JP2004103671A - METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH - Google Patents

METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH Download PDF

Info

Publication number
JP2004103671A
JP2004103671A JP2002260747A JP2002260747A JP2004103671A JP 2004103671 A JP2004103671 A JP 2004103671A JP 2002260747 A JP2002260747 A JP 2002260747A JP 2002260747 A JP2002260747 A JP 2002260747A JP 2004103671 A JP2004103671 A JP 2004103671A
Authority
JP
Japan
Prior art keywords
sic
film
substrate
temperature
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260747A
Other languages
Japanese (ja)
Other versions
JP3909690B2 (en
Inventor
Shunichi Suzuki
鈴木 俊一
Yoshihisa Abe
阿部 芳久
Jun Komiyama
小宮山 純
Hideo Nakanishi
中西 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002260747A priority Critical patent/JP3909690B2/en
Publication of JP2004103671A publication Critical patent/JP2004103671A/en
Application granted granted Critical
Publication of JP3909690B2 publication Critical patent/JP3909690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of crystal defects caused by lattice mismatching and strains caused by differences in thermal expansion in a method by which an SiC film is manufactured on an Si substrate through epitaxial growth. <P>SOLUTION: The method by which the SiC film is epitaxially grown on the Si substrate includes a step (a) of forming a c-BP (cubic boron phosphide) layer on the Si substrate as a buffer layer, a step (b) of forming an amorphous SiC film on the buffer layer through epitaxial growth at a temperature lower than the crystallization temperature of SiC, and a step (c) of performing annealing at the forming temperature of the c-BP layer or lower by stopping the supply of a gaseous starting material. The method also includes a step (d) of forming a crystalline 3C-SiC film on the amorphous SiC film through epitaxial growth at the crystallization temperature of SiC or higher. In this method, the SiC film is grown by using the single-layered BP film formed by the method or multilayered BP and SiC films formed by repeating the method as the buffer layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、エピタキシャル成長によるSiC膜の製造方法に関するものである。とくに、この発明は、パワーデバイス素子及び高周波半導体素子に供されるSiC単結晶膜の製造に適した方法に関するものである。
【0002】
【関連の技術】
パワーデバイスや、高周波素子に用いられる3C−SiC単結晶膜は、結晶構造が3C−SiCと類似の閃亜鉛鉱構造を有するSi基板を用いて製作されている。
【0003】
現在、パワー用デバイスを目的に3C−SiCをSi基板上に成長させる研究が行われている。この理由は、次のとおりである。
【0004】
(a)Siの結晶完全性が極めて高い
(b)安価に大口径の結晶基板が入手可能である
(c)Siデバイスの加工製造ラインを流用可能である
しかし、基板と格子定数の異なる結晶膜を成長させる場合、そのまま成長させたのでは、目的結晶物質と基板との格子不整合及び熱膨張差により応力が発生、多結晶化や結晶欠陥多発で良好な結晶が得られない。
【0005】
そこで、基板と目的物質の結晶膜の間に中間層を形成して格子不整合を緩和させる方法やSi基板表面を炭化水素ガスにより炭化処理またはundulationを施して表面を荒らした後にシランやプロパンガスなどによって3C−SiCをエピタキシャル成長させる方法が提案されている。
【0006】
【発明の解決しようとする課題】
基板となるSiと成長させるSiCとの間には格子不整合があり、そのためにミスフィット転位による結晶欠陥が多数発生し、デバイス作製時の問題となっている。
【0007】
したがって、基板と格子定数の異なる結晶膜を成長させるためには、目的結晶物質と基板との格子不整合及び熱膨張差による応力を抑制緩和する必要がある。
【0008】
Si基板表面を炭化水素ガスで炭化し、これをバッファー層としてSiCを成長させる方法がある。この手法によると、基板中のSi原子が炭化処理により基板表面に持ち去られ、Si基板中に空孔が生じ、Si基板が荒れてしまう現象が見られる。
【0009】
また、Si基板にundulationを施し表面を荒らして、多発した欠陥を相殺させ減少させることで、大口径の3C−SiC単結晶を得ることが提案されている。
【0010】
しかし、こうした気相成長では、基板の表面状態を受け継いでしまうため、低欠陥密度の低い高品質単結晶層が得られず、デバイス基板としての要求を満たすものは未だ得られていない。また、その基板の荒れはデバイス作製時の電気抵抗にもなり得る。
【0011】
そこで、基板の荒れをもたらさない適当な物質によるバッファー層を設けることが必要であり、閃亜鉛鉱型結晶であるc−BPを中間層としてSiCをヘテロエピタキシャル成長させる方法が提案されている。この方法では、SiC成長温度以下で分解してしまうc−BPのため、分解開始温度以下でSiCなどのアモルファス層を形成することにより雰囲気ガスに対する遮蔽膜として分解を抑制する技術も提案されている。
【0012】
しかし、デバイスとして使用するための3C−SiC結晶には、さらなる結晶性の向上が求められている。また、バッファー層としてのc−BP層からSiC層への欠陥伝搬が確認されており、バッファー層の結晶性向上も望まれる。
【0013】
すなわち、基板にundulation加工を施す場合においても、或いは中間緩衝層を導入する方法にしてもSiC層と界面をなす処の結晶欠陥を極力排除する必要がある。そこで、こうした格子定数差及び熱膨張差を抑制回避し、Siを基板として気相成長により欠陥の少ない3C−SiC結晶膜を得るための結晶成長方法の確立が望まれている。
【0014】
本発明の目的は、Si基板上にバッファー層として形成されたc−BP層の結晶性の向上および熱膨張差のさらなる緩和による高品質SiC膜の製造方法を提供することである。
【0015】
【課題を解決するための手段】
本発明の解決手段を例示するとつぎの通りである。
【0016】
(1)Si基板上に立方晶リン化ホウ素(c−BP)をバッファー層として成膜する工程と、
SiCが結晶化する温度よりも低い温度でアモルファスSiC膜をバッファー層の上にエピタキシャル成長により成膜させる工程と
SiCが結晶化する温度以上の高い温度で3C−SiC結晶膜をアモルファスSiC膜の上にエピタキシャル成長により成膜させる工程と
を含むSiC膜の製造方法。
【0017】
(2)前記低い温度でアモルファスSiC膜を形成した後に、原料ガスの供給を停止してアニール処理をおこない、そのあと、前記高い温度で3C−SiC結晶膜を形成する、前記(1)に記載のSiC膜の製造方法。
【0018】
(3)アモルファスSiCの成膜温度が300〜650℃である前記(1)又は(2)に記載のSiC膜の製造方法。
【0019】
(4)アモルファスSiCの形成後のアニール処理温度がc−BPの成膜温度以下である前記(2)に記載のSiC膜の製造方法。
【0020】
(5)Si基板上にSiC膜をエピタキシャル成長させる方法において、以下の工程を含む方法。
【0021】
(a)Si基板上にP(リン)元素を有するガスとB(ホウ素)元素を有するガスとを含む原料ガスを供給して、Si基板上に厚さ5nm以上100nm以下のアモルファスBP薄膜を合成する工程、
(b)Si基板上にさらにP元素を有するガスとB元素を有するガスとを含む原料ガスを供給して、Si基板上に厚さ5nm以上1000nm以下のc−BP単結晶薄膜を合成する工程、
(c)c−BP単結晶薄膜が合成されたSi基板上に、炭素元素を有するガスと珪素元素を有するガスを供給して、Si基板上のc−BP単結晶薄膜の上に厚さ1nm以上500nm以下のアモルファスSiC薄膜を合成する工程、
(d)Si基板を750〜1200℃の温度でアニール処理して、前記(b)工程で形成したc−BP単結晶膜の結晶性を向上させる工程、
(e)Si基板上に再び炭素元素及び珪素元素を有するガスを供給して1nm以上500nm以下の厚さを有する3C−SiC単結晶薄膜を合成する工程。
【0022】
(6)さらに前記(5)の工程に以下の工程を含む方法。
【0023】
(f)前述の一連の工程(a)〜(e)を少なくとも2回以上繰り返し行って、c−BP単結晶薄膜と3C−SiC単結晶薄膜とを交互に堆積させて、厚さ10nm以上1μm以下の多層膜をSi基板上に形成する工程、
(g)多層膜を形成したSi基板に、さらに炭素元素を有するガスと珪素元素を有するガスとを含む原料ガスを供給して、1μm以上の3C−SiC単結晶膜を合成する工程。
【0024】
【発明の実施の形態】
本発明の好適な実施態様によれば、BP分解開始温度以下の温度で、SiCのアモルファス層をバッファー層の上に形成して、雰囲気との遮蔽膜として機能させたうえで、原料ガスの供給を停止してBP成膜温度以下でアニール処理をおこなう。それにより、バッファー層のc−BPの結晶性が向上し、その後のSiC単結晶の成長においても良好な3C−SiC成長膜が得られる。
【0025】
基板となるSi上にSiC単結晶膜をエピタキシャル成長させるにあたり、中間緩衝層としてc−BPを用いる。閃亜鉛鉱型結晶であるc−BPの格子定数はSiと格子定数と比較して16.4%の違いがあるものの、c−BPはSi上にヘテロエピタキシャル成長できることが知られている。Si基板上にc−BPをエピタキシャル成長させることにより、c−BPの格子定数に近い立方晶炭化ケイ素(3C−SiC)結晶がミスフィット転位を抑制した状態でヘテロエピタキシャルが可能である。しかし、SiC結晶層はその下地として中間緩衝層の結晶欠陥を引き継いでしまうため、中間緩衝層の結晶性を向上させることが必要である。また、SiC自体は低温でのアニールでは顕著な結晶向上効果が得られないため、低温でもアニール効果が得られるc−BPバッファー層での結晶向上が重要となる。
【0026】
ここで、c−BPなどのPを含む材料は融点より低い温度で分解し、その後のヘテロエピタキシャル成長の障害になっている。そこで、c−BPをエピタキシャル成長させた後、300〜650℃の比較的低温にてSiCのアモルファス層を〜500nm程度成長させ、次いで基板温度を750℃からc−BP成長温度以下まで上昇させてアニールをおこなう。その後、所定の温度にて3C−SiCの結晶成長をおこなう。アニール温度はなるべくSiC結晶成長温度に近い方が効果的である。
【0027】
比較的低温でアモルファスSiC層を設けることによってc−BPの分解を抑制し、アニール効果の発揮できる温度までの昇温を可能にする。SiC低温成長後アニールすることによりBP分解を抑制してc−BP層の結晶性を向上し、そのバッファー層の改善で良質なSiCヘテロエピタキシャル結晶を得ることができる。
【0028】
上記の応用として、バッファー層およびSiC層を薄く多層化して介在させることにより熱膨張差の緩和をねらう。
【0029】
まず、低温でSi基板上に隣元素を有するガスと硼素元素を有するガスとを含む原料ガスを供給することにより該Si基板上に厚さ5nm以上100nm以下のBPアモルファス薄膜を合成する。ここで該原料ガスは、該燐元素を有するガスと硼素元素を有するガスを全ガス中各々0.01〜30容量%の範囲内で含有している。また、成膜温度は300〜700℃である。
【0030】
つぎに、温度を上昇させ、該基板上にさらに隣元素を有するガスと硼素元素を有するガスとを含む原料ガスを供給する。それにより該Si基板上に厚さ5nm以上1000nm以下のc−BP単結晶薄膜を合成する。ここで該原料ガスは、該燐元素を有するガスと硼素元素を有するガスを全ガス中各々0.01〜30容量%の範囲内で含有している。また、成膜温度は800〜1200℃である。
【0031】
ここで温度を低下させ、該c−BP単結晶薄膜が合成されたSi基板に炭素元素を有するガスと珪素元素を有するガスを供給する。それによって、Si基板上のc−BP単結晶薄膜上に厚さ1nm以上300nm以下のアモルファスSiC薄膜を合成する。ここで使う原料ガスは、炭素元素を有するガスと珪素元素を有するガスを全ガス中各々0.01〜30容量%の範囲内で含有している。また、そのときの成膜温度は300〜650℃である。
【0032】
その後、原料ガスを停止し、該基板を750℃以上c−BP成膜温度以下の温度でアニールを行い先に形成した立方晶燐化硼素単結晶膜の結晶性を向上させる。
【0033】
該基板上に再び炭素元素及び珪素元素を有するガスを供給して1nm以上500nm以下の3C−SiC単結晶薄膜を合成する。ここで使う原料ガスは、炭素元素を有するガスと珪素元素を有するガスを全ガス中各々0.01〜30容量%の範囲内で含有している。また、成膜温度は800〜1100℃である。
【0034】
前述一連の工程を少なくとも2回以上繰り返し行って、c−BP単結晶薄膜と3C−SiC単結晶薄膜とが交互に堆積して成る厚さ10nm以上10000nm以下の多層膜をSi基板上に形成する。
【0035】
さらに、該基板に炭素元素を有するガスと珪素元素を有するガスとを含む原料ガスを供給する。それによって、該基板上に1μm以上の3C−SiC単結晶膜を合成する。ここで使う原料ガスは、炭素元素を有するガスと珪素元素を有するガスを全ガス中各々0.01〜30容量%の範囲内で含有している。また、成膜温度は800〜1200℃である。
【0036】
【実施例】
以下、本発明の実施例を説明する。
【0037】
実施例1
(1)Si基板を水素雰囲気中で1000℃以上加熱する。それにより自然酸化膜を除去する。
【0038】
(2)c−BPの結晶成長を行う。すなわち、Si基板を800〜1000℃まで昇温し、Si基板の表面に原料ガスとしてBおよびPHを供給して0 .5μm程度の厚みを有するc−BP膜を成膜する。
【0039】
(3)c−BP膜の上にSiCの低温成長層を設ける。すなわち、PHを供 給しつつ、300〜600℃まで降温し、PH3の供給を止め、SiC原料ガ スとしてモノメチルシラン(CHSiH)を供給し、0.2μm程度の厚みを有するSiC層を成膜する。
【0040】
(4)原料ガスを止め、c−BP成長温度以下の800℃にてアニール処理する。
【0041】
(5)3C−SiCの結晶成長を行う。すなわち、750〜900℃まで昇温し、再びモノメチルシラン(CHSiH)を供給し、3C−SiCを5μm以上の厚みまで成膜する。
【0042】
比較例1
比較1として、アニールをおこなわないで成膜した。つまり前述実施例1の(4)を除いて、実施例1と同様に成膜した。
【0043】
比較例2
比較2として、c−BP成長温度以上の1020℃でアニールして成膜した。すなわち、前述実施例1の(4)のアニール温度を変更した。
【0044】
図1は、前述の実施例1および比較例1〜2にて作製した結晶のX線回折評価結果の回折パターンを示す。図2は、それを回折強度比較としてグラフに示す。
【0045】
図1〜2から明らかなように、c−BP層を成膜後、低温にてアモルファスSiC層を成膜して、アモルファスSiC層によってc−BP層を雰囲気から遮蔽し、アニール後、3C−SiC層を成長させた実施例1においては、アニール処理無しの比較例1と比べて、高品質な3C−SiCヘテロエピタキシャル結晶を得ることが出来た。しかし、比較例2のように、アニール温度がc−BP成膜温度以上の場合には、c−BP層の分解が生じc−BPおよび3C−SiCの結晶性が劣化した。
【0046】
よって、c−BPをSi基板に成長させた後、SiC低温成長層を設けることでc−BPの変質を抑制し、さらにc−BP成膜温度以下でアニールをおこないc−BP層の結晶性を向上してから3C−SiC結晶成長を実施することで、高品質なヘテロエピタキシャル結晶を得ることができる。
【0047】
実施例2
多層膜とした実施例2について図3〜5に基づき説明を行う。
【0048】
図3の(a)と(b)は、それぞれ本発明方法の実施に適した反応装置の一例を簡略化した形で示す平面図と縦断面図である。
【0049】
図3の装置において、1は断面が円形若しくは長方形の反応容器であり、その始端側には3種の気相原料を供給するための3本の供給間2a、2b、2cが上から順に備えられている。その始端側とは反対に位置する終端側には排気口3が設けられている。反応管1内にはサセプター4上に載置されたSi単結晶基板5が2本の供給管2b、2cの開口部とほぼ対向する位置に配置されている。そしてサセプター4の下には、Si基板5を加熱するためのカーボン発熱体6が設置されている。サセプター4は図3の(b)に矢印で示すように、自転可能となっている。
【0050】
図3の装置によって3C−SiC膜の製造する方法を以下に説明する。
【0051】
排気口3に続く図示しない減圧手段によって反応容器1内を150Torrに減圧した状態でカーボン発熱体6によりシリコン基板5を300〜500℃に加熱して10〜30分保持する。供給管2aから水素ガスを毎分1リットル、水冷された供給管2bからBを毎分10cc、発熱体2eを内蔵して温度制御可能なっている供給管2cからPHを毎分1リットルで反応容器1内に供給し、S i基板5上に厚さ5nm以上100nm以下のアモルファスBP単結晶薄膜を合成する。
【0052】
つぎに、反応容器1内を150Torrに減圧した状態でカーボン発熱体6によりSi基板5を800〜1100℃に加熱して10〜30分保持する。供給管2aから水素ガスを毎分1リットル、水冷された供給管2bからBを毎分10cc、発熱体2eを内蔵して温度制御可能な供給管2cからPHを毎分1リ ットルを反応管内に供給し、該基板上にさらに隣元素を有するガスと硼素元素を有するガスとを含む原料ガスを供給することによって、厚さ5nm以上1μm以下のc−BP単結晶薄膜を合成する。
【0053】
つぎに、c−BP単結晶薄膜が合成されたSi基板5に炭素元素を有するガスと珪素元素を有するガスを供給する。まず、反応容器1内を150Torrに減圧した状態でカーボン発熱体6によりSi基板5を300〜650℃に加熱して10〜30分保持する。その際、供給管2aから水素ガスを毎分5リットル、発熱体2eを内蔵して温度制御可能な供給管2cからCHSiHを毎分6ccを反応容器1内に供給し、Si基板5のc−BP単結晶薄膜上に厚さ1nm以上100nm以下のアモルファスSiC薄膜を合成する。
【0054】
Si基板5を750〜1100℃の温度でアニール処理して、先に形成したc−BP単結晶膜の結晶性を向上する。
【0055】
つぎに、Si基板5上に再び炭素元素及び珪素元素を有するガスを供給する。まず、反応容器1内を0.001Torrに減圧した状態でカーボン発熱体6によりSi基板5を800〜1100℃に加熱して10〜120分保持する。その際、供給管2aから水素ガスを毎分5リットル、発熱体2eを内蔵して温度制御可能な供給管2cからCHSiHを毎分6cc、反応容器1内に供給し、1nm以上500nm以下の3C−SiC単結晶薄膜を合成する。
【0056】
前述の一連の工程を少なくとも2回以上繰り返し行って、c−BP単結晶薄膜と3C−SiC単結晶薄膜とが交互に堆積させる。それにより厚さ10nm以上10μm以下の多層膜をSi基板上に形成する。
【0057】
さらに、Si基板5に炭素元素を有するガスと珪素元素を有するガスとを含む原料ガスを供給する。まず、反応容器1内を0.001Torrに減圧した状態でカーボン発熱体6によりSi基板5を800〜1200℃に加熱して300分保持する。その際、供給管2aから水素ガスを毎分5リットル、発熱体2eを内蔵して温度制御可能な供給管2cからCHSiHを毎分6cc、反応容器1内に供給し、Si基板5上に2μmの3C−SiC単結晶膜を合成する。
【0058】
図4は本発明の実施例により得られたSi基板上への3C−SiC結晶の概略を示す断面図、図5はその代表的なX線回折評価結果を示すグラフである。図4,5は、とくに3C−SiC単結晶膜を厚く成長させた場合を示すもので、バッファー層が(a)は単層、(b)は多層化した例である。
【0059】
Si単結晶基板5上に成長されたc−BP単結晶薄膜及び3C−SiC単結晶薄膜を交互に堆積した多層膜が、緩衝膜(バッファー層)として機能するとともに、アニール効果によるc−BP層の結晶欠陥改善作用により、各々c−BP上に形成される3C−SiC膜の結晶性が徐々に改善向上する。しかも、格子定数及び熱膨張係数の差異が効果的に緩和され、Si基板5上に、歪み及び結晶欠陥が可及的に防止された高品質の3C−SiC単結晶膜を形成することができる。図5において、多層化した場合の方が回折強度が向上していることからも明らかである。
【0060】
3C−SiC結晶をSi基板上に形成する例を説明したが、Si基板上に形成される結晶層は、GaNを始め、窒化物、酸化物などの全ての化合物結晶に応用可能である。
【図面の簡単な説明】
【図1】本発明の実施例と比較例1〜2によりシリコン基板上に作製した結晶のX線回折評価結果の回折パターン
【図2】図1のX線回折評価結果の回折強度
【図3】(a)は、本発明方法の実施に適した反応装置の一例を簡略化した形で示す平面図(b)は、本発明方法の実施に適した反応装置の一例を簡略化した形で示す縦断面図
【図4】本発明の実施例により得られたSi基板上への3C−SiC結晶の概略を示す断面図。(a)はバッファー層が単層、(b)はバッファー層が多層。
【図5】図4においてSi基板上に厚く成長させた3C−SiC単結晶膜の代表的なX線回折評価結果。
【符号の説明】
1 反応管
2a、2b、2c 供給管
2e 発熱体
3 排気口
4 サセプター
5 Si基板
6 カーボン発熱体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a SiC film by epitaxial growth. In particular, the present invention relates to a method suitable for manufacturing a SiC single crystal film used for a power device element and a high-frequency semiconductor element.
[0002]
[Related technologies]
A 3C-SiC single crystal film used for a power device or a high-frequency element is manufactured using a Si substrate having a zinc blende structure similar to 3C-SiC in crystal structure.
[0003]
At present, research on growing 3C-SiC on a Si substrate for power devices has been conducted. The reason is as follows.
[0004]
(A) The crystal perfection of Si is extremely high. (B) A large-diameter crystal substrate can be obtained at low cost. (C) The processing line for manufacturing Si devices can be used. However, a crystal film having a different lattice constant from the substrate is used. In the case where is grown, stress is generated due to lattice mismatch between the target crystal substance and the substrate and a difference in thermal expansion, and polycrystallization and crystal defects occur frequently, so that a good crystal cannot be obtained.
[0005]
Therefore, a method of forming an intermediate layer between the substrate and the crystal film of the target substance to alleviate lattice mismatch, or a method of carbonizing or undulating the surface of the Si substrate with a hydrocarbon gas to roughen the surface, followed by silane or propane gas For example, a method of epitaxially growing 3C—SiC has been proposed.
[0006]
[Problems to be solved by the invention]
There is a lattice mismatch between Si serving as a substrate and SiC to be grown, which causes a large number of crystal defects due to misfit dislocations, which is a problem during device fabrication.
[0007]
Therefore, in order to grow a crystal film having a lattice constant different from that of the substrate, it is necessary to suppress and relax the lattice mismatch between the target crystal material and the substrate and the stress due to the difference in thermal expansion.
[0008]
There is a method in which the surface of an Si substrate is carbonized with a hydrocarbon gas, and SiC is grown using the carbonized gas as a buffer layer. According to this method, a phenomenon is observed in which Si atoms in the substrate are carried away to the surface of the substrate by the carbonization treatment, holes are generated in the Si substrate, and the Si substrate is roughened.
[0009]
In addition, it has been proposed to obtain a large-diameter 3C-SiC single crystal by subjecting a Si substrate to undulation and roughening the surface thereof to offset and reduce a number of defects.
[0010]
However, in such a vapor phase growth, since the surface state of the substrate is inherited, a high-quality single crystal layer having a low defect density and a low quality cannot be obtained, and none satisfying the requirements as a device substrate has yet been obtained. Also, the roughness of the substrate can be an electrical resistance during device fabrication.
[0011]
Therefore, it is necessary to provide a buffer layer of an appropriate substance that does not cause the substrate to be roughened, and a method of heteroepitaxially growing SiC using c-BP, which is a zinc blende type crystal, as an intermediate layer has been proposed. In this method, since c-BP decomposes at a temperature lower than the SiC growth temperature, a technique has been proposed in which an amorphous layer such as SiC is formed at a temperature lower than the decomposition start temperature to suppress the decomposition as a shielding film against an atmospheric gas. .
[0012]
However, 3C-SiC crystals for use as devices are required to have further improved crystallinity. In addition, defect propagation from the c-BP layer as the buffer layer to the SiC layer has been confirmed, and improvement in the crystallinity of the buffer layer is also desired.
[0013]
That is, it is necessary to eliminate as much as possible crystal defects at the interface with the SiC layer even when the substrate is subjected to the undulation process or the method of introducing the intermediate buffer layer. Therefore, it is desired to establish a crystal growth method for obtaining a 3C-SiC crystal film having few defects by vapor-phase growth using Si as a substrate while avoiding suppression of such a lattice constant difference and a thermal expansion difference.
[0014]
An object of the present invention is to provide a method for manufacturing a high-quality SiC film by improving the crystallinity of a c-BP layer formed as a buffer layer on a Si substrate and further reducing the difference in thermal expansion.
[0015]
[Means for Solving the Problems]
An example of the solution of the present invention is as follows.
[0016]
(1) a step of forming cubic boron phosphide (c-BP) as a buffer layer on a Si substrate;
A step of forming an amorphous SiC film on the buffer layer by epitaxial growth at a temperature lower than the temperature at which SiC crystallizes, and a step of forming a 3C-SiC crystal film on the amorphous SiC film at a temperature higher than the temperature at which SiC crystallizes. Forming a film by epitaxial growth.
[0017]
(2) The method according to (1), wherein after the formation of the amorphous SiC film at the low temperature, the supply of the raw material gas is stopped to perform an annealing process, and thereafter, the 3C-SiC crystal film is formed at the high temperature. Method for producing SiC film.
[0018]
(3) The method for producing a SiC film according to the above (1) or (2), wherein the film forming temperature of the amorphous SiC is 300 to 650 ° C.
[0019]
(4) The method for producing a SiC film according to (2), wherein the annealing temperature after the formation of the amorphous SiC is equal to or lower than the film forming temperature of c-BP.
[0020]
(5) A method of epitaxially growing a SiC film on a Si substrate, comprising the following steps.
[0021]
(A) A raw material gas containing a gas containing a P (phosphorus) element and a gas containing a B (boron) element is supplied onto a Si substrate to synthesize an amorphous BP thin film having a thickness of 5 nm or more and 100 nm or less on the Si substrate. Process,
(B) a step of supplying a raw material gas containing a gas containing a P element and a gas containing a B element on the Si substrate to synthesize a c-BP single crystal thin film having a thickness of 5 nm or more and 1000 nm or less on the Si substrate; ,
(C) A gas having a carbon element and a gas having a silicon element are supplied onto the Si substrate on which the c-BP single crystal thin film has been synthesized, and a thickness of 1 nm is formed on the c-BP single crystal thin film on the Si substrate. A step of synthesizing an amorphous SiC thin film having a thickness of 500 nm or less,
(D) annealing the Si substrate at a temperature of 750 to 1200 ° C. to improve the crystallinity of the c-BP single crystal film formed in the step (b);
(E) a step of supplying a gas containing a carbon element and a silicon element again onto the Si substrate to synthesize a 3C-SiC single crystal thin film having a thickness of 1 nm or more and 500 nm or less.
[0022]
(6) A method further comprising the following step in the step (5).
[0023]
(F) By repeating the above-described series of steps (a) to (e) at least twice or more, a c-BP single crystal thin film and a 3C-SiC single crystal thin film are alternately deposited to have a thickness of 10 nm or more and 1 μm. Forming the following multilayer film on a Si substrate,
(G) a step of supplying a raw material gas containing a gas containing a carbon element and a gas containing a silicon element to the Si substrate on which the multilayer film is formed, to synthesize a 3C-SiC single crystal film having a thickness of 1 μm or more.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
According to a preferred embodiment of the present invention, an amorphous layer of SiC is formed on a buffer layer at a temperature equal to or lower than a BP decomposition start temperature, and functions as a shielding film with an atmosphere. Is stopped, and annealing is performed at a BP film forming temperature or lower. Thereby, the crystallinity of c-BP of the buffer layer is improved, and a good 3C-SiC growth film can be obtained even in the subsequent growth of the SiC single crystal.
[0025]
In epitaxially growing a SiC single crystal film on Si serving as a substrate, c-BP is used as an intermediate buffer layer. It is known that c-BP can be heteroepitaxially grown on Si although the lattice constant of c-BP, which is a zinc blende type crystal, is different from that of Si by 16.4% compared with the lattice constant. By epitaxially growing c-BP on a Si substrate, cubic silicon carbide (3C-SiC) crystal having a lattice constant close to the lattice constant of c-BP can be heteroepitaxially grown while suppressing misfit dislocations. However, since the SiC crystal layer takes over the crystal defects of the intermediate buffer layer as its base, it is necessary to improve the crystallinity of the intermediate buffer layer. Further, since SiC itself cannot obtain a remarkable crystal improving effect by annealing at a low temperature, it is important to improve the crystal in a c-BP buffer layer capable of obtaining an annealing effect even at a low temperature.
[0026]
Here, a P-containing material such as c-BP decomposes at a temperature lower than the melting point, which hinders subsequent heteroepitaxial growth. Therefore, after epitaxially growing c-BP, an SiC amorphous layer is grown at a relatively low temperature of 300 to 650 ° C. to about 500 nm, and then the substrate temperature is increased from 750 ° C. to a temperature lower than the c-BP growth temperature to anneal. Perform Thereafter, crystal growth of 3C-SiC is performed at a predetermined temperature. It is effective that the annealing temperature is as close as possible to the SiC crystal growth temperature.
[0027]
By providing the amorphous SiC layer at a relatively low temperature, the decomposition of c-BP is suppressed, and the temperature can be raised to a temperature at which the annealing effect can be exhibited. Annealing after low-temperature growth of SiC suppresses BP decomposition, improves the crystallinity of the c-BP layer, and improves the buffer layer to obtain a high-quality SiC heteroepitaxial crystal.
[0028]
As the above-mentioned application, the buffer layer and the SiC layer are thinly and multi-layered and interposed to reduce the thermal expansion difference.
[0029]
First, a BP amorphous thin film having a thickness of 5 nm or more and 100 nm or less is synthesized on a Si substrate by supplying a raw material gas containing a gas having an adjacent element and a gas having a boron element on the Si substrate at a low temperature. Here, the source gas contains the gas containing the phosphorus element and the gas containing the boron element in the total gas in the range of 0.01 to 30% by volume. The film formation temperature is 300 to 700 ° C.
[0030]
Next, the temperature is increased, and a source gas containing a gas containing an adjacent element and a gas containing a boron element is supplied onto the substrate. Thus, a c-BP single crystal thin film having a thickness of 5 nm or more and 1000 nm or less is synthesized on the Si substrate. Here, the source gas contains the gas containing the phosphorus element and the gas containing the boron element in the total gas in the range of 0.01 to 30% by volume. The film forming temperature is 800 to 1200 ° C.
[0031]
Here, the temperature is lowered, and a gas containing a carbon element and a gas containing a silicon element are supplied to the Si substrate on which the c-BP single crystal thin film has been synthesized. Thereby, an amorphous SiC thin film having a thickness of 1 nm or more and 300 nm or less is synthesized on the c-BP single crystal thin film on the Si substrate. The raw material gas used here contains a gas containing a carbon element and a gas containing a silicon element within the range of 0.01 to 30% by volume in the total gas. The film forming temperature at that time is 300 to 650 ° C.
[0032]
After that, the source gas is stopped, and the substrate is annealed at a temperature of 750 ° C. or more and a c-BP deposition temperature or less to improve the crystallinity of the cubic boron phosphide single crystal film formed earlier.
[0033]
A gas containing a carbon element and a silicon element is supplied again onto the substrate to synthesize a 3C-SiC single crystal thin film having a thickness of 1 nm to 500 nm. The raw material gas used here contains a gas containing a carbon element and a gas containing a silicon element within the range of 0.01 to 30% by volume in the total gas. The film forming temperature is 800 to 1100 ° C.
[0034]
The above series of steps is repeated at least twice or more to form a multilayer film having a thickness of 10 nm or more and 10000 nm or less formed by alternately depositing a c-BP single crystal thin film and a 3C-SiC single crystal thin film on a Si substrate. .
[0035]
Further, a source gas containing a gas containing a carbon element and a gas containing a silicon element is supplied to the substrate. Thereby, a 3C-SiC single crystal film of 1 μm or more is synthesized on the substrate. The raw material gas used here contains a gas containing a carbon element and a gas containing a silicon element within the range of 0.01 to 30% by volume in the total gas. The film forming temperature is 800 to 1200 ° C.
[0036]
【Example】
Hereinafter, examples of the present invention will be described.
[0037]
Example 1
(1) Heat the Si substrate in a hydrogen atmosphere at 1000 ° C. or higher. Thereby, the natural oxide film is removed.
[0038]
(2) c-BP crystal growth is performed. That is, the temperature of the Si substrate is raised to 800 to 1000 ° C., and B 2 H 6 and PH 3 are supplied as raw material gases to the surface of the Si substrate to increase the temperature of the substrate to 0. A c-BP film having a thickness of about 5 μm is formed.
[0039]
(3) A low-temperature growth layer of SiC is provided on the c-BP film. That is, while subjected supercharges PH 3, the temperature was lowered to 300 to 600 ° C., stopping the supply of PH 3 3, monomethyl silane (CH 3 SiH 3) supplied as SiC raw material gas, a thickness of about 0.2μm Is formed.
[0040]
(4) The raw material gas is stopped and annealing is performed at 800 ° C. which is lower than the c-BP growth temperature.
[0041]
(5) 3C-SiC crystal growth is performed. That is, the temperature is raised to 750 to 900 ° C., monomethylsilane (CH 3 SiH 3 ) is supplied again, and 3C—SiC is deposited to a thickness of 5 μm or more.
[0042]
Comparative Example 1
As Comparative 1, a film was formed without annealing. That is, a film was formed in the same manner as in Example 1 except for (4) of Example 1 described above.
[0043]
Comparative Example 2
As Comparative 2, a film was formed by annealing at 1020 ° C. which is higher than the c-BP growth temperature. That is, the annealing temperature in (4) of Example 1 was changed.
[0044]
FIG. 1 shows a diffraction pattern of X-ray diffraction evaluation results of the crystals prepared in Example 1 and Comparative Examples 1 and 2 described above. FIG. 2 graphically illustrates it as a diffraction intensity comparison.
[0045]
As is clear from FIGS. 1 and 2, after forming the c-BP layer, an amorphous SiC layer is formed at a low temperature, the c-BP layer is shielded from the atmosphere by the amorphous SiC layer, and after annealing, 3C- In Example 1 in which the SiC layer was grown, a higher quality 3C-SiC heteroepitaxial crystal could be obtained as compared with Comparative Example 1 without annealing. However, when the annealing temperature was equal to or higher than the c-BP film forming temperature as in Comparative Example 2, the c-BP layer was decomposed, and the crystallinity of c-BP and 3C-SiC was deteriorated.
[0046]
Therefore, after the c-BP is grown on the Si substrate, the deterioration of the c-BP is suppressed by providing the SiC low-temperature growth layer, and further, the c-BP layer is annealed at a temperature lower than the c-BP film forming temperature. After improving 3C-SiC crystal growth, a high-quality heteroepitaxial crystal can be obtained.
[0047]
Example 2
Second Embodiment A multilayer film according to a second embodiment will be described with reference to FIGS.
[0048]
3 (a) and 3 (b) are a plan view and a longitudinal sectional view, respectively, showing a simplified example of a reactor suitable for carrying out the method of the present invention.
[0049]
In the apparatus shown in FIG. 3, reference numeral 1 denotes a reaction vessel having a circular or rectangular cross section, and three supply spaces 2a, 2b, and 2c for supplying three kinds of gaseous raw materials are provided at the starting end side in this order from the top. Have been. An exhaust port 3 is provided at the end side opposite to the start end side. In the reaction tube 1, a Si single crystal substrate 5 placed on a susceptor 4 is disposed at a position substantially facing the openings of the two supply tubes 2 b and 2 c. Under the susceptor 4, a carbon heating element 6 for heating the Si substrate 5 is provided. The susceptor 4 is rotatable as shown by an arrow in FIG.
[0050]
A method for manufacturing a 3C-SiC film using the apparatus shown in FIG. 3 will be described below.
[0051]
The silicon substrate 5 is heated to 300 to 500 ° C. by the carbon heating element 6 and held for 10 to 30 minutes while the pressure inside the reaction vessel 1 is reduced to 150 Torr by a pressure reducing means (not shown) following the exhaust port 3. 1 liter of hydrogen gas per minute from the supply pipe 2a, 10 cc of B 2 H 6 from the water-cooled supply pipe 2b per minute, and PH 3 from the supply pipe 2c with a built-in heating element 2e and temperature controllable. 1 liter is supplied into the reaction vessel 1 to synthesize an amorphous BP single crystal thin film having a thickness of 5 nm or more and 100 nm or less on the Si substrate 5.
[0052]
Next, the Si substrate 5 is heated to 800 to 1100 ° C. by the carbon heating element 6 and maintained for 10 to 30 minutes while the pressure in the reaction vessel 1 is reduced to 150 Torr. 1 liter of hydrogen gas per minute from the supply pipe 2a, 10 cc of B 2 H 6 from the water-cooled supply pipe 2b per minute, and 1 liter of PH 3 from the supply pipe 2c with a built-in heating element 2e and temperature controllable. A c-BP single crystal thin film having a thickness of 5 nm or more and 1 μm or less is synthesized by supplying a nozzle into the reaction tube and further supplying a source gas containing a gas having an adjacent element and a gas having a boron element on the substrate. I do.
[0053]
Next, a gas containing a carbon element and a gas containing a silicon element are supplied to the Si substrate 5 on which the c-BP single crystal thin film has been synthesized. First, the Si substrate 5 is heated to 300 to 650 ° C. by the carbon heating element 6 and held for 10 to 30 minutes in a state where the pressure inside the reaction vessel 1 is reduced to 150 Torr. At that time, 5 liters of hydrogen gas per minute from the supply pipe 2a and 6 cc of CH 3 SiH 3 per minute from the supply pipe 2c having a built-in heating element 2e and capable of controlling the temperature are supplied into the reaction vessel 1, and the Si substrate 5 An amorphous SiC thin film having a thickness of 1 nm or more and 100 nm or less is synthesized on the c-BP single crystal thin film.
[0054]
The Si substrate 5 is annealed at a temperature of 750 to 1100 ° C. to improve the crystallinity of the previously formed c-BP single crystal film.
[0055]
Next, a gas containing a carbon element and a silicon element is supplied onto the Si substrate 5 again. First, the Si substrate 5 is heated to 800 to 1100 ° C. by the carbon heating element 6 and held for 10 to 120 minutes while the pressure inside the reaction vessel 1 is reduced to 0.001 Torr. At this time, 5 liters of hydrogen gas per minute from the supply pipe 2a and 6 cc of CH 3 SiH 3 per minute from the supply pipe 2c having a built-in heating element 2e and capable of controlling the temperature are supplied into the reaction vessel 1 to be 1 nm to 500 nm. The following 3C-SiC single crystal thin film is synthesized.
[0056]
By repeating the above-described series of steps at least twice or more, the c-BP single crystal thin film and the 3C-SiC single crystal thin film are alternately deposited. Thereby, a multilayer film having a thickness of 10 nm or more and 10 μm or less is formed on the Si substrate.
[0057]
Further, a source gas containing a gas containing a carbon element and a gas containing a silicon element is supplied to the Si substrate 5. First, the Si substrate 5 is heated to 800 to 1200 ° C. by the carbon heating element 6 and held for 300 minutes while the pressure inside the reaction vessel 1 is reduced to 0.001 Torr. At this time, 5 liters of hydrogen gas per minute from the supply pipe 2a and 6 cc of CH 3 SiH 3 per minute from the supply pipe 2c having a built-in heating element 2e and capable of controlling the temperature are supplied into the reaction vessel 1, and the Si substrate 5 is supplied. A 2 μm 3C—SiC single crystal film is synthesized thereon.
[0058]
FIG. 4 is a cross-sectional view schematically showing a 3C-SiC crystal on a Si substrate obtained by an example of the present invention, and FIG. 5 is a graph showing a typical X-ray diffraction evaluation result. FIGS. 4 and 5 show a case where a 3C-SiC single crystal film is grown particularly thick. FIG. 4A shows an example in which the buffer layer is a single layer, and FIG.
[0059]
A multilayer film formed by alternately depositing a c-BP single crystal thin film and a 3C-SiC single crystal thin film grown on the Si single crystal substrate 5 functions as a buffer film (buffer layer), and has a c-BP layer formed by an annealing effect. , The crystallinity of the 3C-SiC film formed on each c-BP is gradually improved and improved. In addition, the difference between the lattice constant and the coefficient of thermal expansion is effectively reduced, and a high-quality 3C-SiC single crystal film in which distortion and crystal defects are prevented as much as possible can be formed on the Si substrate 5. . In FIG. 5, it is clear from the fact that the diffraction intensity is improved in the case of the multilayer structure.
[0060]
Although the example in which the 3C-SiC crystal is formed on the Si substrate has been described, the crystal layer formed on the Si substrate can be applied to all compound crystals such as GaN, nitride, and oxide.
[Brief description of the drawings]
FIG. 1 is a diffraction pattern of an X-ray diffraction evaluation result of a crystal prepared on a silicon substrate according to an example of the present invention and Comparative Examples 1 and 2. FIG. 2 is a diffraction intensity of an X-ray diffraction evaluation result of FIG. (A) is a plan view showing a simplified example of a reactor suitable for carrying out the method of the present invention, and (b) is a plan view showing a simplified example of a reactor suitable for carrying out the method of the present invention. FIG. 4 is a cross-sectional view schematically showing a 3C-SiC crystal on a Si substrate obtained according to an embodiment of the present invention. (A) has a single buffer layer, and (b) has a multilayer buffer layer.
FIG. 5 is a representative X-ray diffraction evaluation result of a 3C—SiC single crystal film grown thick on a Si substrate in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tube 2a, 2b, 2c Supply tube 2e Heating element 3 Exhaust port 4 Susceptor 5 Si substrate 6 Carbon heating element

Claims (6)

Si基板上に立方晶リン化ホウ素(c−BP)をバッファー層として成膜する工程と、
SiCが結晶化する温度よりも低い温度でアモルファスSiC膜をバッファー層の上にエピタキシャル成長により成膜させる工程と
SiCが結晶化する温度以上の高い温度で3C−SiC結晶膜をアモルファスSiC膜の上にエピタキシャル成長により成膜させる工程と
を含むSiC膜の製造方法。
Forming a film of cubic boron phosphide (c-BP) as a buffer layer on the Si substrate;
A step of forming an amorphous SiC film on the buffer layer by epitaxial growth at a temperature lower than the temperature at which SiC crystallizes, and a step of forming a 3C-SiC crystal film on the amorphous SiC film at a temperature higher than the temperature at which SiC crystallizes. Forming a film by epitaxial growth.
前記低い温度でアモルファスSiC膜を形成した後に、原料ガスの供給を停止してアニール処理をおこない、そのあと、前記高い温度で3C−SiC結晶膜を形成する、請求項1に記載のSiC膜の製造方法。2. The SiC film according to claim 1, wherein after forming the amorphous SiC film at the low temperature, the supply of the source gas is stopped to perform an annealing process, and thereafter, the 3C-SiC crystal film is formed at the high temperature. Production method. アモルファスSiCの成膜温度が300〜650℃である請求項1又は2に記載のSiC膜の製造方法。The method for producing a SiC film according to claim 1, wherein a film forming temperature of the amorphous SiC is 300 to 650 ° C. 4. アモルファスSiCの形成後のアニール処理温度がc−BPの成膜温度以下である請求項2に記載のSiC膜の製造方法。3. The method for producing a SiC film according to claim 2, wherein the annealing temperature after the formation of the amorphous SiC is equal to or lower than the film forming temperature of c-BP. Si基板上にSiC膜をエピタキシャル成長させる方法において、以下の工程を含む方法。
(a)Si基板上にP(リン)元素を有するガスとB(ホウ素)元素を有するガスとを含む原料ガスを供給して、Si基板上に厚さ5nm以上100nm以下のアモルファスBP薄膜を合成する工程、
(b)Si基板上に、さらにP元素を有するガスとB元素を有するガスとを含む原料ガスを供給して、Si基板上に厚さ5nm以上1000nm以下のc−BP単結晶薄膜を合成する工程、
(c)c−BP単結晶薄膜が合成されたSi基板上に、炭素元素を有するガスと珪素元素を有するガスを供給して、Si基板上のc−BP単結晶薄膜の上に厚さ1nm以上500nm以下のアモルファスSiC薄膜を合成する工程、
(d)Si基板を750〜1200℃の温度でアニール処理して、前記(b)工程で形成したc−BP単結晶膜の結晶性を向上させる工程、
(e)Si基板上に再び炭素元素及び珪素元素を有するガスを供給して1nm以上500nm以下の厚さを有する3C−SiC単結晶薄膜を合成する工程、
A method for epitaxially growing a SiC film on a Si substrate, comprising the following steps.
(A) A raw material gas containing a gas containing a P (phosphorus) element and a gas containing a B (boron) element is supplied onto a Si substrate to synthesize an amorphous BP thin film having a thickness of 5 nm to 100 nm on the Si substrate. Process,
(B) A raw material gas containing a gas containing a P element and a gas containing a B element is further supplied onto the Si substrate to synthesize a c-BP single crystal thin film having a thickness of 5 nm or more and 1000 nm or less on the Si substrate. Process,
(C) A gas having a carbon element and a gas having a silicon element are supplied onto the Si substrate on which the c-BP single crystal thin film has been synthesized, and a thickness of 1 nm is formed on the c-BP single crystal thin film on the Si substrate. A step of synthesizing an amorphous SiC thin film having a thickness of 500 nm or less,
(D) annealing the Si substrate at a temperature of 750 to 1200 ° C. to improve the crystallinity of the c-BP single crystal film formed in the step (b);
(E) supplying a gas containing a carbon element and a silicon element again onto the Si substrate to synthesize a 3C-SiC single crystal thin film having a thickness of 1 nm or more and 500 nm or less;
以下の工程を含む請求項5記載の方法。
(f)前述の一連の工程(a)〜(e)を少なくとも2回以上繰り返し行って、c−BP単結晶薄膜と3C−SiC単結晶薄膜とを交互に堆積させて、厚さ10nm以上1μm以下の多層膜をSi基板上に形成する工程、
(g)多層膜を形成したSi基板に、さらに炭素元素を有するガスと珪素元素を有するガスとを含む原料ガスを供給して、1μm以上の3C−SiC単結晶膜を合成する工程。
The method of claim 5, comprising the following steps.
(F) By repeating the above-described series of steps (a) to (e) at least twice or more, a c-BP single crystal thin film and a 3C-SiC single crystal thin film are alternately deposited to have a thickness of 10 nm or more and 1 μm. Forming the following multilayer film on a Si substrate,
(G) a step of supplying a raw material gas containing a gas containing a carbon element and a gas containing a silicon element to the Si substrate on which the multilayer film is formed, to synthesize a 3C-SiC single crystal film having a thickness of 1 μm or more.
JP2002260747A 2002-09-06 2002-09-06 Method for producing SiC film by epitaxial growth Expired - Fee Related JP3909690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260747A JP3909690B2 (en) 2002-09-06 2002-09-06 Method for producing SiC film by epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260747A JP3909690B2 (en) 2002-09-06 2002-09-06 Method for producing SiC film by epitaxial growth

Publications (2)

Publication Number Publication Date
JP2004103671A true JP2004103671A (en) 2004-04-02
JP3909690B2 JP3909690B2 (en) 2007-04-25

Family

ID=32261305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260747A Expired - Fee Related JP3909690B2 (en) 2002-09-06 2002-09-06 Method for producing SiC film by epitaxial growth

Country Status (1)

Country Link
JP (1) JP3909690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303418A (en) * 2005-03-25 2006-11-02 Doshisha Laminated structure, its formation method, and semiconductor element
US8431935B2 (en) 2009-10-02 2013-04-30 Seiko Epson Corporation Semiconductor substrate with cobalt silicide buffer layer and its manufacturing method
US10351949B2 (en) 2016-12-21 2019-07-16 Nuflare Technology, Inc. Vapor phase growth method
WO2020101281A1 (en) * 2018-11-14 2020-05-22 엘지이노텍 주식회사 Silicon carbide epi wafer
WO2023047755A1 (en) * 2021-09-21 2023-03-30 信越半導体株式会社 Method for producing heteroepitaxial wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303418A (en) * 2005-03-25 2006-11-02 Doshisha Laminated structure, its formation method, and semiconductor element
US8431935B2 (en) 2009-10-02 2013-04-30 Seiko Epson Corporation Semiconductor substrate with cobalt silicide buffer layer and its manufacturing method
US10351949B2 (en) 2016-12-21 2019-07-16 Nuflare Technology, Inc. Vapor phase growth method
WO2020101281A1 (en) * 2018-11-14 2020-05-22 엘지이노텍 주식회사 Silicon carbide epi wafer
WO2023047755A1 (en) * 2021-09-21 2023-03-30 信越半導体株式会社 Method for producing heteroepitaxial wafer
JP2023045163A (en) * 2021-09-21 2023-04-03 信越半導体株式会社 Method for manufacturing heteroepitaxial wafer
JP7259906B2 (en) 2021-09-21 2023-04-18 信越半導体株式会社 Manufacturing method of heteroepitaxial wafer

Also Published As

Publication number Publication date
JP3909690B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP2007273524A (en) Manufacturing method of multilayer-structured silicon carbide substrate
US6936490B2 (en) Semiconductor wafer and its manufacturing method
CN108428618B (en) Gallium nitride growth method based on graphene insertion layer structure
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
CN111341645B (en) Method for manufacturing aluminum nitride semiconductor film and structure thereof
KR101220826B1 (en) Process for the preparation of single crystalline gallium nitride thick layer
JP3909690B2 (en) Method for producing SiC film by epitaxial growth
WO2023079880A1 (en) Method for producing heteroepitaxial wafer
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JP4313000B2 (en) Manufacturing method of 3C-SiC semiconductor
JP7218832B1 (en) Manufacturing method of heteroepitaxial wafer
JP2020200223A (en) Production method and production apparatus of group iii element nitride crystal
JPH07172997A (en) Production of thin film of silicon carbide and production device therefor
JP4353369B2 (en) SiC semiconductor and manufacturing method thereof
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
TW202003894A (en) Method for manufacturing group III nitride semiconductor substrate
CN114203529B (en) Aluminum nitride epitaxial structure, preparation method thereof and semiconductor device
WO2023100578A1 (en) Method for forming monocrystalline diamond film
JPH07335562A (en) Method for forming silicon carbide film
KR20240069717A (en) Manufacturing method of heteroepitaxial wafer
JP2004022581A (en) Method of manufacturing semiconductor through epitaxial growth
JP2024042982A (en) Single crystal silicon substrate with nitride semiconductor layer and method for manufacturing single crystal silicon substrate with nitride semiconductor layer
JP3967282B2 (en) SiC, GaN semiconductor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees