JP2021180225A - Manufacturing method of semiconductor substrate, manufacturing method of soi wafer and soi wafer - Google Patents

Manufacturing method of semiconductor substrate, manufacturing method of soi wafer and soi wafer Download PDF

Info

Publication number
JP2021180225A
JP2021180225A JP2020083994A JP2020083994A JP2021180225A JP 2021180225 A JP2021180225 A JP 2021180225A JP 2020083994 A JP2020083994 A JP 2020083994A JP 2020083994 A JP2020083994 A JP 2020083994A JP 2021180225 A JP2021180225 A JP 2021180225A
Authority
JP
Japan
Prior art keywords
single crystal
film
sic single
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020083994A
Other languages
Japanese (ja)
Other versions
JP7290135B2 (en
Inventor
偉峰 曲
Takemine Magari
静男 井川
Shizuo Igawa
健 砂川
Takeshi Sunakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2020083994A priority Critical patent/JP7290135B2/en
Priority to TW110109452A priority patent/TW202142746A/en
Priority to CN202110442064.7A priority patent/CN113658848A/en
Publication of JP2021180225A publication Critical patent/JP2021180225A/en
Priority to JP2023061847A priority patent/JP2023089079A/en
Application granted granted Critical
Publication of JP7290135B2 publication Critical patent/JP7290135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a manufacturing method of a semiconductor substrate which can form an SiC single crystal film that has high crystallinity and is thick in film thickness with a low defect on a silicon single crystal substrate.SOLUTION: A manufacturing method of a semiconductor substrate having an SiC single crystal film on the surface comprises: a step of adhering carbon to the surface of the silicon single crystal substrate; a step of forming an SiC single crystal base film by carbonizing the surface of the silicon single crystal substrate adhered with the carbon; a step of forming an amorphous silicon film on the SiC single crystal base film; and a step of making the SiC single crystal base film a seed crystal and making the amorphous silicon film the SiC single crystal film with the solid phase growth.SELECTED DRAWING: Figure 1

Description

本発明は、シリコン単結晶基板の表面にSiC単結晶膜を有する半導体基板の製造方法、及び、シリコン単結晶基板とSiC単結晶膜を有するSOIウェーハに関する。 The present invention relates to a method for manufacturing a semiconductor substrate having a SiC single crystal film on the surface of a silicon single crystal substrate, and an SOI wafer having a silicon single crystal substrate and a SiC single crystal film.

SiC単結晶基板は、Si単結晶基板と比較して低損失で高周波特性に優れ、かつ高耐圧、高熱伝導率及び高破壊電界を有する半導体装置を実現することが可能となる材料である。図13に、主な半導体材料の物性を示す。 The SiC single crystal substrate is a material capable of realizing a semiconductor device having low loss, excellent high frequency characteristics, high withstand voltage, high thermal conductivity, and high breakdown electric field as compared with the Si single crystal substrate. FIG. 13 shows the physical characteristics of the main semiconductor materials.

特許文献1には、SOI基板を炭化水素系ガス雰囲気中で加熱して表面のSi層を単結晶SiC膜に変成させ、上記単結晶SiC膜をシード層としてエピタキシャル成長させることにより、単結晶SiC基板(但し、下地基板がSOI基板)とすることが開示されている。また、特許文献2には、支持基板として機能する単結晶のシリコン基板の表面全面に、埋め込み酸化膜として機能するシリコン酸化膜(SiO)を形成し、その上にSiC膜を形成することが開示されている。さらに、特許文献3には、化合物半導体基板の支持基板として、表面に単結晶SiC膜を有する半導体基板を用いることが開示されている。 In Patent Document 1, the SOI substrate is heated in a carbide-based gas atmosphere to transform the Si layer on the surface into a single crystal SiC film, and the single crystal SiC film is epitaxially grown as a seed layer to grow the single crystal SiC substrate. (However, it is disclosed that the base substrate is an SOI substrate). Further, in Patent Document 2, it is possible to form a silicon oxide film (SiO 2 ) that functions as an embedded oxide film on the entire surface of a single crystal silicon substrate that functions as a support substrate, and to form a SiC film on the silicon oxide film (SiO 2) that functions as an embedded oxide film. It has been disclosed. Further, Patent Document 3 discloses that a semiconductor substrate having a single crystal SiC film on the surface is used as a support substrate for the compound semiconductor substrate.

特開2007−123675号公報Japanese Unexamined Patent Publication No. 2007-123675 特開2008−41830号公報Japanese Unexamined Patent Publication No. 2008-41830 特開2014−76925号公報Japanese Unexamined Patent Publication No. 2014-76925

特許文献1には、単結晶SiC膜をシード層としてエピタキシャル成長させることにより、単結晶SiC層を形成する方法が開示されている。この製造プロセスの場合、第一層目のSi(0.543nm)/3C−SiC(0.453nm)の格子定数不整合率は20%で、これを緩和するため大量の欠陥が誘発される。このように大量に欠陥が発生したシード上にエピタキシャルを成長させると、シード上の欠陥を起因としたエピ欠陥が発生するという問題がある。エピタキシャル成長であれば、SiC単結晶膜の膜厚を厚くすることは可能であるが、低欠陥の結晶性に優れたSiC単結晶膜を得ることはできなかった。 Patent Document 1 discloses a method of forming a single crystal SiC layer by epitaxially growing a single crystal SiC film as a seed layer. In the case of this manufacturing process, the lattice constant mismatch rate of Si (0.543 nm) / 3C-SiC (0.453 nm) in the first layer is 20%, and a large amount of defects are induced to alleviate this. When epitaxial is grown on a seed in which a large amount of defects are generated in this way, there is a problem that epi-defects due to defects on the seed are generated. Although it is possible to increase the thickness of the SiC single crystal film by epitaxial growth, it was not possible to obtain a SiC single crystal film having excellent crystallinity with low defects.

特許文献2には、埋め込み酸化膜として機能するシリコン酸化膜(SiO)と、その上にSiC膜そのもの、もしくは、SiC結合が混在する格子歪形成用層として機能するSiC含有層が形成されているSOI基板が開示されているが、SiC単結晶層の形成方法については記載されていない。 In Patent Document 2, a silicon oxide film (SiO 2 ) that functions as an embedded oxide film and a SiC film itself or a SiC-containing layer that functions as a lattice strain forming layer in which SiC bonds are mixed are formed on the silicon oxide film (SiO 2). Although the SOI substrate is disclosed, the method for forming the SiC single crystal layer is not described.

特許文献3には、シリコン基板にSiC単結晶薄膜が形成された基板を支持基板として、GaNを成膜する方法が開示されているが、SiC単結晶薄膜はバッファ層として用いられてはいない。また、SiC単結晶層そのものの欠陥や、SiC単結晶層の形成方法については言及されていない。 Patent Document 3 discloses a method of forming a GaN film using a substrate on which a SiC single crystal thin film is formed on a silicon substrate as a support substrate, but the SiC single crystal thin film is not used as a buffer layer. Further, the defect of the SiC single crystal layer itself and the method of forming the SiC single crystal layer are not mentioned.

また、600Vを超えるような高耐圧用途のSOIパワーICでは、数μmの厚いBOX層が必要とされる。このようなSOIパワーデバイスやRFデバイスでは、優れた絶縁耐圧特性を有しながら、デバイスの発熱が大きいため、ベース基板側へも放熱させることが求められている。しかし、厚いSiO膜は熱伝導が悪く、熱がこもってしまうため、従来はデバイス設計の際に、SOI層側のデバイス表面側にメタル電極を設けて、その上側に水冷ヒートシンクなどをセットしていた。このような複雑な構造とするためには、複雑な工程を経る必要があり、コストや生産性の面で不利であった。 Further, in SOI power ICs for high withstand voltage applications exceeding 600 V, a thick BOX layer of several μm is required. Such SOI power devices and RF devices have excellent dielectric strength characteristics, but generate a large amount of heat from the devices, so that it is required to dissipate heat to the base substrate side as well. However, since the thick SiO 2 film has poor heat conduction and heat is trapped, conventionally, when designing a device, a metal electrode is provided on the device surface side on the SOI layer side, and a water-cooled heat sink or the like is set on the upper side. Was there. In order to obtain such a complicated structure, it is necessary to go through a complicated process, which is disadvantageous in terms of cost and productivity.

このように、SiC単結晶膜を有するシリコン単結晶基板において、低欠陥で結晶性が高く、厚膜のSiC単結晶膜を有するシリコン単結晶基板を製造することが求められていた。また、単純な構造でありながら、リーク電流を最大限抑制でき、かつベース基板側への放熱性が高いSOIウェーハが求められていた。 As described above, in the silicon single crystal substrate having a SiC single crystal film, it has been required to manufacture a silicon single crystal substrate having a thick SiC single crystal film having low defects and high crystallinity. Further, there has been a demand for an SOI wafer having a simple structure, capable of suppressing leakage current to the maximum, and having high heat dissipation to the base substrate side.

本発明は、上記問題を解決するためになされたものであり、シリコン単結晶基板上に、低欠陥で結晶性が高く、厚膜のSiC単結晶膜を形成可能な半導体基板の製造方法、及び、SiC単結晶膜を有するシリコン単結晶基板を備えたSOIウェーハを提供することを目的とする。 The present invention has been made to solve the above problems, and is a method for manufacturing a semiconductor substrate capable of forming a thick SiC single crystal film having low defects and high crystallinity on a silicon single crystal substrate, and a method for manufacturing the semiconductor substrate. , It is an object of the present invention to provide an SOI wafer provided with a silicon single crystal substrate having a SiC single crystal film.

本発明は、上記目的を達成するためになされたものであり、表面にSiC単結晶膜を有する半導体基板の製造方法であって、シリコン単結晶基板の表面に炭素を付着させる工程と、前記炭素を付着させた前記シリコン単結晶基板の表面を炭化してSiC単結晶下地膜を形成する工程と、前記SiC単結晶下地膜上にアモルファスシリコン膜を形成する工程と、前記SiC単結晶下地膜を種結晶として、固相成長により前記アモルファスシリコン膜をSiC単結晶膜とする工程とを含む半導体基板の製造方法を提供する。 The present invention has been made to achieve the above object, and is a method for manufacturing a semiconductor substrate having a SiC single crystal film on the surface, which comprises a step of adhering carbon to the surface of the silicon single crystal substrate and the carbon. A step of forming a SiC single crystal base film by carbonizing the surface of the silicon single crystal substrate to which the above is adhered, a step of forming an amorphous silicon film on the SiC single crystal base film, and a step of forming the SiC single crystal base film. Provided is a method for manufacturing a semiconductor substrate, which comprises a step of converting the amorphous silicon film into a SiC single crystal film by solid-phase growth as a seed crystal.

このような半導体基板の製造方法によれば、SiC単結晶下地膜上にアモルファスシリコン膜を成長させ、RTAで炭素注入及び固相成長することによってSiC単結晶膜を成長させるため、SiC単結晶下地膜上の欠陥は、直上に固相成長したSiC単結晶膜には導入されず、シリコン単結晶基板上に、低欠陥で結晶性が高く、厚膜のSiC単結晶膜を備えた半導体基板を製造することができる。 According to such a method for manufacturing a semiconductor substrate, an amorphous silicon film is grown on a SiC single crystal base film, and a SiC single crystal film is grown by carbon injection and solid-phase growth by RTA. Defects on the ground film are not introduced into the SiC single crystal film that has grown in solid phase directly above, and a semiconductor substrate having a low defect, high crystallinity, and a thick SiC single crystal film is formed on the silicon single crystal substrate. Can be manufactured.

このとき、前記シリコン単結晶基板の表面に炭素を付着させる工程において、前記シリコン単結晶基板を、炭素含有雰囲気で800℃以下のRTA処理する半導体基板の製造方法とすることができる。 At this time, in the step of adhering carbon to the surface of the silicon single crystal substrate, the silicon single crystal substrate can be subjected to RTA treatment at 800 ° C. or lower in a carbon-containing atmosphere as a method for manufacturing a semiconductor substrate.

これにより、シリコン単結晶基板表面に、より十分な量でより均一に炭素を付着させることができるため、後工程で結晶性がより高いSiC単結晶下地膜を形成でき、その上に固相成長で形成するSiC単結晶膜の結晶性をより高いものとすることができる。 As a result, carbon can be adhered more uniformly to the surface of the silicon single crystal substrate in a more sufficient amount, so that a SiC single crystal base film having higher crystallinity can be formed in a subsequent step, and solid phase growth can be formed on the SiC single crystal base film. The crystallinity of the SiC single crystal film formed in 1 can be made higher.

このとき、前記SiC単結晶下地膜を形成する工程において、前記シリコン単結晶基板を炭素含有雰囲気で1150℃〜1300℃のRTA処理することにより、7nm以下の厚さのSiC単結晶下地膜を形成する半導体基板の製造方法とすることができる。 At this time, in the step of forming the SiC single crystal base film, the silicon single crystal substrate is subjected to RTA treatment at 1150 ° C. to 1300 ° C. in a carbon-containing atmosphere to form a SiC single crystal base film having a thickness of 7 nm or less. It can be used as a method for manufacturing a semiconductor substrate.

これにより、結晶性がさらに高いSiC単結晶下地膜とすることができ、その上に固相成長で形成するSiC単結晶膜の結晶性をさらに高いものとすることができる。 As a result, a SiC single crystal base film having higher crystallinity can be obtained, and the crystallinity of the SiC single crystal film formed on the SiC single crystal base film by solid phase growth can be further increased.

このとき、前記アモルファスシリコン膜を形成する工程において、前記SiC単結晶下地膜の厚さの3倍以下の厚さのアモルファスシリコン膜を、300〜600℃の成長温度で前記SiC単結晶下地膜上に気相成長させる半導体基板の製造方法とすることができる。 At this time, in the step of forming the amorphous silicon film, an amorphous silicon film having a thickness of 3 times or less the thickness of the SiC single crystal undercoat is placed on the SiC single crystal undercoat at a growth temperature of 300 to 600 ° C. It can be used as a method for manufacturing a semiconductor substrate for vapor phase growth.

アモルファスシリコン膜の厚さをこのような範囲とすれば、より安定してアモルファスの形態を保ったシリコン膜とすることができ、固相成長によりSiC単結晶膜としたときの結晶性を安定してより高いものとすることができる。 If the thickness of the amorphous silicon film is within such a range, it is possible to obtain a silicon film that maintains an amorphous form more stably, and the crystallinity when a SiC single crystal film is formed by solid phase growth is stabilized. Can be higher.

このとき、前記固相成長によりアモルファスシリコン膜をSiC単結晶膜とする工程において、前記シリコン単結晶基板を、炭素含有雰囲気で1150℃〜1300℃のRTA処理する半導体基板の製造方法とすることができる。 At this time, in the step of converting the amorphous silicon film into a SiC single crystal film by the solid phase growth, it is possible to use a method for manufacturing a semiconductor substrate in which the silicon single crystal substrate is RTA-treated at 1150 ° C. to 1300 ° C. in a carbon-containing atmosphere. can.

これにより、確実により結晶性の高いSiC単結晶膜を形成することができる。 This makes it possible to surely form a SiC single crystal film having higher crystallinity.

このとき、前記アモルファスシリコン膜を形成する工程と、前記アモルファスシリコン膜をSiC単結晶膜とする工程とを2回以上繰り返し行う半導体基板の製造方法とすることができる。 At this time, it is possible to use a method for manufacturing a semiconductor substrate in which the step of forming the amorphous silicon film and the step of forming the amorphous silicon film into a SiC single crystal film are repeated two or more times.

これにより、低欠陥で結晶性の高いSiC単結晶膜を厚く形成することができる。 This makes it possible to form a thick SiC single crystal film with low defects and high crystallinity.

このとき、前記SiC単結晶膜を15nmより厚く形成する半導体基板の製造方法とすることができる。 At this time, it is possible to use a method for manufacturing a semiconductor substrate in which the SiC single crystal film is formed thicker than 15 nm.

本発明に係る半導体基板の製造方法によれば、このような厚さで形成する場合に特に好適であり、低欠陥で結晶性が高く厚いSiC単結晶膜を得ることができる。 According to the method for manufacturing a semiconductor substrate according to the present invention, it is particularly suitable for forming a semiconductor substrate having such a thickness, and a thick SiC single crystal film having low defects and high crystallinity can be obtained.

このとき、前記SiC単結晶下地膜及び前記SiC単結晶膜が3C−SiCである半導体基板の製造方法とすることができる。 At this time, the method for manufacturing a semiconductor substrate in which the SiC single crystal base film and the SiC single crystal film are 3C-SiC can be used.

本発明によれば、このような半導体基板を好適に製造することができる。 According to the present invention, such a semiconductor substrate can be suitably manufactured.

このとき、上記半導体基板の製造方法により製造したSiC単結晶膜を有するシリコン単結晶基板をSOIウェーハのベース基板として用い、SOIウェーハを製造するSOIウェーハの製造方法とすることができる。 At this time, a silicon single crystal substrate having a SiC single crystal film manufactured by the above-mentioned method for manufacturing a semiconductor substrate can be used as a base substrate for an SOI wafer, and the method for manufacturing an SOI wafer can be used.

これにより、リーク電流が抑制され、かつ、ベース基板側への放熱性が高いSOIウェーハを製造することができる。 As a result, it is possible to manufacture an SOI wafer in which the leakage current is suppressed and the heat dissipation to the base substrate side is high.

このとき、上記半導体基板の製造方法により製造したSiC単結晶膜を有するシリコン単結晶基板を出発基板として用い、前記SiC単結晶膜上に化合物半導体膜を形成する半導体基板の製造方法とすることができる。 At this time, a silicon single crystal substrate having a SiC single crystal film manufactured by the above semiconductor substrate manufacturing method can be used as a starting substrate, and a semiconductor substrate manufacturing method for forming a compound semiconductor film on the SiC single crystal film can be used. can.

これにより、安価なシリコン単結晶基板を使用し、結晶性の高いSiC単結晶膜をバッファ層として機能させて、化合物半導体膜を形成することができる。 This makes it possible to form a compound semiconductor film by using an inexpensive silicon single crystal substrate and allowing a highly crystalline SiC single crystal film to function as a buffer layer.

本発明は、また、支持基板と、該支持基板上の絶縁層と、該絶縁層上のSOI層とを有し、前記支持基板がシリコン単結晶基板であり、前記絶縁層が3C−SiC単結晶膜からなるものであるSOIウェーハを提供する。 The present invention also has a support substrate, an insulating layer on the support substrate, and an SOI layer on the insulating layer. The support substrate is a silicon single crystal substrate, and the insulating layer is a single 3C-SiC. Provided is an SOI wafer made of a crystal film.

このようなSOIウェーハによれば、リーク電流が抑制され、かつベース基板側への放熱性が高いSOIウェーハとなる。 According to such an SOI wafer, the leakage current is suppressed and the SOI wafer has high heat dissipation to the base substrate side.

以上のように、本発明の半導体基板の製造方法によれば、SiC単結晶下地膜上にアモルファスシリコン膜を成長させ、RTAで炭素注入及び固相成長することによってSiC単結晶膜を成長させるため、SiC単結晶下地膜上の欠陥は、直上に固相成長したSiC単結晶膜には導入されず、シリコン単結晶基板上に低欠陥で結晶性が高く、厚膜のSiC単結晶膜を備えた半導体基板を製造することが可能となる。また、本発明のSOIウェーハによれば、リーク電流が抑制され、かつベース基板側への放熱性が高いSOIウェーハとなる。 As described above, according to the method for manufacturing a semiconductor substrate of the present invention, an amorphous silicon film is grown on a SiC single crystal base film, and a SiC single crystal film is grown by carbon injection and solid phase growth by RTA. , Defects on the SiC single crystal base film are not introduced into the SiC single crystal film grown in solid phase directly above, and a thick SiC single crystal film with low defects and high crystallinity is provided on the silicon single crystal substrate. It becomes possible to manufacture a semiconductor substrate. Further, according to the SOI wafer of the present invention, the SOI wafer is one in which the leakage current is suppressed and the heat dissipation to the base substrate side is high.

本発明に係る半導体基板の製造方法のフロー図及び概念図を示す。The flow diagram and the conceptual diagram of the manufacturing method of the semiconductor substrate which concerns on this invention are shown. 本発明に係る半導体基板の製造方法により得られる半導体基板を示す。The semiconductor substrate obtained by the manufacturing method of the semiconductor substrate which concerns on this invention is shown. 本発明に係るSOIウェーハを示す。The SOI wafer according to this invention is shown. 実施例1のフロー図を示す。The flow chart of Example 1 is shown. 実施例1で得られた3C−SiC単結晶膜の断面TEM観察結果を示す。The cross-sectional TEM observation result of the 3C-SiC single crystal film obtained in Example 1 is shown. 実施例1で得られた3C−SiC単結晶膜の結晶性評価結果を示す。The crystallinity evaluation result of the 3C-SiC single crystal film obtained in Example 1 is shown. 実施例2のフロー図を示す。The flow chart of Example 2 is shown. 実施例2で得られた3C−SiC単結晶膜の断面TEM観察結果を示す。The cross-sectional TEM observation result of the 3C-SiC single crystal film obtained in Example 2 is shown. 実施例2で得られた3C−SiC単結晶膜の結晶性評価結果を示す。The crystallinity evaluation result of the 3C-SiC single crystal film obtained in Example 2 is shown. 比較例のフロー図を示す。The flow chart of the comparative example is shown. 比較例で得られた3C−SiC単結晶膜の断面TEM観察結果を示す。The cross-sectional TEM observation result of the 3C-SiC single crystal film obtained in the comparative example is shown. 比較例で得られた3C−SiC単結晶膜の結晶性評価結果を示す。The crystallinity evaluation result of the 3C-SiC single crystal film obtained in the comparative example is shown. 主な半導体材料の物性を示す。Shows the physical characteristics of the main semiconductor materials.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

上述のように、シリコン単結晶基板上に低欠陥で結晶性が高く、厚膜のSiC単結晶膜を形成する半導体基板の製造方法、及び、SiC単結晶膜を有するシリコン単結晶基板を備えたSOIウェーハが求められていた。 As described above, a method for manufacturing a semiconductor substrate that has low defects and high crystallinity and forms a thick SiC single crystal film on a silicon single crystal substrate, and a silicon single crystal substrate having a SiC single crystal film are provided. SOI wafers have been sought.

本発明者らは、上記課題について鋭意検討を重ねた結果、表面にSiC単結晶膜を有する半導体基板の製造方法であって、シリコン単結晶基板の表面に炭素を付着させる工程と、前記炭素を付着させた前記シリコン単結晶基板の表面を炭化してSiC単結晶下地膜を形成する工程と、前記SiC単結晶下地膜上にアモルファスシリコン膜を形成する工程と、前記SiC単結晶下地膜を種結晶として、固相成長により前記アモルファスシリコン膜をSiC単結晶膜とする工程とを含む半導体基板の製造方法により、シリコン単結晶基板上に、低欠陥で結晶性が高く、厚膜のSiC単結晶膜を備えた半導体基板を製造することができることを見出し、本発明を完成した。 As a result of diligent studies on the above-mentioned problems, the present inventors have described a process of adhering carbon to the surface of a silicon single crystal substrate, which is a method of manufacturing a semiconductor substrate having a SiC single crystal film on the surface, and the carbon. A step of carbonizing the surface of the attached silicon single crystal substrate to form a SiC single crystal base film, a step of forming an amorphous silicon film on the SiC single crystal base film, and a step of forming the SiC single crystal base film as seeds. By a method for manufacturing a semiconductor substrate including a step of converting the amorphous silicon film into a SiC single crystal film by solid-phase growth as a crystal, a thick SiC single crystal having low defects and high crystallinity can be obtained on the silicon single crystal substrate. We have found that it is possible to manufacture a semiconductor substrate provided with a film, and completed the present invention.

また、本発明者らは、支持基板と、該支持基板上の絶縁層と、該絶縁層上のSOI層とを有し、前記支持基板がシリコン単結晶基板であり、前記絶縁層が3C−SiC単結晶膜からなるものであるSOIウェーハにより、リーク電流が抑制され、かつベース基板側への放熱性が高いSOIウェーハとなることを見出し、本発明を完成した。 Further, the present inventors have a support substrate, an insulating layer on the support substrate, and an SOI layer on the insulating layer, the support substrate is a silicon single crystal substrate, and the insulating layer is 3C-. We have found that an SOI wafer made of a SiC single crystal film suppresses leakage current and has high heat dissipation to the base substrate side, and completed the present invention.

以下、本発明の一実施形態に係る半導体基板の製造方法及びSOIウェーハ等の各種半導体基板への応用について、図1〜3を参照しながら説明する。 Hereinafter, a method for manufacturing a semiconductor substrate and application to various semiconductor substrates such as SOI wafers according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

本発明者らは、低欠陥で高品質、かつ、厚膜(例えば、15nm超)のSiC単結晶膜を有する半導体基板であれば、SOIウェーハに適用したときに、リーク電流をより小さくしたり、熱伝導率を向上させることができることや、化合物半導体基板のバッファ層として機能させることができることに着目した。シリコン単結晶基板の表面を炭化することによりSiC単結晶膜を形成する方法では、厚いSiC単結晶膜を形成することは困難である。このような課題を解決するために、鋭意調査を行ったところ、シリコン単結晶基板の表面に炭素を付着させ、炭素含有雰囲気のRTA処理で薄いSiC単結晶下地膜を形成し、その上に厚いアモルファスシリコン膜を低温で気相成長させ、その後RTA処理を行うことで、SiC単結晶下地膜を種結晶として、固相成長によりアモルファスシリコンがSiC単結晶に変化し、結晶性が高く、従来より厚膜のSiC単結晶膜が得られることを見出した。さらに、SiC単結晶膜の表面に、厚いアモルファスシリコンを気相成長させた後、固相成長によりSiC単結晶に変化させる工程を繰り返すことで、従来では得られなかった、15nmを超えるような厚い高品質なSiC単結晶膜を形成できることを見出し、本発明を完成させた。 The present inventors can reduce the leakage current when applied to an SOI wafer if the semiconductor substrate has a low defect, high quality, and a thick film (for example, more than 15 nm) SiC single crystal film. We focused on the fact that the thermal conductivity can be improved and that it can function as a buffer layer of a compound semiconductor substrate. It is difficult to form a thick SiC single crystal film by the method of forming a SiC single crystal film by carbonizing the surface of a silicon single crystal substrate. In order to solve such problems, we conducted a diligent investigation and found that carbon was adhered to the surface of the silicon single crystal substrate, and a thin SiC single crystal base film was formed by RTA treatment in a carbon-containing atmosphere, and the film was thick. By growing the amorphous silicon film in a gas phase at a low temperature and then performing RTA treatment, the SiC single crystal base film is used as a seed crystal, and the amorphous silicon changes to a SiC single crystal by solid phase growth, and the crystallinity is higher than before. It has been found that a thick SiC single crystal film can be obtained. Furthermore, by repeating the process of vapor-phase growing thick amorphous silicon on the surface of the SiC single crystal film and then changing it to a SiC single crystal by solid-phase growth, it is thicker than 15 nm, which was not possible in the past. We have found that a high-quality SiC single crystal film can be formed, and completed the present invention.

(半導体基板)
図2に、本発明に係る半導体基板の製造方法により得られる半導体基板を示す。図2に示されるように、半導体基板10は、シリコン単結晶基板1上に、SiC単結晶下地膜3及びSiC単結晶膜5を有するものである。使用するシリコン単結晶基板1の種類は特に限定されない。また、SiC単結晶下地膜3及びSiC単結晶膜5は、3C−SiCとすることができる。このようなSiC単結晶膜5は、従来のSiC単結晶膜に比べて、低欠陥で結晶性が高く、厚膜のものである。また、このような半導体基板10は、下記のように応用することができる。
(Semiconductor substrate)
FIG. 2 shows a semiconductor substrate obtained by the method for manufacturing a semiconductor substrate according to the present invention. As shown in FIG. 2, the semiconductor substrate 10 has a SiC single crystal base film 3 and a SiC single crystal film 5 on a silicon single crystal substrate 1. The type of the silicon single crystal substrate 1 used is not particularly limited. Further, the SiC single crystal base film 3 and the SiC single crystal film 5 can be 3C-SiC. Such a SiC single crystal film 5 has lower defects, higher crystallinity, and a thicker film than the conventional SiC single crystal film. Further, such a semiconductor substrate 10 can be applied as follows.

(SOIウェーハ)
図3に、本発明に係るSOIウェーハを示す。図3に示されるように、本発明に係るSOIウェーハ20は、上記半導体基板10をベース基板14として用いたものであり、支持基板11、絶縁層12は、それぞれ、半導体基板10におけるシリコン単結晶基板1、SiC単結晶下地膜3及びSiC単結晶膜5に対応する。そして、絶縁層12として用いられるSiC単結晶下地膜3及びSiC単結晶膜5の上に、SOI層13を有するものである。
(SOI wafer)
FIG. 3 shows an SOI wafer according to the present invention. As shown in FIG. 3, the SOI wafer 20 according to the present invention uses the semiconductor substrate 10 as the base substrate 14, and the support substrate 11 and the insulating layer 12 are silicon single crystals in the semiconductor substrate 10, respectively. It corresponds to the substrate 1, the SiC single crystal base film 3, and the SiC single crystal film 5. The SOI layer 13 is provided on the SiC single crystal base film 3 and the SiC single crystal film 5 used as the insulating layer 12.

3C−SiCは、熱伝導度(W/cm・K)がSiOに比べて、
3C−SiC/SiO=4.9/1.38=約3.5倍
と高いため、本発明に係るSOIウェーハのように、絶縁層として3C−SiCを採用すると、ベース基板側への放熱に優れたものとなり、放熱面で有利なものとなる。従来のような、BOX層を備えたSOIウェーハのように、SOI層側のデバイス表面側にメタル電極を設けて、その上側に水冷ヒートシンクなどをセットする必要もなくなる。
3C-SiC has a thermal conductivity (W / cm · K) higher than that of SiO 2.
Since 3C-SiC / SiO 2 = 4.9 / 1.38 = about 3.5 times higher, if 3C-SiC is used as the insulating layer as in the SOI wafer according to the present invention, heat is dissipated to the base substrate side. It will be excellent in terms of heat dissipation. Unlike the conventional SOI wafer provided with a BOX layer, it is not necessary to provide a metal electrode on the device surface side on the SOI layer side and set a water-cooled heat sink or the like on the upper side thereof.

(化合物半導体膜を形成する半導体基板)
図2に示す半導体基板10を用い、この半導体基板10の上に、III−V族半導体などの化合物半導体膜を設けた半導体基板とすることも可能である。本発明に係る半導体基板の製造方法により製造した半導体基板では、結晶性が高く厚膜のSiC単結晶膜を備えた半導体基板とできるため、このSiC単結晶膜をバッファ層として機能させることが可能となる。
(Semiconductor substrate forming a compound semiconductor film)
It is also possible to use the semiconductor substrate 10 shown in FIG. 2 and form a semiconductor substrate in which a compound semiconductor film such as a III-V semiconductor is provided on the semiconductor substrate 10. Since the semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate according to the present invention can be a semiconductor substrate having a highly crystalline and thick SiC single crystal film, the SiC single crystal film can function as a buffer layer. Will be.

(半導体基板の製造方法)
次に、本発明に係る半導体基板の製造方法について説明する。図1は、本発明に係る半導体基板の製造方法の概要を示したフロー図及び概念図である。以下、各工程について説明する。
(Manufacturing method of semiconductor substrate)
Next, a method for manufacturing a semiconductor substrate according to the present invention will be described. FIG. 1 is a flow chart and a conceptual diagram showing an outline of a method for manufacturing a semiconductor substrate according to the present invention. Hereinafter, each step will be described.

まず、シリコン単結晶基板1を準備する(図1の(a))。使用するシリコン単結晶基板1は、特に限定されない。例えば、現状、GaN基板製造用のシリコン基板としてV領域のシリコン単結晶基板が使用されているが、このようなシリコン単結晶基板を使用することが可能である。(100)や(111)などの、所定の面方位を有しているシリコン単結晶基板を使用することができる。以下、SiC単結晶として、3C−SiC単結晶を形成する例を説明する。 First, the silicon single crystal substrate 1 is prepared ((a) in FIG. 1). The silicon single crystal substrate 1 used is not particularly limited. For example, at present, a silicon single crystal substrate in the V region is used as a silicon substrate for manufacturing a GaN substrate, but such a silicon single crystal substrate can be used. A silicon single crystal substrate having a predetermined plane orientation such as (100) or (111) can be used. Hereinafter, an example of forming a 3C-SiC single crystal as a SiC single crystal will be described.

まず、図1の(b)に示すように、シリコン単結晶基板1の表面に炭素2を付着させる工程を行う。この工程を行うことによって、シリコン単結晶基板1の表面に、均一にかつ十分な量の炭素2を付着させることができ、この後に、シリコン単結晶基板1の表面を炭化してSiC単結晶下地膜を形成する工程で、種結晶として機能し得るSiC単結晶下地膜を形成することができる。この工程では、シリコン単結晶基板1を、炭素含有雰囲気でRTA処理することが好ましい。炭素含有雰囲気としては、例えば、CH、C、C等の炭素含有ガスを用い、炭素濃度が1%以上となるような、H又はAr+Hの混合雰囲気とすることができる。RTA処理は、800℃以下という比較的低温で行うことが好ましく、700〜800℃、20〜40秒の処理とすることがより好ましい。 First, as shown in FIG. 1B, a step of adhering carbon 2 to the surface of the silicon single crystal substrate 1 is performed. By performing this step, carbon 2 can be uniformly and sufficiently adhered to the surface of the silicon single crystal substrate 1, and then the surface of the silicon single crystal substrate 1 is carbonized under the SiC single crystal. In the step of forming the ground film, a SiC single crystal base film that can function as a seed crystal can be formed. In this step, it is preferable to RTA-treat the silicon single crystal substrate 1 in a carbon-containing atmosphere. As the carbon-containing atmosphere, for example, a carbon-containing gas such as CH 4 , C 2 H 4 , C 3 H 8 is used, and a mixed atmosphere of H 2 or Ar + H 2 is used so that the carbon concentration becomes 1% or more. Can be done. The RTA treatment is preferably performed at a relatively low temperature of 800 ° C. or lower, and more preferably 700 to 800 ° C. for 20 to 40 seconds.

次に、図1の(c)に示すように、炭素2を付着させた前記シリコン単結晶基板1の表面を炭化し3C−SiCとして、SiC単結晶下地膜3を形成する工程を行う。この工程では、シリコン単結晶基板を炭素含有雰囲気で1150℃〜1300℃のRTA処理することにより、7nm以下の厚さのSiC単結晶下地膜3を形成することが好ましい。炭素含有雰囲気としては、例えば、CH、C、C等を用い、炭素濃度が1%以上となるような、H又はAr+Hの混合雰囲気とすることができる。RTA処理は、例えば、1150℃以上、1300℃以下、10〜100秒の処理とすることがより好ましい。このようなRTA処理により、シリコン単結晶基板から昇華したSiと、表面に付着した炭素(C)及び雰囲気中の炭素(C)が反応して、シリコン単結晶基板1の表面に7nm程度以下の薄いSiC単結晶下地膜3を形成することができる。 Next, as shown in FIG. 1 (c), a step of carbonizing the surface of the silicon single crystal substrate 1 to which carbon 2 is attached to form 3C-SiC to form a SiC single crystal base film 3 is performed. In this step, it is preferable to form a SiC single crystal base film 3 having a thickness of 7 nm or less by subjecting the silicon single crystal substrate to RTA treatment at 1150 ° C. to 1300 ° C. in a carbon-containing atmosphere. As the carbon-containing atmosphere, for example, CH 4 , C 2 H 4 , C 3 H 8, or the like can be used, and a mixed atmosphere of H 2 or Ar + H 2 can be used so that the carbon concentration is 1% or more. The RTA treatment is more preferably carried out, for example, at 1150 ° C. or higher and 1300 ° C. or lower for 10 to 100 seconds. By such RTA treatment, Si sublimated from the silicon single crystal substrate reacts with carbon (C) adhering to the surface and carbon (C) in the atmosphere, and the surface of the silicon single crystal substrate 1 is about 7 nm or less. A thin SiC single crystal base film 3 can be formed.

昇華法の場合、Si供給が不足になれば、成長が止まる。RTA温度が1300℃の場合は、SiC単結晶は7nm程度まで成長する。また、RTA温度が1150℃未満の場合は、SiC単結晶の厚さは2nm未満となる。後の工程で、SiC単結晶下地膜3を種結晶としてより有効に機能させるためには、2nm〜7nm程度とすることが好ましい。 In the case of the sublimation method, if the Si supply becomes insufficient, the growth will stop. When the RTA temperature is 1300 ° C., the SiC single crystal grows up to about 7 nm. When the RTA temperature is less than 1150 ° C., the thickness of the SiC single crystal is less than 2 nm. In order to make the SiC single crystal base film 3 function more effectively as a seed crystal in a later step, it is preferably about 2 nm to 7 nm.

次に、図1の(d)に示すように、SiC単結晶下地膜3上にアモルファスシリコン膜4を形成する工程を行う。この工程では、CVD装置を用い、シラン系ガス(例えば、モノシラン、トリクロロシラン等)の原料ガスを供給し、300℃〜600℃でアモルファスシリコンを気相成長させることができる。このとき形成するアモルファスシリコン膜4の厚さは、SiC単結晶下地膜3の厚さの3倍以下の厚さとすることが好ましい。このような厚さであれば、安定してアモルファスシリコン膜4を形成することができ、その後のRTA処理によって、安定して結晶性の高いSiC単結晶とすることができる。 Next, as shown in FIG. 1 (d), a step of forming the amorphous silicon film 4 on the SiC single crystal base film 3 is performed. In this step, a CVD device is used to supply a raw material gas for a silane gas (for example, monosilane, trichlorosilane, etc.), and amorphous silicon can be vapor-deposited at 300 ° C to 600 ° C. The thickness of the amorphous silicon film 4 formed at this time is preferably 3 times or less the thickness of the SiC single crystal base film 3. With such a thickness, the amorphous silicon film 4 can be stably formed, and a SiC single crystal having high crystallinity can be stably formed by the subsequent RTA treatment.

次に、図1の(e)に示すように、固相成長により前記アモルファスシリコン膜4を3C−SiCに変換し、SiC単結晶膜5とする工程を行う。この工程では、アモルファスシリコン膜4が形成された後のシリコン単結晶基板を、炭素含有雰囲気で1150℃以上、1300℃以下の温度でRTA処理することが好ましい。RTA処理時間は、10〜60秒とすることができる。また、この場合の炭素含有雰囲気は、シリコン単結晶基板1の表面に炭素2を付着させる工程と同等の雰囲気とすることができる。このようにして、SiC単結晶下地膜3が種結晶となり、アモルファスシリコン膜4中のSiと、雰囲気中のCが反応しながら固相成長し、アモルファスシリコンがSiC単結晶構造に変化する。 Next, as shown in FIG. 1 (e), the amorphous silicon film 4 is converted into 3C-SiC by solid phase growth to form a SiC single crystal film 5. In this step, it is preferable to RTA-treat the silicon single crystal substrate after the amorphous silicon film 4 is formed at a temperature of 1150 ° C. or higher and 1300 ° C. or lower in a carbon-containing atmosphere. The RTA processing time can be 10 to 60 seconds. Further, the carbon-containing atmosphere in this case can be the same atmosphere as the step of adhering the carbon 2 to the surface of the silicon single crystal substrate 1. In this way, the SiC single crystal base film 3 becomes a seed crystal, and Si in the amorphous silicon film 4 reacts with C in the atmosphere to grow in a solid phase, and the amorphous silicon changes to a SiC single crystal structure.

このときのメカニズムは明確ではないが、アモルファスシリコンの昇華温度が単結晶シリコンより低く、雰囲気中の炭素(C)がアモルファスシリコン中に拡散することで、昇華したSiとCが反応して、SiC単結晶下地膜3の接触面から上方にSiC単結晶の固相成長が進行するものと推測している。このとき、アモルファスシリコンが3C−SiC単結晶に結晶構造が変化しても種結晶(SiC単結晶下地膜3)と結晶構造が同じであるので、熱膨張係数の違いによる応力を受けず高品質のSiC単結晶膜5とすることができる。 The mechanism at this time is not clear, but the sublimation temperature of amorphous silicon is lower than that of single crystal silicon, and carbon (C) in the atmosphere diffuses into amorphous silicon, causing the sublimated Si and C to react and SiC. It is presumed that the solid-phase growth of the SiC single crystal proceeds upward from the contact surface of the single crystal base film 3. At this time, even if the crystal structure of the amorphous silicon changes to a 3C-SiC single crystal, the crystal structure is the same as that of the seed crystal (SiC single crystal base film 3), so that it is not subjected to stress due to the difference in thermal expansion coefficient and is of high quality. Can be the SiC single crystal film 5.

この後、さらに厚膜とする場合には、再び、図1の(d)のアモルファスシリコン膜4を形成する工程に戻り、アモルファスシリコン膜4を形成する工程と、図1の(e)の固相成長によりアモルファスシリコン膜4をSiC単結晶膜5とする工程とを、2回以上繰り返して、目的とするSiC単結晶の厚さとすることができ、結晶性が高く厚膜のSiC単結晶膜を得ることができる。このとき、アモルファスシリコン膜4を形成する工程では、下地のSiC単結晶の厚さが最初の厚さより厚くなっているので、アモルファスシリコン膜4を形成する工程と固相成長によりアモルファスシリコン膜4をSiC単結晶膜5とする工程とを繰り返す工程では、1回で形成するSiC単結晶の厚さをより厚くすることもでき、少ない工程でより厚いアモルファスシリコン膜を形成することができる。このようにすれば、例えば15nm以上の厚さを有するSiC単結晶膜5を形成することができる。 After that, in the case of making a thicker film, the process returns to the step of forming the amorphous silicon film 4 of FIG. 1 (d) again, the step of forming the amorphous silicon film 4 and the solidification of FIG. 1 (e). The step of converting the amorphous silicon film 4 into a SiC single crystal film 5 by phase growth can be repeated twice or more to obtain the desired thickness of the SiC single crystal, and the thick SiC single crystal film having high crystallinity can be obtained. Can be obtained. At this time, in the step of forming the amorphous silicon film 4, since the thickness of the underlying SiC single crystal is thicker than the initial thickness, the amorphous silicon film 4 is formed by the step of forming the amorphous silicon film 4 and the solid phase growth. In the step of repeating the step of forming the SiC single crystal film 5, the thickness of the SiC single crystal formed at one time can be made thicker, and a thicker amorphous silicon film can be formed in a few steps. By doing so, it is possible to form the SiC single crystal film 5 having a thickness of, for example, 15 nm or more.

このようにして、図1の(f)に示すように、シリコン単結晶基板1上に低欠陥で結晶性の高いSiC単結晶膜5を備えた半導体基板10を得ることができる。SiC単結晶下地膜3上にアモルファスシリコン膜4を成長させ、RTAで炭素注入及び固相成長することによってSiC単結晶膜5を成長させるため、SiC単結晶下地膜3上の欠陥は、直上に固相成長したSiC単結晶膜5には導入されず、シリコン単結晶基板1上に、低欠陥で結晶性が高く、厚膜のSiC単結晶膜5を備えた半導体基板となる。 In this way, as shown in FIG. 1 (f), it is possible to obtain a semiconductor substrate 10 having a SiC single crystal film 5 having low defects and high crystallinity on a silicon single crystal substrate 1. Since the amorphous silicon film 4 is grown on the SiC single crystal base film 3 and the SiC single crystal film 5 is grown by carbon injection and solid phase growth by RTA, the defect on the SiC single crystal base film 3 is directly above. It is not introduced into the solid-phase grown SiC single crystal film 5, and is a semiconductor substrate provided with a thick SiC single crystal film 5 having low defects and high crystallinity on the silicon single crystal substrate 1.

このようにして得られた、SiC単結晶膜5を有するシリコン単結晶基板1をSOIウェーハのベース基板とし、SiC単結晶膜を絶縁膜に適用することにより、リーク電流を最大限に抑制させ、また、良好な熱伝導のSOIウェーハが得られる。なお、SOIウェーハの製造方法は、特に限定されない。 By using the silicon single crystal substrate 1 having the SiC single crystal film 5 thus obtained as the base substrate of the SOI wafer and applying the SiC single crystal film to the insulating film, the leakage current can be suppressed to the maximum. Further, an SOI wafer having good heat conduction can be obtained. The method for manufacturing the SOI wafer is not particularly limited.

また、SiC単結晶膜5を有するシリコン単結晶基板1を、従来のGaN基板やZnO基板に代えて出発基板として用い、SiC単結晶膜5上に化合物半導体膜を形成することもできる。この場合、SiC単結晶膜5をバッファ層として機能させることが可能となり、これにより、結晶性の高い化合物半導体膜を形成することが可能となる。なお、化合物半導体膜の形成方法は特に限定されず。MOCVD法やHVPE法などを採用することができる。 Further, the silicon single crystal substrate 1 having the SiC single crystal film 5 can be used as a starting substrate instead of the conventional GaN substrate or ZnO substrate, and the compound semiconductor film can be formed on the SiC single crystal film 5. In this case, the SiC single crystal film 5 can function as a buffer layer, which makes it possible to form a highly crystalline compound semiconductor film. The method for forming the compound semiconductor film is not particularly limited. A MOCVD method, an HVPE method, or the like can be adopted.

以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but this does not limit the present invention.

以下の仕様のシリコン単結晶基板を準備した(実施例、比較例共通)。
直径200mm、面方位(100)、P型、通常抵抗、
酸素濃度:12ppma(JEITA)、
結晶領域:V領域。
A silicon single crystal substrate having the following specifications was prepared (common to both Examples and Comparative Examples).
Diameter 200 mm, plane orientation (100), P type, normal resistance,
Oxygen concentration: 12ppma (JEITA),
Crystal region: V region.

(実施例1)
図4に示すフローで、シリコン単結晶基板上に3C−SiC単結晶膜を形成した。
(Example 1)
A 3C-SiC single crystal film was formed on a silicon single crystal substrate by the flow shown in FIG.

まず、シリコン単結晶基板表面に炭素を付着させる工程を、RTA処理により行った。RTA処理では、室温から800℃に昇温し、RTA処理条件を、
保持温度:800℃、
保持時間:20秒、
雰囲気:CH/(Ar+H)、炭素濃度1.4%、
とした。
First, the step of adhering carbon to the surface of the silicon single crystal substrate was performed by RTA treatment. In the RTA treatment, the temperature is raised from room temperature to 800 ° C., and the RTA treatment conditions are set.
Holding temperature: 800 ° C,
Holding time: 20 seconds,
Atmosphere: CH 4 / (Ar + H 2 ), carbon concentration 1.4%,
And said.

次に、炭素を付着させたシリコン単結晶基板の表面を炭化して、シリコン単結晶基板の表面に薄い3C−SiC単結晶下地膜を形成する工程を、RTA処理により行った。RTA処理条件は、
保持温度:1200℃、
保持時間:10秒、
雰囲気:CH/(Ar+H)、炭素濃度1.4%、
とした。これにより、厚さ2nmの3C−SiC単結晶膜(下地膜)が形成できた。
Next, a step of carbonizing the surface of the silicon single crystal substrate to which carbon was attached to form a thin 3C-SiC single crystal undercoat on the surface of the silicon single crystal substrate was performed by RTA treatment. The RTA processing conditions are
Holding temperature: 1200 ° C,
Holding time: 10 seconds,
Atmosphere: CH 4 / (Ar + H 2 ), carbon concentration 1.4%,
And said. As a result, a 3C-SiC single crystal film (base film) having a thickness of 2 nm could be formed.

次に、3C−SiC単結晶膜上に、厚さ5nm狙いで、アモルファスシリコン膜を形成する工程(1回目)を行った。CVD装置を用い、成膜条件を、
原料ガス:SiH
成長温度:530℃、
成長時間:2.5分、
として気相成長を行いアモルファスシリコン成膜した。成長速度は2nm/分だった。これにより、厚さ5〜6nmのアモルファスシリコン膜を形成した。
Next, a step (first time) of forming an amorphous silicon film on a 3C-SiC single crystal film aiming at a thickness of 5 nm was performed. Using a CVD device, set the film formation conditions
Raw material gas: SiH 4 ,
Growth temperature: 530 ° C,
Growth time: 2.5 minutes,
Amorphous silicon was formed by vapor deposition. The growth rate was 2 nm / min. As a result, an amorphous silicon film having a thickness of 5 to 6 nm was formed.

次に、固相成長により、アモルファスシリコン膜から3C−SiC単結晶膜を形成する工程(1回目)を行った。ここでは、固相成長工程中の多結晶化を防止するため、単段のRTA処理を採用した。RTA処理条件は、
昇温:600℃から1150℃に、昇温レート50℃/秒、
保持温度:1150℃、
保持時間:30秒、
雰囲気:CH/(Ar+H)、炭素濃度1.4%、
とした。1回目の固相成長後の3C−SiC単結晶膜の膜厚は、6.8nmだった。
Next, a step (first time) of forming a 3C-SiC single crystal film from the amorphous silicon film by solid-phase growth was performed. Here, in order to prevent polycrystallization during the solid phase growth step, a single-stage RTA treatment was adopted. The RTA processing conditions are
Temperature rise: From 600 ° C to 1150 ° C, temperature rise rate 50 ° C / sec,
Holding temperature: 1150 ° C,
Holding time: 30 seconds,
Atmosphere: CH 4 / (Ar + H 2 ), carbon concentration 1.4%,
And said. The film thickness of the 3C-SiC single crystal film after the first solid-phase growth was 6.8 nm.

次に、2回目のアモルファスシリコン膜の形成、2回目の固相成長による3C−SiC単結晶膜の形成を、それぞれ1回目と同様の条件で行った。2回目の固相成長後の3C−SiC単結晶膜の膜厚は、12.3nmだった。 Next, the formation of the amorphous silicon film for the second time and the formation of the 3C-SiC single crystal film by the solid phase growth for the second time were carried out under the same conditions as those for the first time. The film thickness of the 3C-SiC single crystal film after the second solid-phase growth was 12.3 nm.

得られた3C−SiC単結晶膜の断面TEM観察を実施したところ、図5に示すように、厚膜の3C−SiC単結晶膜が形成できたことがわかる。 When the cross-sectional TEM observation of the obtained 3C-SiC single crystal film was carried out, it was found that a thick 3C-SiC single crystal film could be formed as shown in FIG.

次に、得られた3C−SiC単結晶膜の結晶性の評価を行った。このとき、XRD In−Planeを用い、試料表面に対して全反射条件となるX線入射角近傍で面内方向に2θχ/φ走査することで、数nmの極薄膜でも高感度で回折線を検出することができる(試料表面に垂直な結晶面からの検出)。その結果、図6に示すように、Si(400)面に、3C−SiC(200)面と(400)面が確認された。 Next, the crystallinity of the obtained 3C-SiC single crystal film was evaluated. At this time, by using XRD In-Plane and scanning 2θχ / φ in the in-plane direction near the X-ray incident angle, which is the total reflection condition for the sample surface, diffraction lines can be generated with high sensitivity even with an extremely thin film of several nm. It can be detected (detection from the crystal plane perpendicular to the sample surface). As a result, as shown in FIG. 6, 3C-SiC (200) plane and (400) plane were confirmed on the Si (400) plane.

なお、実施例1においては、上述のとおり、シリコン単結晶基板の炭化により厚さ2nmの3C−SiC単結晶下地膜を形成し、その後、厚さ5nmのアモルファスシリコンの形成と固相成長による3C−SiC単結晶膜への変換を2回繰り返している。一方、上で説明したような、各段階での3C−SiC単結晶膜の厚さと、TEM観察写真(図5の拡大像)から確認できる各層の厚さが、一見、一致(対応)していないように見える。これは、固相成長のメカニズムによるものである。すなわち、SiC単結晶下地膜の上に形成したアモルファスシリコンを、固相成長によりSiC単結晶膜に変換する反応では、アモルファスシリコンへの炭素(C)の供給は、下地側及び気相側(アモルファスシリコンの表面側)の両側から行われる。これにより、外見上(TEM像では)、固相成長により形成されるSiC単結晶膜と、SiC単結晶下地膜との区別(境界)が明確でなくなる。1回目の固相成長が終わった段階では、上記のとおり、SiC単結晶膜全体として厚さ6.8nm程度で形成された状態となっている。その後、2回目のアモルファスシリコンの形成と固相成長を行うと、1回目と同様のメカニズムでSiC単結晶膜の形成が進行する。2回目の固相成長が終わった段階では、SiC単結晶膜全体として12.3nm形成された状態となっているが、2回目の固相成長で形成されたSiC単結晶膜は、下層側からの炭素の供給による下層側での成長と、表面側(気相)からの炭素の供給による表面側での固相成長が同時に進行する。下層側での成長は、下層側のSiC単結晶を取り込むようにも進行するため、2回の固相成長を行った後にTEM観察を行うと、外見上、1回目の固相成長が終わった段階で6.8nm形成されていたSiC単結晶膜は薄くなる(図5の拡大像の「5.0nm」に対応)のと同時に、2回目の固相成長で形成されたSiC単結晶膜の表面側で、気相からの炭素の供給により表面側に向けて成長したSiC単結晶膜(図5の拡大像の「1.5nm」に対応)が観察されるようになるのである。これは、下記の実施例2のデータでも同様である。 In Example 1, as described above, a 3C-SiC single crystal base film having a thickness of 2 nm is formed by carbonizing a silicon single crystal substrate, and then 3C is formed by forming amorphous silicon having a thickness of 5 nm and solid-phase growth. -Conversion to a SiC single crystal film is repeated twice. On the other hand, as explained above, the thickness of the 3C-SiC single crystal film at each stage and the thickness of each layer that can be confirmed from the TEM observation photograph (enlarged image of FIG. 5) seem to match (correspond). Looks like it doesn't. This is due to the mechanism of solid phase growth. That is, in the reaction of converting amorphous silicon formed on a SiC single crystal base film into a SiC single crystal film by solid phase growth, the supply of carbon (C) to the amorphous silicon is on the base side and the vapor phase side (amorphous). It is done from both sides of the silicon surface side). As a result, apparently (in the TEM image), the distinction (boundary) between the SiC single crystal film formed by solid-phase growth and the SiC single crystal base film becomes unclear. At the stage where the first solid-phase growth is completed, as described above, the entire SiC single crystal film is in a state of being formed with a thickness of about 6.8 nm. After that, when the formation of the amorphous silicon and the solid phase growth are performed for the second time, the formation of the SiC single crystal film proceeds by the same mechanism as the first time. At the stage where the second solid phase growth is completed, the entire SiC single crystal film is in a state of being formed at 12.3 nm, but the SiC single crystal film formed by the second solid phase growth is from the lower layer side. The growth on the lower layer side due to the supply of carbon and the solid phase growth on the surface side due to the supply of carbon from the surface side (gas phase) proceed at the same time. Since the growth on the lower layer side also proceeds to take in the SiC single crystal on the lower layer side, when TEM observation is performed after performing two solid phase growths, the first solid phase growth is apparently completed. The SiC single crystal film formed at the stage of 6.8 nm becomes thinner (corresponding to "5.0 nm" in the enlarged image of FIG. 5), and at the same time, the SiC single crystal film formed by the second solid phase growth On the surface side, a SiC single crystal film (corresponding to "1.5 nm" in the enlarged image of FIG. 5) grown toward the surface side due to the supply of carbon from the gas phase can be observed. This also applies to the data of Example 2 below.

(実施例2)
図7に示すフローで、シリコン単結晶基板上に、3C−SiC単結晶膜を形成した。固相成長によりアモルファスシリコン膜から3C−SiC単結晶膜を形成する工程におけるRTA処理(1回目、2回目)の条件を、保持温度:1200℃としたこと以外は、実施例1と同様にして、3C−SiC単結晶膜の形成、評価を行った。1回目の固相成長後の3C−SiC単結晶膜の膜厚は8.8nmとなり、2回目の固相成長後の3C−SiC単結晶膜は16.8nmとなった。
(Example 2)
A 3C-SiC single crystal film was formed on the silicon single crystal substrate by the flow shown in FIG. 7. The conditions for the RTA treatment (first and second) in the step of forming the 3C-SiC single crystal film from the amorphous silicon film by solid phase growth were the same as in Example 1 except that the holding temperature was 1200 ° C. , 3C-SiC single crystal film was formed and evaluated. The thickness of the 3C-SiC single crystal film after the first solid phase growth was 8.8 nm, and the thickness of the 3C-SiC single crystal film after the second solid phase growth was 16.8 nm.

得られた3C−SiC単結晶膜の断面TEM観察を実施したところ、図8に示すように、厚膜の3C−SiC単結晶膜が形成できたことがわかる。 When the cross-sectional TEM observation of the obtained 3C-SiC single crystal film was carried out, it was found that a thick 3C-SiC single crystal film could be formed as shown in FIG.

得られた3C−SiC単結晶膜の結晶性の評価を行ったところ、図9に示すように、実施例1と同様に、Si(400)面に、3C−SiC(200)面と(400)面が確認された。 When the crystallinity of the obtained 3C-SiC single crystal film was evaluated, as shown in FIG. 9, the Si (400) plane, the 3C-SiC (200) plane and the (400) plane were evaluated as in Example 1. ) The surface was confirmed.

(比較例)
図10に示すフローで、実施例1,2のアモルファスシリコン膜の形成及び固相成長による3C−SiC単結晶膜の形成を行わずに、炭素含有雰囲気によるRTA処理を繰り返して3C−SiC単結晶膜を形成した。
まず、RTA処理条件を、
保持温度:1200℃、
保持時間:10秒、
雰囲気:CH/(Ar+H)、炭素濃度2.0%、
として1回目のRTA処理を行ったところ、約2nmの3C−SiC単結晶膜が形成できた。その後、保持時間:30秒としたこと以外は1回目と同じ条件のRTA処理を、2回繰り返して行った。比較例で得られた3C−SiC単結晶膜の断面TEM観察結果を、図11に示す。比較例のように、RTA処理によるシリコン単結晶基板の炭化でSiC単結晶膜を形成した場合には、複数回繰り返しても、合計2.5nmの厚さしか形成することができなかった。また、結晶性の評価を行った結果を図12に示す。
(Comparative example)
In the flow shown in FIG. 10, the RTA treatment with a carbon-containing atmosphere was repeated without forming the amorphous silicon film of Examples 1 and 2 and the formation of the 3C-SiC single crystal film by solid-phase growth, and the 3C-SiC single crystal was formed. A film was formed.
First, the RTA processing conditions
Holding temperature: 1200 ° C,
Holding time: 10 seconds,
Atmosphere: CH 4 / (Ar + H 2 ), carbon concentration 2.0%,
When the first RTA treatment was performed, a 3C-SiC single crystal film of about 2 nm could be formed. After that, the RTA treatment under the same conditions as the first time was repeated twice except that the holding time was 30 seconds. FIG. 11 shows the cross-sectional TEM observation results of the 3C-SiC single crystal film obtained in the comparative example. When the SiC single crystal film was formed by carbonizing a silicon single crystal substrate by RTA treatment as in the comparative example, even if it was repeated a plurality of times, only a total thickness of 2.5 nm could be formed. The results of the crystallinity evaluation are shown in FIG.

実施例1,2と比較例の対比からわかるように、本発明の実施例によれば、シリコン単結晶基板上に、低欠陥で結晶性が高く、厚膜のSiC単結晶膜を容易に形成できる。 As can be seen from the comparison between Examples 1 and 2 and Comparative Examples, according to the examples of the present invention, a thick SiC single crystal film having low defects and high crystallinity can be easily formed on a silicon single crystal substrate. can.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

1…シリコン単結晶基板、 2…付着させた炭素、 3…SiC単結晶下地膜、
4…アモルファスシリコン、 5…SiC単結晶膜、 10…半導体基板、
11…支持基板、 12…絶縁層、 13…SOI層、 14…ベース基板、
20…SOIウェーハ。
1 ... Silicon single crystal substrate, 2 ... Attached carbon, 3 ... SiC single crystal base film,
4 ... Amorphous silicon, 5 ... SiC single crystal film, 10 ... Semiconductor substrate,
11 ... Support substrate, 12 ... Insulation layer, 13 ... SOI layer, 14 ... Base substrate,
20 ... SOI wafer.

次に、得られた3C−SiC単結晶膜の結晶性の評価を行った。このとき、XRD In−Planeを用い、試料表面に対して全反射条件となるX線入射角近傍で面内方向に2θ/φ走査することで、数nmの極薄膜でも高感度で回折線を検出することができる(試料表面に垂直な結晶面からの検出)。その結果、図6に示すように、Si(400)面に、3C−SiC(200)面と(400)面が確認された。 Next, the crystallinity of the obtained 3C-SiC single crystal film was evaluated. At this time, by using XRD In-Plane and scanning 2θ / φ in the in-plane direction near the X-ray incident angle, which is the total reflection condition for the sample surface, diffraction lines can be generated with high sensitivity even with an extremely thin film of several nm. It can be detected (detection from the crystal plane perpendicular to the sample surface). As a result, as shown in FIG. 6, 3C-SiC (200) plane and (400) plane were confirmed on the Si (400) plane.

Claims (11)

表面にSiC単結晶膜を有する半導体基板の製造方法であって、
シリコン単結晶基板の表面に炭素を付着させる工程と、
前記炭素を付着させた前記シリコン単結晶基板の表面を炭化してSiC単結晶下地膜を形成する工程と、
前記SiC単結晶下地膜上にアモルファスシリコン膜を形成する工程と、
前記SiC単結晶下地膜を種結晶として、固相成長により前記アモルファスシリコン膜をSiC単結晶膜とする工程とを含むことを特徴とする半導体基板の製造方法。
A method for manufacturing a semiconductor substrate having a SiC single crystal film on its surface.
The process of adhering carbon to the surface of a silicon single crystal substrate,
A step of carbonizing the surface of the silicon single crystal substrate to which the carbon is attached to form a SiC single crystal base film, and
The step of forming an amorphous silicon film on the SiC single crystal base film and
A method for manufacturing a semiconductor substrate, which comprises a step of using the SiC single crystal base film as a seed crystal and using the amorphous silicon film as a SiC single crystal film by solid phase growth.
前記シリコン単結晶基板の表面に炭素を付着させる工程において、前記シリコン単結晶基板を、炭素含有雰囲気で800℃以下のRTA処理することを特徴とする請求項1に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to claim 1, wherein in the step of adhering carbon to the surface of the silicon single crystal substrate, the silicon single crystal substrate is subjected to RTA treatment at 800 ° C. or lower in a carbon-containing atmosphere. 前記SiC単結晶下地膜を形成する工程において、前記シリコン単結晶基板を炭素含有雰囲気で1150℃〜1300℃のRTA処理することにより、7nm以下の厚さのSiC単結晶下地膜を形成することを特徴とする請求項1又は請求項2に記載の半導体基板の製造方法。 In the step of forming the SiC single crystal base film, the silicon single crystal substrate is subjected to RTA treatment at 1150 ° C. to 1300 ° C. in a carbon-containing atmosphere to form a SiC single crystal base film having a thickness of 7 nm or less. The method for manufacturing a semiconductor substrate according to claim 1 or 2, wherein the semiconductor substrate is characterized. 前記アモルファスシリコン膜を形成する工程において、前記SiC単結晶下地膜の厚さの3倍以下の厚さのアモルファスシリコン膜を、300〜600℃の成長温度で前記SiC単結晶下地膜上に気相成長させることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体基板の製造方法。 In the step of forming the amorphous silicon film, an amorphous silicon film having a thickness of 3 times or less the thickness of the SiC single crystal undercoat is vapor-phased on the SiC single crystal undercoat at a growth temperature of 300 to 600 ° C. The method for manufacturing a semiconductor substrate according to any one of claims 1 to 3, wherein the semiconductor substrate is grown. 前記固相成長によりアモルファスシリコン膜をSiC単結晶膜とする工程において、前記シリコン単結晶基板を、炭素含有雰囲気で1150℃〜1300℃のRTA処理することを特徴とする請求項1から請求項4のいずれか一項に記載の半導体基板の製造方法。 Claims 1 to 4 are characterized in that, in the step of converting an amorphous silicon film into a SiC single crystal film by solid phase growth, the silicon single crystal substrate is subjected to RTA treatment at 1150 ° C. to 1300 ° C. in a carbon-containing atmosphere. The method for manufacturing a semiconductor substrate according to any one of the above. 前記アモルファスシリコン膜を形成する工程と、前記アモルファスシリコン膜をSiC単結晶膜とする工程とを2回以上繰り返し行うことを特徴とする請求項1から請求項5のいずれか一項に記載の半導体基板の製造方法。 The semiconductor according to any one of claims 1 to 5, wherein the step of forming the amorphous silicon film and the step of forming the amorphous silicon film into a SiC single crystal film are repeated two or more times. Substrate manufacturing method. 前記SiC単結晶膜を15nmより厚く形成することを特徴とする請求項1から請求項6のいずれか一項に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to any one of claims 1 to 6, wherein the SiC single crystal film is formed to be thicker than 15 nm. 前記SiC単結晶下地膜及び前記SiC単結晶膜が3C−SiCであることを特徴とする請求項1から請求項7のいずれか一項に記載の半導体基板の製造方法。 The method for manufacturing a semiconductor substrate according to any one of claims 1 to 7, wherein the SiC single crystal base film and the SiC single crystal film are 3C-SiC. 請求項1から請求項8のいずれか一項に記載の半導体基板の製造方法により製造したSiC単結晶膜を有するシリコン単結晶基板をSOIウェーハのベース基板として用い、SOIウェーハを製造することを特徴とするSOIウェーハの製造方法。 A silicon single crystal substrate having a SiC single crystal film manufactured by the method for manufacturing a semiconductor substrate according to any one of claims 1 to 8 is used as a base substrate for an SOI wafer to manufacture an SOI wafer. A method for manufacturing an SOI wafer. 請求項1から請求項8のいずれか一項に記載の半導体基板の製造方法により製造したSiC単結晶膜を有するシリコン単結晶基板を出発基板として用い、前記SiC単結晶膜上に化合物半導体膜を形成することを特徴とする半導体基板の製造方法。 A silicon single crystal substrate having a SiC single crystal film manufactured by the method for manufacturing a semiconductor substrate according to any one of claims 1 to 8 is used as a starting substrate, and a compound semiconductor film is formed on the SiC single crystal film. A method for manufacturing a semiconductor substrate, characterized in that it is formed. SOIウェーハであって、
支持基板と、該支持基板上の絶縁層と、該絶縁層上のSOI層とを有し、
前記支持基板がシリコン単結晶基板であり、
前記絶縁層が3C−SiC単結晶膜からなるものであることを特徴とするSOIウェーハ。
It is an SOI wafer,
It has a support substrate, an insulating layer on the support substrate, and an SOI layer on the insulating layer.
The support substrate is a silicon single crystal substrate, and the support substrate is a silicon single crystal substrate.
An SOI wafer characterized in that the insulating layer is made of a 3C-SiC single crystal film.
JP2020083994A 2020-05-12 2020-05-12 Semiconductor substrate manufacturing method and SOI wafer manufacturing method Active JP7290135B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020083994A JP7290135B2 (en) 2020-05-12 2020-05-12 Semiconductor substrate manufacturing method and SOI wafer manufacturing method
TW110109452A TW202142746A (en) 2020-05-12 2021-03-17 Semiconductor substrate manufacturing method, SOI wafer manufacturing method, and SOI wafer capable of forming a SiC single crystal film having low defect, high crystallinity, and thick film on a single crystal silicon substrate
CN202110442064.7A CN113658848A (en) 2020-05-12 2021-04-23 Method for manufacturing semiconductor substrate, method for manufacturing SOI wafer, and SOI wafer
JP2023061847A JP2023089079A (en) 2020-05-12 2023-04-06 SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020083994A JP7290135B2 (en) 2020-05-12 2020-05-12 Semiconductor substrate manufacturing method and SOI wafer manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023061847A Division JP2023089079A (en) 2020-05-12 2023-04-06 SOI wafer

Publications (2)

Publication Number Publication Date
JP2021180225A true JP2021180225A (en) 2021-11-18
JP7290135B2 JP7290135B2 (en) 2023-06-13

Family

ID=78476948

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020083994A Active JP7290135B2 (en) 2020-05-12 2020-05-12 Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP2023061847A Pending JP2023089079A (en) 2020-05-12 2023-04-06 SOI wafer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023061847A Pending JP2023089079A (en) 2020-05-12 2023-04-06 SOI wafer

Country Status (3)

Country Link
JP (2) JP7290135B2 (en)
CN (1) CN113658848A (en)
TW (1) TW202142746A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100578A1 (en) * 2021-12-02 2023-06-08 信越半導体株式会社 Method for forming monocrystalline diamond film
WO2024057698A1 (en) * 2022-09-16 2024-03-21 信越半導体株式会社 Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525535B (en) * 2023-06-09 2024-01-30 中电科先进材料技术创新有限公司 Preparation method of multilayered SOI substrate and SOI substrate
CN116525420B (en) * 2023-06-09 2023-12-19 中电科先进材料技术创新有限公司 Method for growing 3C-SiC thin layer on surface of silicon wafer and 3C-SiC layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123675A (en) * 2005-10-31 2007-05-17 Air Water Inc MANUFACTURING METHOD OF SINGLE-CRYSTAL SiC (SILICON CARBIDE) SUBSTRATE
JP2010278215A (en) * 2009-05-28 2010-12-09 Seiko Epson Corp Method for forming silicon carbide film
JP2011225421A (en) * 2010-03-29 2011-11-10 Air Water Inc METHOD FOR PRODUCING SINGLE-CRYSTAL 3C-SiC SUBSTRATE, AND RESULTING SINGLE-CRYSTAL 3C-SiC SUBSTRATE
JP2011529632A (en) * 2008-07-29 2011-12-08 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Semiconductor-on-insulator substrate coated with intrinsic and doped diamond layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123675A (en) * 2005-10-31 2007-05-17 Air Water Inc MANUFACTURING METHOD OF SINGLE-CRYSTAL SiC (SILICON CARBIDE) SUBSTRATE
JP2011529632A (en) * 2008-07-29 2011-12-08 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Semiconductor-on-insulator substrate coated with intrinsic and doped diamond layers
JP2010278215A (en) * 2009-05-28 2010-12-09 Seiko Epson Corp Method for forming silicon carbide film
JP2011225421A (en) * 2010-03-29 2011-11-10 Air Water Inc METHOD FOR PRODUCING SINGLE-CRYSTAL 3C-SiC SUBSTRATE, AND RESULTING SINGLE-CRYSTAL 3C-SiC SUBSTRATE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100578A1 (en) * 2021-12-02 2023-06-08 信越半導体株式会社 Method for forming monocrystalline diamond film
WO2024057698A1 (en) * 2022-09-16 2024-03-21 信越半導体株式会社 Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer

Also Published As

Publication number Publication date
TW202142746A (en) 2021-11-16
JP7290135B2 (en) 2023-06-13
CN113658848A (en) 2021-11-16
JP2023089079A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP2020508276A (en) Wafer having group III nitride layer and diamond layer
JP2004140317A (en) Manufacturing methods of laminate and semiconductor device
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
JP6463517B2 (en) Semiconductor substrate
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
US20140159055A1 (en) Substrates for semiconductor devices
JP3508356B2 (en) Semiconductor crystal growth method and semiconductor thin film
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
JP2006222402A (en) Gallium nitride system compound semiconductor and method for manufacturing the same
JP4766642B2 (en) SiC semiconductor and SiC epitaxial growth method
Arslan et al. The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si (1 1 1) substrates by MOCVD
JP4353369B2 (en) SiC semiconductor and manufacturing method thereof
WO2023100578A1 (en) Method for forming monocrystalline diamond film
CN114438595B (en) Gallium nitride epitaxial growth method beneficial to improving heat dissipation
JP2010225733A (en) Method of manufacturing semiconductor substrate
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
WO2023037838A1 (en) Method for manufacturing nitride semiconductor substrate
JP2004103671A (en) METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH
JP2004165502A (en) Nitride based compound semiconducting crystal growing method
JP4654439B2 (en) Method for forming metal oxide thin film
JP3055158B2 (en) Method for manufacturing silicon carbide semiconductor film
JP4206609B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of semiconductor substrate
JPH07335562A (en) Method for forming silicon carbide film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7290135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150