長させると、3C−SiC単結晶は、Si単結晶基板の方位を引き継いで、(110)配向が優位となってしまう。
In addition, as for the growth surface of the 3C-SiC single crystal, when grown under normal pressure atmosphere, the diffusion layer becomes narrow and abnormal growth increases, so that the unevenness becomes intense. Growth under reduced pressure is used.
However, when a 3C-SiC single crystal with a plane orientation (111) is grown on a Si single crystal substrate with a plane orientation (110), as described above, it is grown in a reduced pressure atmosphere in order to suppress unevenness of the growth surface. Then, the 3C-SiC single crystal takes over the orientation of the Si single crystal substrate, and the (110) orientation becomes dominant.
したがって、Si単結晶基板上に、格子不整合に起因する欠陥やエッチング等を生じることなく、高品質の面方位(111)の3C−SiC単結晶を形成することができる方法が求められていた。 Therefore, there has been a demand for a method capable of forming a high-quality plane orientation (111) 3C-SiC single crystal on a Si single crystal substrate without causing defects or etching due to lattice mismatch. .
本発明は、上記技術的課題を解決するためになされたものであり、表面の凹凸および反りが低減され、結晶性に優れた高品質な面方位(111)の3C−SiC単結晶薄膜を備えた半導体、および、Si単結晶基板上に、格子不整合を緩和し、かつ、エッチングを防止して、確実かつ容易に、面方位(111)の3C−SiC単結晶薄膜を形成することができるSiC半導体の製造方法を提供することを目的とするものである。 The present invention has been made to solve the above technical problem, and includes a high-quality plane orientation (111) 3C-SiC single crystal thin film with reduced surface irregularities and warpage and excellent crystallinity. 3C-SiC single crystal thin film having a plane orientation (111) can be reliably and easily formed on a semiconductor and Si single crystal substrate by relaxing lattice mismatch and preventing etching. It aims at providing the manufacturing method of a SiC semiconductor.
本発明に係るSiC半導体は、面方位(110)のSi単結晶基板上に、水素が1019atoms/cm3以上含まれる3C−SiC層を介して、面方位(111)の3C−SiC単結晶層が形成されていることを特徴とする。
このように、Si単結晶基板と3C−SiC単結晶層との間に、水素が1019atoms/cm3以上含まれる3C−SiC層を介在させることにより、欠陥および反りの少ない高品質な3C−SiC単結晶層を得ることができる。
The SiC semiconductor according to the present invention has a surface orientation (111) 3C-SiC single layer via a 3C-SiC layer containing hydrogen of 10 19 atoms / cm 3 or more on a surface orientation (110) Si single crystal substrate. A crystal layer is formed.
Thus, by interposing the 3C-SiC layer containing hydrogen at 10 19 atoms / cm 3 or more between the Si single crystal substrate and the 3C-SiC single crystal layer, high-quality 3C with few defects and warpage. A SiC single crystal layer can be obtained.
また、本発明に係るSiC半導体の製造方法は、面方位(110)のSi単結晶基板上に、有機化合物ガスを用いて、300Torr以下の減圧雰囲気下、780〜950℃で、水素が1019atoms/cm3以上含まれる3C−SiC低温成長層を気相成長させた後、その上に面方位(111)の3C−SiC単結晶層を形成することを特徴とする。
上記のように、面方位(110)のSi単結晶基板上に、有機化合物ガスを用いて、3C−SiC低温成長層を形成しておくことにより、減圧雰囲気下においても、格子不整合が緩和され、かつ、エッチング生じることなく、しかも、表面の凹凸が低減された高品質な面方位(111)の3C−SiC単結晶層を成長させることができる。
In addition, in the method for producing an SiC semiconductor according to the present invention, an organic compound gas is used on a Si single crystal substrate having a plane orientation (110) in a reduced pressure atmosphere of 300 Torr or less at 780 to 950 ° C. and hydrogen is 10 19. A 3C—SiC low-temperature growth layer contained in atoms / cm 3 or more is vapor-phase grown, and then a 3C—SiC single crystal layer having a plane orientation (111) is formed thereon.
As described above, by forming a 3C-SiC low-temperature growth layer on an Si single crystal substrate with a plane orientation (110) using an organic compound gas, lattice mismatch is alleviated even in a reduced-pressure atmosphere. In addition, it is possible to grow a 3C—SiC single crystal layer having a high-quality plane orientation (111) with no surface unevenness without causing etching.
上記製造方法においては、3C−SiC低温成長層の厚さを10〜750nmとすることが好ましい。
3C−SiC低温成長層は、格子不整合緩和の効果およびその上に高温で成長させる3C−SiC単結晶層の結晶性保持の観点から、上記範囲内の厚さとすることが好ましい。
In the said manufacturing method, it is preferable that the thickness of a 3C-SiC low temperature growth layer shall be 10-750 nm.
The 3C-SiC low temperature growth layer preferably has a thickness in the above range from the viewpoint of the effect of relaxation of lattice mismatch and the maintenance of crystallinity of the 3C-SiC single crystal layer grown on the 3C-SiC low temperature growth layer.
また、前記3C−SiC単結晶層は、1100℃以上で形成されることが好ましい。
3C−SiC単結晶層の表面を平滑な状態で得るため、成長表面マイグレーションを考慮して、高温で形成することが好ましい。
The 3C—SiC single crystal layer is preferably formed at 1100 ° C. or higher.
In order to obtain the surface of the 3C—SiC single crystal layer in a smooth state, it is preferably formed at a high temperature in consideration of growth surface migration.
本発明に係るSiC半導体の製造方法によれば、Si単結晶基板との格子不整合を緩和し、かつ、界面におけるエッチングを防止して、確実かつ容易に、面方位(111)の3C−SiC単結晶層を形成することができる。
また、上記製造方法により得られる本発明に係るSiC半導体は、表面の凹凸および反りが低減され、結晶性に優れた高品質の3C−SiC単結晶層を備えており、高出力電子デバイス等として用いることができるだけでなく、これを基礎として、4H−SiC、6H−SiC、GaN等の六方晶系化合物半導体の結晶成長用基板としても利用することができる。
According to the manufacturing method of the SiC semiconductor according to the present invention, the lattice mismatch with the Si single crystal substrate is relaxed, and the etching at the interface is prevented, so that the 3C-SiC having the plane orientation (111) can be surely and easily obtained. A single crystal layer can be formed.
Further, the SiC semiconductor according to the present invention obtained by the above manufacturing method has a high-quality 3C-SiC single crystal layer with reduced surface irregularities and warpage and excellent crystallinity, and as a high-power electronic device or the like Not only can it be used, but it can also be used as a substrate for crystal growth of hexagonal compound semiconductors such as 4H—SiC, 6H—SiC, and GaN based on this.
以下、本発明をより詳細に説明する。
図1に、本発明に係るSiC半導体の製造方法の工程の概略を示す。
本発明に係る製造方法は、面方位(110)のSi単結晶基板1(図1(a))上に、有機化合物ガスを用いて、3C−SiC低温成長層2を気相成長させ(図1(b))、その上に、面方位(111)の3C−SiC単結晶層3を形成する(図1(c))工程を経るものである。
すなわち、本発明に係るSiC半導体の製造方法は、Si単結晶基板1と3C−SiC単結晶層3との間に、有機化合物ガスを用いて形成する3C−SiC低温成長層2を介在させることを特徴とするものである。
これにより、面方位(110)のSi単結晶基板上に、面方位(111)の3C−SiC単結晶層の減圧雰囲気下での成長を可能とし、表面の凹凸が低減された高品質な3C−SiC単結晶を得ることができる。
Hereinafter, the present invention will be described in more detail.
In FIG. 1, the outline of the process of the manufacturing method of the SiC semiconductor which concerns on this invention is shown.
In the manufacturing method according to the present invention, a 3C-SiC low-temperature growth layer 2 is vapor-phase grown on an Si single crystal substrate 1 (FIG. 1A) having a plane orientation (110) using an organic compound gas (FIG. 1). 1 (b)), and a 3C-SiC
That is, in the method of manufacturing an SiC semiconductor according to the present invention, the 3C-SiC low-temperature growth layer 2 formed using an organic compound gas is interposed between the Si
Thereby, it is possible to grow a 3C-SiC single crystal layer having a surface orientation (111) in a reduced pressure atmosphere on a Si single crystal substrate having a surface orientation (110), and high quality 3C with reduced surface irregularities. -A SiC single crystal can be obtained.
したがって、上記のような本発明に係る製造方法によれば、面方位(110)のSi単結晶基板上に、水素が1019atoms/cm3以上含まれる3C−SiC層を介して、面方位(111)の3C−SiC単結晶層が形成されている本発明に係るSiC半導体が得られる。
このSiC半導体は、面方位(110)のSi単結晶基板上に面方位(111)の3C−SiCを結晶成長させたものであり、従来のように、面方位(111)のSi単結晶基板上に同一面方位で面方位(111)の3C−SiCを成長させた場合と比較して、格子不整合率が20%から2%に低減され、欠陥および反りの少ない高品質な結晶として面方位(111)の3C−SiCを得ることができる。
Therefore, according to the manufacturing method according to the present invention as described above, the plane orientation is obtained via the 3C—SiC layer containing hydrogen of 10 19 atoms / cm 3 or more on the Si single crystal substrate having the plane orientation (110). The SiC semiconductor according to the present invention in which the (111) 3C—SiC single crystal layer is formed is obtained.
This SiC semiconductor is obtained by crystal-growing 3C-SiC having a plane orientation (111) on a Si single crystal substrate having a plane orientation (110). Compared with the case where 3C-SiC with the same plane orientation and (111) plane orientation is grown on the surface, the lattice mismatch rate is reduced from 20% to 2%, and the surface is formed as a high-quality crystal with few defects and warpage. 3C-SiC with the orientation (111) can be obtained.
本発明に係る製造方法においては、まず、面方位(110)のSi単結晶基板1上に、3C−SiC低温成長層2を形成する(図1(b)参照)。
前記3C−SiC低温成長層2の形成は、有機化合物ガスを用いて、300Torr以下の減圧雰囲気下、780〜950℃で気相成長させることにより行う。
In the manufacturing method according to the present invention, first, a 3C—SiC low-temperature growth layer 2 is formed on a Si
The 3C-SiC low temperature growth layer 2 is formed by vapor phase growth at 780 to 950 ° C. in a reduced pressure atmosphere of 300 Torr or less using an organic compound gas.
本発明におけるSi単結晶基板1には、CZ(チョクラルスキー)法により製造されたものに限られず、FZ(フローティングゾーン)法により製造されたもの、および、これらのSi単結晶基板に気相成長によりSi単結晶層をエピタキシャル成長させたもの(Siエピ基板)等であってもよいが、結晶面方位(110)のものを用いる。
Si単結晶は、大型のバルクとして容易に製造することができ、ウエハの加工技術も成熟しているため、素子形成の基板として好適に用いることができる。
なお、前記Si単結晶基板1は、3C−SiC低温成長層2の形成前に、エッチング処理し、水素雰囲気下、1000〜1350℃での熱処理により自然酸化膜を除去し、表面を清浄にしておくことが好ましい。
The Si
The Si single crystal can be easily manufactured as a large bulk, and since the wafer processing technology is mature, it can be suitably used as a substrate for element formation.
The Si
上記気相成長において用いられる有機化合物ガスとしては、有機シラン等の比較的低温でSiCを生成することができるガスが好ましい。
SiおよびCの両元素を含む有機シランガスを用いれば、SiC形成のために、Si単結晶基板からのSiの供給は不要であるため、エッチングが生じない。
したがって、このようなガスを用いた低温気相成長によって、水素が1019atoms/cm3以上含まれる3C−SiC層が形成され、これにより、従来の炭化層形成のような厳しい条件設定をすることなく、格子不整合の緩和およびエッチング防止を図ることができる。
The organic compound gas used in the vapor phase growth is preferably a gas that can generate SiC at a relatively low temperature, such as organosilane.
If an organosilane gas containing both elements of Si and C is used, etching does not occur because it is not necessary to supply Si from the Si single crystal substrate in order to form SiC.
Therefore, a low temperature vapor phase growth using such a gas forms a 3C-SiC layer containing 10 19 atoms / cm 3 or more of hydrogen, thereby setting severe conditions as in the conventional carbonized layer formation. Therefore, it is possible to alleviate lattice mismatch and prevent etching.
前記3C−SiC低温成長層2における水素濃度が1019atoms/cm3未満である場合は、Si単結晶基板1との格子不整合の緩和およびエッチング防止を十分に図ることができない。
因みに、炭化や1000℃以上の高温を必要とする3C−SiC成長においては、水素が1019atoms/cm3以上含まれる3C−SiC層が形成され難く、Si基板のエッチング温度を上回るためエッチングを防止することができない。
When the hydrogen concentration in the 3C-SiC low temperature growth layer 2 is less than 10 19 atoms / cm 3 , the lattice mismatch with the Si
Incidentally, in 3C-SiC growth that requires carbonization and a high temperature of 1000 ° C. or higher, it is difficult to form a 3C—SiC layer containing hydrogen of 10 19 atoms / cm 3 or more, and etching is performed because it exceeds the etching temperature of the Si substrate. It cannot be prevented.
前記3C−SiC低温成長層2の気相成長は、成長表面の凹凸低減のため、減圧雰囲気で行い、300Torr以下、より好ましくは100Torr以下で行う。
また、前記3C−SiC低温成長層2の形成温度は、780℃以上950℃以下とすることが好ましい。
前記形成温度が780℃未満の場合、アモルファス組成が多くなり、その後、高温で成長させる3C−SiC単結晶層3の結晶性を劣化させる。一方、前記温度が950℃を超える場合は、有機シランガス等の分解が促進されて、SiCが形成されるよりも、Siが析出する割合が多くなる。
The vapor phase growth of the 3C-SiC low temperature growth layer 2 is performed in a reduced pressure atmosphere to reduce unevenness of the growth surface, and is performed at 300 Torr or less, more preferably 100 Torr or less.
Moreover, it is preferable that the formation temperature of the said 3C-SiC low temperature growth layer 2 shall be 780 degreeC or more and 950 degrees C or less.
When the formation temperature is lower than 780 ° C., the amorphous composition increases, and then the crystallinity of the 3C—SiC
また、前記3C−SiC低温成長層2の厚さは、10〜750nmとすることが好ましい。
前記厚さが10nm未満である場合、格子不整合緩和の効果が十分に得られず、その後、高温で成長させる3C−SiC単結晶層3の結晶性を劣化させたり、多結晶化させることとなり、また、Si単結晶基板1のエッチングも生じやすくなる。
一方、3C−SiC低温成長層は、高温で成長させるよりも結晶性が劣るため、厚すぎてもその後の結晶性を劣化させることとなるため、前記厚さが750nmを超えることは好ましくない。
The thickness of the 3C—SiC low temperature growth layer 2 is preferably 10 to 750 nm.
When the thickness is less than 10 nm, the effect of relaxation of lattice mismatch is not sufficiently obtained, and thereafter the crystallinity of the 3C—SiC
On the other hand, since the 3C-SiC low temperature growth layer is inferior in crystallinity to that grown at a high temperature, even if it is too thick, the subsequent crystallinity is deteriorated. Therefore, it is not preferable that the thickness exceeds 750 nm.
次に、前記3C−SiC低温成長層2の上に、面方位(111)の3C−SiC単結晶層3を形成する(図1(c)参照)。
具体的には、前記3C−SiC単結晶層は、例えば、原料ガスとしてシランとプロパンの混合ガス、キャリアガスとして水素ガスを用いて、1150〜1350℃程度で、300Torr以下の減圧雰囲気下、CVD法により、所望の厚さまで気相成長させることによって形成することができる。
上記のようにして形成された3C−SiC低温成長層2上であれば、減圧雰囲気下で、Si単結晶基板の面方位(110)とは異なる面方位(111)の3C−SiC単結晶層を、格子不整合に起因する欠陥およびエッチングを生じさせることなく、表面の凹凸が低減された高品質な結晶として成長させることができる。
Next, a 3C-SiC
Specifically, the 3C-SiC single crystal layer is formed by using, for example, a mixed gas of silane and propane as a source gas and hydrogen gas as a carrier gas, under a reduced pressure atmosphere of about 1150 to 1350 ° C. and 300 Torr or less. It can be formed by vapor growth to a desired thickness by the method.
If it is on the 3C-SiC low temperature growth layer 2 formed as described above, the 3C-SiC single crystal layer having a plane orientation (111) different from the plane orientation (110) of the Si single crystal substrate in a reduced pressure atmosphere. Can be grown as a high quality crystal with reduced surface irregularities without causing defects and etching due to lattice mismatch.
前記3C−SiC単結晶層3は、表面が平滑になるために十分な膜厚を確保できるまで成長させることが好ましく、その成長温度は、成長表面マイグレーションを考慮して、1100℃以上の高温とすることが好ましい。
The 3C-SiC
以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により制限されるものではない。
[実施例1]
表面をケミカルエッチングした面方位(110)のSi単結晶基板表面を、キャリアガスとして水素(H2)を用いて、50Torrの減圧雰囲気下、1100℃でクリーニングした。
このSi単結晶基板を830℃まで降温し、MMS(モノメチルシラン:SiH2CH3)を用いて、ガス流量比MMS:H2=1:10000にて供給し、CVD法により、10分間で厚さ約30nmの3C−SiC低温成長層を形成した。
次に、MMSの供給を止め、キャリアガス(H2)だけを供給しながら、1200℃まで昇温した後、SiH4とC3H8を、ガス流量比SiH4:C3H8:H2=1:2:10000にて供給し、8時間で厚さ10μmの3C−SiC単結晶層を気相成長させた。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
The surface of the Si single crystal substrate having a surface orientation (110) whose surface was chemically etched was cleaned at 1100 ° C. in a reduced pressure atmosphere of 50 Torr using hydrogen (H 2 ) as a carrier gas.
The temperature of the Si single crystal substrate was lowered to 830 ° C., and MMS (monomethylsilane: SiH 2 CH 3 ) was used to supply a gas flow rate ratio of MMS: H 2 = 1: 10000, and the thickness was increased by CVD for 10 minutes. A 3C-SiC low temperature growth layer having a thickness of about 30 nm was formed.
Next, the supply of MMS is stopped, and the temperature is raised to 1200 ° C. while supplying only the carrier gas (H 2 ), and then SiH 4 and C 3 H 8 are converted into a gas flow rate ratio of SiH 4 : C 3 H 8 : H. 2 = 1: 2: 10000, and a 3 C—SiC single crystal layer having a thickness of 10 μm was vapor-phase grown in 8 hours.
得られたSi(110)基板上の3C−SiC単結晶は、X線回折分析の結果、面方位(111)の非常にシャープなピークが認められ、Si単結晶基板との界面は、エッチングされていなかった。
また、3C−SiC単結晶層の表面は平滑であり、その面粗さは、常圧において3C−SiC単結晶層を成長させた場合の約半分であった。
As a result of X-ray diffraction analysis, the 3C-SiC single crystal on the Si (110) substrate obtained has a very sharp peak in the plane orientation (111), and the interface with the Si single crystal substrate is etched. It wasn't.
Further, the surface of the 3C—SiC single crystal layer was smooth, and the surface roughness was about half that when the 3C—SiC single crystal layer was grown at normal pressure.
[比較例1]
面方位(111)のSi単結晶基板上に、C3H8を用いたSi単結晶基板表面の炭化により、炭化SiC層を形成した。
この炭化SiC層上に、実施例1と同様にして、3C−SiC単結晶層を成長させた。
[Comparative Example 1]
A carbonized SiC layer was formed on the surface of the Si single crystal substrate with the plane orientation (111) by carbonization of the surface of the Si single crystal substrate using C 3 H 8 .
A 3C—SiC single crystal layer was grown on the carbonized SiC layer in the same manner as in Example 1.
X線回折分析の結果、3C−SiC単結晶層は、面方位(111)であり、結晶性も実施例1と同様に良好であったが、反りが大きく、また、厚さ1μm以上に成長させると、クラックが発生した。 As a result of X-ray diffraction analysis, the 3C-SiC single crystal layer was in the plane orientation (111) and the crystallinity was good as in Example 1, but the warpage was large and the thickness grew to 1 μm or more. When cracked, cracks occurred.
[比較例2]
面方位(110)のSi単結晶基板上に、常圧で、C3H8を用いたSi単結晶基板表面の炭化により、炭化SiC層を形成した。
この炭化SiC層上に、実施例1と同様にして、3C−SiC単結晶層を成長させた。
[Comparative Example 2]
A carbonized SiC layer was formed on the Si single crystal substrate having a plane orientation (110) by carbonization of the surface of the Si single crystal substrate using C 3 H 8 at normal pressure.
A 3C—SiC single crystal layer was grown on the carbonized SiC layer in the same manner as in Example 1.
X線回折分析の結果、3C−SiC単結晶層のピークは、実施例1と同程度の半値幅であり、結晶性は良好であったが、Si単結晶基板との界面に5×103個/cm2程度のエッチピットが存在した。 As a result of X-ray diffraction analysis, the peak of the 3C—SiC single crystal layer had a half-value width similar to that of Example 1 and the crystallinity was good, but 5 × 10 3 at the interface with the Si single crystal substrate. Etch pits of about 1 piece / cm 2 existed.
[比較例3]
面方位(110)のSi単結晶基板上に、減圧雰囲気下、C3H8を用いたSi単結晶基板表面の炭化により、炭化SiC層を形成した。
この炭化SiC層上に、実施例1と同様にして、3C−SiC単結晶層を成長させた。
[Comparative Example 3]
A carbonized SiC layer was formed by carbonizing the surface of the Si single crystal substrate using C 3 H 8 in a reduced pressure atmosphere on the Si single crystal substrate having the plane orientation (110).
A 3C—SiC single crystal layer was grown on the carbonized SiC layer in the same manner as in Example 1.
成長表面は鏡面ではなく、また、X線回折分析の結果、面方位(110)配向が強い3C−SiC多結晶であることが認められた。 The growth surface was not a mirror surface, and as a result of X-ray diffraction analysis, it was confirmed that the growth surface was 3C-SiC polycrystal having a strong plane orientation (110) orientation.
1 Si単結晶基板
2 3C−SiC低温成長層
3 3C−SiC単結晶層
1 Si single crystal substrate 2 3C-SiC low
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005078383A JP2006253617A (en) | 2005-02-14 | 2005-03-18 | SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005036946 | 2005-02-14 | ||
JP2005078383A JP2006253617A (en) | 2005-02-14 | 2005-03-18 | SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006253617A true JP2006253617A (en) | 2006-09-21 |
Family
ID=37093734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005078383A Pending JP2006253617A (en) | 2005-02-14 | 2005-03-18 | SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006253617A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122368A1 (en) * | 2010-03-29 | 2011-10-06 | エア・ウォーター株式会社 | Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate |
JP2013070055A (en) * | 2006-12-12 | 2013-04-18 | Applied Materials Inc | Formation of in-situ phosphorus-doped epitaxial layer containing silicon and carbon |
JP5388136B2 (en) * | 2008-03-10 | 2014-01-15 | 国立大学法人東北大学 | Graphene or graphite thin film, manufacturing method thereof, thin film structure and electronic device |
WO2023047755A1 (en) | 2021-09-21 | 2023-03-30 | 信越半導体株式会社 | Method for producing heteroepitaxial wafer |
CN117438391A (en) * | 2023-12-18 | 2024-01-23 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228297A (en) * | 1998-02-10 | 1999-08-24 | Japan Atom Energy Res Inst | Preparation of single crystal thin membrane of cubic silicon carbide |
JP2003212694A (en) * | 2002-01-28 | 2003-07-30 | Toshiba Ceramics Co Ltd | METHOD OF GROWING SiC OR GaN SINGLE CRYSTAL ON SUBSTRATE OF ELECTRONIC DEVICE |
-
2005
- 2005-03-18 JP JP2005078383A patent/JP2006253617A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228297A (en) * | 1998-02-10 | 1999-08-24 | Japan Atom Energy Res Inst | Preparation of single crystal thin membrane of cubic silicon carbide |
JP2003212694A (en) * | 2002-01-28 | 2003-07-30 | Toshiba Ceramics Co Ltd | METHOD OF GROWING SiC OR GaN SINGLE CRYSTAL ON SUBSTRATE OF ELECTRONIC DEVICE |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013070055A (en) * | 2006-12-12 | 2013-04-18 | Applied Materials Inc | Formation of in-situ phosphorus-doped epitaxial layer containing silicon and carbon |
JP5388136B2 (en) * | 2008-03-10 | 2014-01-15 | 国立大学法人東北大学 | Graphene or graphite thin film, manufacturing method thereof, thin film structure and electronic device |
WO2011122368A1 (en) * | 2010-03-29 | 2011-10-06 | エア・ウォーター株式会社 | Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate |
JP2011225421A (en) * | 2010-03-29 | 2011-11-10 | Air Water Inc | METHOD FOR PRODUCING SINGLE-CRYSTAL 3C-SiC SUBSTRATE, AND RESULTING SINGLE-CRYSTAL 3C-SiC SUBSTRATE |
US8986448B2 (en) | 2010-03-29 | 2015-03-24 | Air Water Inc. | Method of manufacturing single crystal 3C-SiC substrate and single crystal 3C-SiC substrate obtained from the manufacturing method |
WO2023047755A1 (en) | 2021-09-21 | 2023-03-30 | 信越半導体株式会社 | Method for producing heteroepitaxial wafer |
KR20240069717A (en) | 2021-09-21 | 2024-05-20 | 신에쯔 한도타이 가부시키가이샤 | Manufacturing method of heteroepitaxial wafer |
CN117438391A (en) * | 2023-12-18 | 2024-01-23 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
CN117438391B (en) * | 2023-12-18 | 2024-03-15 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113235047B (en) | Preparation method of AlN thin film | |
US9752254B2 (en) | Method for manufacturing a single-crystal 4H—SiC substrate | |
JP2007230823A (en) | Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot | |
JP2021180225A (en) | Manufacturing method of semiconductor substrate, manufacturing method of soi wafer and soi wafer | |
JP2015078093A (en) | 3C-SiC EPITAXIAL LAYER MANUFACTURING METHOD, 3C-SiC EPITAXIAL SUBSTRATE, AND SEMICONDUCTOR DEVICE | |
CN106169497B (en) | Silicon carbide substrate and method for producing silicon carbide substrate | |
JP2006253617A (en) | SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD | |
EP2296169B1 (en) | Method for manufacturing nitrogen compound semiconductor substrate, nitrogen compound semiconductor substrate, method for manufacturing single crystal sic substrate, and single crystal sic substrate | |
JP4894390B2 (en) | Manufacturing method of semiconductor substrate | |
JP3508356B2 (en) | Semiconductor crystal growth method and semiconductor thin film | |
JP2006062931A (en) | Sapphire substrate and its heat treatment method, and method of crystal growth | |
US20070269965A1 (en) | Indium Nitride Layer production | |
JP2006222402A (en) | Gallium nitride system compound semiconductor and method for manufacturing the same | |
JP4313000B2 (en) | Manufacturing method of 3C-SiC semiconductor | |
JP6927429B2 (en) | Manufacturing method of SiC epitaxial substrate | |
WO2015097852A1 (en) | METHOD FOR FORMING SINGLE CRYSTAL SiC EPITAXIAL FILM | |
KR20220100196A (en) | Gallium oxide thin film using phase-transition domain alignment buffer layer and method of manufacturing the same | |
JP4766642B2 (en) | SiC semiconductor and SiC epitaxial growth method | |
JP4353369B2 (en) | SiC semiconductor and manufacturing method thereof | |
WO2012090268A1 (en) | Monocrystalline silicon carbide epitaxial substrate, method for producing same, and monocrystalline sic device | |
JP7218832B1 (en) | Manufacturing method of heteroepitaxial wafer | |
JP2005223215A (en) | Method for producing silicon carbide single crystal film on si substrate and silicon carbide semiconductor device produced by using same | |
JP7259906B2 (en) | Manufacturing method of heteroepitaxial wafer | |
JP2010225733A (en) | Method of manufacturing semiconductor substrate | |
WO2024057698A1 (en) | Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070711 |
|
A621 | Written request for application examination |
Effective date: 20070907 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100210 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100610 |