JP2006303418A - Laminated structure, its formation method, and semiconductor element - Google Patents

Laminated structure, its formation method, and semiconductor element Download PDF

Info

Publication number
JP2006303418A
JP2006303418A JP2005341423A JP2005341423A JP2006303418A JP 2006303418 A JP2006303418 A JP 2006303418A JP 2005341423 A JP2005341423 A JP 2005341423A JP 2005341423 A JP2005341423 A JP 2005341423A JP 2006303418 A JP2006303418 A JP 2006303418A
Authority
JP
Japan
Prior art keywords
semiconductor layer
boron phosphide
layer
group iii
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005341423A
Other languages
Japanese (ja)
Other versions
JP4809669B2 (en
Inventor
Tadashi Ohachi
忠 大鉢
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Doshisha Co Ltd filed Critical Showa Denko KK
Priority to JP2005341423A priority Critical patent/JP4809669B2/en
Publication of JP2006303418A publication Critical patent/JP2006303418A/en
Application granted granted Critical
Publication of JP4809669B2 publication Critical patent/JP4809669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a group III nitride semiconductor layer on a boron phosphide-based semiconductor layer stably, by solving a problem of instable junction which may be caused by a difference of mutual junction when the group III nitride semiconductor layer is jointed onto the boron phosphide system semiconductor layer. <P>SOLUTION: The laminated structure body 10 includes a substrate 100 made of crystal, a boron phosphide-based group III-V compound semiconductor layer 101 arranged on the substrate 100, and a group III nitride semiconductor layer 102 jointed onto the surface of the boron phosphide-based group III-V compound semiconductor layer 101. The group III nitride semiconductor layer 102 is jointed to the boron phosphide-based group III-V compound semiconductor layer 101 with its surface atomic arrangement texture of (2×2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

結晶からなる基板と、その基板上に設けられた燐化硼素系III−V族化合物半導体層と、燐化硼素系III−V族化合物半導体層の表面に接合されたIII族窒化物半導体層とを備えた積層構造体、その形成方法および半導体素子に関する。   A substrate made of crystal, a boron phosphide-based III-V compound semiconductor layer provided on the substrate, and a group III nitride semiconductor layer bonded to the surface of the boron phosphide-based III-V compound semiconductor layer; The present invention relates to a laminated structure including the above, a method for forming the same, and a semiconductor element.

従来から、結晶からなる基板上に成長させたIII族窒化物半導体層を備えた積層構造体を利用して半導体素子を作製する技術が開示されている(例えば特許文献1参照)。特に、短波長の可視光を出射する発光ダイオード(以下「LED」とも記す)やレーザダイオード(以下「LD」とも記す)にあっては、基板を珪素(以下「Si」とも記す)とした積層構造体から構成する例が知れている(例えば特許文献1参照)。また、窒化ガリウム(以下「GaN」とも記す)からなるIII族窒化物半導体層を活性層(チャネル(channel)層)としてショットキー(Schottky)接合型電界効果トランジスタ(以下「MESFET」とも記す)を作製する技術が開示されている(例えば特許文献2参照)。
米国特許第6069021号公報 特開平4−47847号公報
2. Description of the Related Art Conventionally, a technique for manufacturing a semiconductor element using a stacked structure including a group III nitride semiconductor layer grown on a crystal substrate has been disclosed (see, for example, Patent Document 1). In particular, in the case of a light emitting diode (hereinafter also referred to as “LED”) or a laser diode (hereinafter also referred to as “LD”) that emits visible light having a short wavelength, a substrate in which the substrate is silicon (hereinafter also referred to as “Si”). An example of a structure is known (see, for example, Patent Document 1). Further, a group III nitride semiconductor layer made of gallium nitride (hereinafter also referred to as “GaN”) is used as an active layer (channel layer) to form a Schottky junction field effect transistor (hereinafter also referred to as “MESFET”). A manufacturing technique is disclosed (for example, see Patent Document 2).
US Pat. No. 6,690,021 JP-A-4-47847

ところで、基板とする結晶材料とIII族窒化物半導体材料との格子定数は、一般に大きく異なる。例えば、一基板材料であるダイヤモンド結晶構造型Si(格子定数=0.543nm)と、閃亜鉛鉱(zinc−blende)結晶型のGaN(格子定数=0.451nm)との格子ミスマッチは約(−)17%の大きに達する。従って、従来では、この様な不整合を緩和するために通常、基板とその上層として成長させるIII族窒化物半導体層との中間に、緩衝(buffer)層を設けている。例えば、Siを基板としてIII族窒化物半導体層を成長させるのに際し、燐化硼素(BP)等から緩衝膜を形成する例がある(上記の特許文献1参照)。   Incidentally, the lattice constants of the crystal material used as the substrate and the group III nitride semiconductor material generally differ greatly. For example, the lattice mismatch between diamond crystal structure type Si (lattice constant = 0.543 nm) as one substrate material and zinc-blende crystal type GaN (lattice constant = 0.451 nm) is about (− ) It reaches 17%. Therefore, conventionally, in order to alleviate such mismatch, a buffer layer is usually provided between the substrate and the group III nitride semiconductor layer grown as an upper layer thereof. For example, when growing a group III nitride semiconductor layer using Si as a substrate, there is an example in which a buffer film is formed from boron phosphide (BP) or the like (see Patent Document 1 above).

この例の場合、単量体の燐化硼素(BP)の格子定数は、0.454nmであるため、立方晶のGaNとの格子ミスマッチ度は、(−)0.6%と小さい。   In this example, since the lattice constant of monomeric boron phosphide (BP) is 0.454 nm, the degree of lattice mismatch with cubic GaN is as small as (−) 0.6%.

しかし、BPは、フィリップス(Phillips)のイオン結合度(ionicity)が0.006と小であり、ほとんど共有結合性の半導体である(非特許文献1参照)。一方、GaNは、フィッリプスのイオン結合度を0.500とする、イオン結合性の高い化合物半導体である(非特許文献1参照)。この様な結合性の差異に起因するのか、BP層上には、GaN層を安定して接合できないという問題点がある。
J.C.フィリップス著、「半導体結合論」(物理学叢書32)((株)吉岡書店、1985年7月25日発行、第3刷))、51頁。
However, BP has an ionicity of Phillips as small as 0.006 and is almost a covalent semiconductor (see Non-Patent Document 1). On the other hand, GaN is a compound semiconductor having a high ion bonding property with a Phillips ion bond degree of 0.500 (see Non-Patent Document 1). There is a problem that the GaN layer cannot be stably bonded on the BP layer because of such a difference in connectivity.
J. et al. C. Phillips, "Semiconductor Bonding Theory" (Physics Series 32) (Yoshioka Shoten Co., Ltd., July 25, 1985, 3rd edition)), 51 pages.

本発明は上記に鑑み提案されたもので、BP等の燐化硼素系半導体層上にGaN等のIII族窒化物半導体層を接合させる際に、双方間の結合性の差異に起因して発生すると思われる不安定な接合を解消し、燐化硼素系半導体層上にIII族窒化物半導体層を安定して形成することができる積層構造体、その形成方法および半導体素子を提供することを目的とする。   The present invention has been proposed in view of the above, and occurs when a group III nitride semiconductor layer such as GaN is bonded to a boron phosphide-based semiconductor layer such as BP due to a difference in connectivity between the two. An object of the present invention is to provide a laminated structure, a method for forming the same, and a semiconductor element that can eliminate unstable bonding that is supposed to occur and can stably form a group III nitride semiconductor layer on a boron phosphide-based semiconductor layer. And

1)上記目的を達成するために、第1の発明は、積層構造体であって、結晶からなる基板と、その基板上に設けられた表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層と、上記燐化硼素系III−V族化合物半導体層の表面に接合されたIII族窒化物半導体層とを備えている、ことを特徴としている。   1) In order to achieve the above object, a first invention is a laminated structure comprising a substrate made of crystals and a phosphorous whose atomic arrangement structure on the surface provided on the substrate is (2 × 2). It is characterized by comprising a boron phosphide-based III-V compound semiconductor layer and a group III nitride semiconductor layer bonded to the surface of the boron phosphide-based III-V compound semiconductor layer.

2)第2の発明は、上記した1)項に記載の発明の構成に加えて、上記III族窒化物半導体層の表面の結晶面方位は、上記燐化硼素系III−V族化合物半導体層の表面の結晶面方位と同一である、ことを特徴としている。   2) In the second invention, in addition to the structure of the invention described in the above item 1), the crystal plane orientation of the surface of the group III nitride semiconductor layer is the boron phosphide-based III-V group compound semiconductor layer. The crystal plane orientation of the surface is the same.

3)第3の発明は、上記した1)項または2)項に記載の発明の構成に加えて、上記III族窒化物半導体層は立方晶である、ことを特徴としている。   3) The third invention is characterized in that, in addition to the configuration of the invention described in the above item 1) or 2), the group III nitride semiconductor layer is cubic.

4)第4の発明は、上記した1)項から3)項の何れか1項に記載の発明の構成に加えて、上記基板は、表面の結晶面を(001)面とする珪素単結晶であり、上記基板上の燐化硼素系III−V族化合物半導体層およびIII族窒化物半導体層の各表面の結晶面をそれぞれ(001)面とする、ことを特徴としている。   4) In the fourth invention, in addition to the structure of the invention described in any one of items 1) to 3), the substrate is a silicon single crystal whose surface crystal plane is a (001) plane. The crystal plane of each surface of the boron phosphide-based III-V compound semiconductor layer and the group III nitride semiconductor layer on the substrate is a (001) plane, respectively.

5)第5の発明は、結晶からなる基板上に、燐化硼素系III−V族化合物半導体層およびIII族窒化物半導体層を積層してなる積層構造体の形成方法において、上記基板上に、有機金属化学的気相堆積手段により、燐化硼素系III−V族化合物半導体層を形成した後、該燐化硼素系III−V族化合物半導体層の表面を真空中で、800℃以上1200℃以下の温度で熱処理を施して当該燐化硼素系III−V族化合物半導体層の表面を(2×2)の原子配列構造とし、次にその燐化硼素系III−V族化合物半導体層の表面上に、分子線エピタキシャル手段によりIII族窒化物半導体層を形成して積層構造体とする、ことを特徴としている。   5) A fifth invention is a method of forming a laminated structure in which a boron phosphide-based III-V group compound semiconductor layer and a group III nitride semiconductor layer are stacked on a substrate made of crystal. Then, after forming a boron phosphide-based III-V compound semiconductor layer by means of metalorganic chemical vapor deposition, the surface of the boron phosphide-based III-V compound semiconductor layer is 800 ° C. or higher and 1200 ° C. in vacuum. The surface of the boron phosphide-based III-V compound semiconductor layer is subjected to a heat treatment at a temperature of less than or equal to 0.degree. C. so that the (2 × 2) atomic arrangement structure is formed. It is characterized in that a group III nitride semiconductor layer is formed on the surface by molecular beam epitaxial means to form a laminated structure.

6)第6の発明は、半導体素子であって、上記した1)項から4)項の何れか1項に記載の積層構造体を用いて構成されている、ことを特徴としている。   6) A sixth invention is a semiconductor element, and is characterized by being configured by using the laminated structure according to any one of items 1) to 4).

7)第7の発明は、半導体素子であって、上記した5)項に記載の形成方法で形成された積層構造体を用いて構成されている、ことを特徴としている。   7) The seventh invention is a semiconductor element, and is characterized in that it is constituted by using a laminated structure formed by the formation method described in the above item 5).

本発明によれば、原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層の表面に接合してIII族窒化物半導体層を設けるようにしたので、燐化硼素系III−V族化合物半導体層とIII族窒化物半導体層との良好なヘテロ接合を形成することができる。   According to the present invention, the group III nitride semiconductor layer is provided by bonding to the surface of the boron phosphide-based III-V compound semiconductor layer having an atomic arrangement structure of (2 × 2). A good heterojunction can be formed between the system III-V compound semiconductor layer and the group III nitride semiconductor layer.

また、燐化硼素系III−V族化合物半導体層の表面を(2×2)の原子配列構造としたので、その上に立方晶のIII族窒化物半導体層を安定して形成することができる。   Further, since the surface of the boron phosphide-based III-V compound semiconductor layer has a (2 × 2) atomic arrangement structure, a cubic group III nitride semiconductor layer can be stably formed thereon. .

特に、表面の結晶面を(001)面とする珪素(以下「Si」とも記す)単結晶を基板とし、その上に形成した、原子配列構造を(2×2)とする、(001)−燐化硼素系III−V族化合物半導体層は、その表面上に、(001)面を表面とするIII族窒化物半導体層を安定してもたらす上で効果を発揮することができる。   In particular, a silicon (hereinafter referred to as “Si”) single crystal whose surface crystal plane is the (001) plane is used as a substrate, and the atomic arrangement structure formed on the substrate is (2 × 2). The boron phosphide-based III-V compound semiconductor layer can exhibit an effect in stably providing a group III nitride semiconductor layer having a (001) plane on the surface thereof.

また、原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層に異種接合させて設けた立方晶のIII族窒化物半導体層を備えた積層構造体からは、立方晶のIII族窒化物半導体材料の特有の性質に基づいた高性能な半導体素子を構成することができる。   Further, a cubic structure including a cubic group III nitride semiconductor layer provided by heterojunction with a boron phosphide-based group III-V compound semiconductor layer having an atomic arrangement structure of (2 × 2) is cubic. A high-performance semiconductor element based on the unique properties of the crystal group III nitride semiconductor material can be constructed.

本発明の積層構造体は、結晶からなる基板と、その基板上に設けられた燐化硼素系III−V族化合物半導体層と、燐化硼素系III−V族化合物半導体層の表面に接合されたIII族窒化物半導体層とを備え、III族窒化物半導体層が、表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層の表面に接合して設けられている。   The laminated structure of the present invention is bonded to the surface of a substrate made of crystal, a boron phosphide-based III-V compound semiconductor layer provided on the substrate, and a boron phosphide-based III-V compound semiconductor layer. A group III nitride semiconductor layer, and the group III nitride semiconductor layer is bonded to the surface of the boron phosphide-based III-V compound semiconductor layer having an atomic arrangement structure of (2 × 2) on the surface. It has been.

上記の燐化硼素系III−V族化合物半導体層は、第III族構成元素として硼素(B)を、また、第V族構成元素として燐(P)を含むIII−V族化合物からなり、例えば、単量体の燐化硼素(BP)、燐化硼素・ガリウム(組成式B1-XGaXP:0<X<1)、燐化硼素・インジウム(組成式B1-XInXP:0<X<1)である。また、硼素と燐と、燐以外の第V族元素を含むIII−V族化合物からなり、例えば窒化燐化硼素(組成式:BNY1-Y:0<Y<1)、砒化燐化硼素(組成式:BPYAs1-Y:0<Y<1)である。 The boron phosphide-based III-V group compound semiconductor layer is composed of a III-V group compound containing boron (B) as a Group III constituent element and phosphorus (P) as a Group V constituent element. Monomeric boron phosphide (BP), boron phosphide / gallium (composition formula B 1-X Ga X P: 0 <X <1), boron phosphide / indium (composition formula B 1-X In X P : 0 <X <1). Further, it is composed of a III-V group compound containing boron, phosphorus, and a group V element other than phosphorus. For example, boron nitride phosphide (composition formula: BN Y P 1-Y : 0 <Y <1), arsenic phosphide Boron (compositional formula: BP Y As 1-Y : 0 <Y <1).

本発明に係わる表面構造を有する燐化硼素系III−V族化合物半導体層は、サファイア(α−Al23単結晶)、酸化亜鉛(ZnO)、及び窒化ガリウム(GaN)、並びに2H型、4H型、または6H型炭化珪素(SiC)等の六方晶結晶を基板として形成することができる。また、珪素(Si)、3C型SiC等の立方晶結晶を基板として形成することができる。SiCの結晶型を示す記号H及びCはRamsdellの表記法に従ったもので、記号Hは六方晶を、また記号Cは立方晶を示すものである(“Electric Refractory Materials”,Marcel Dekker, Inc.,2000,409〜411頁参照)。 A boron phosphide-based III-V compound semiconductor layer having a surface structure according to the present invention includes sapphire (α-Al 2 O 3 single crystal), zinc oxide (ZnO), gallium nitride (GaN), and 2H type. A hexagonal crystal such as 4H type or 6H type silicon carbide (SiC) can be formed as a substrate. Further, a cubic crystal such as silicon (Si) or 3C type SiC can be formed as a substrate. The symbols H and C indicating the crystal form of SiC follow the Ramsdell notation, the symbol H indicates hexagonal crystal, and the symbol C indicates cubic crystal (“Electric Refractory Materials”, Marcel Dekker, Inc. ., 2000, pages 409-411).

制御された表面構造を有する燐化硼素系III−V族化合物半導体層を安定して形成するには、基板としてSi単結晶(シリコン)を用いるのが好適である。基板とするシリコンの表面の結晶面は、(001)面であるのが最適である。   In order to stably form a boron phosphide-based III-V compound semiconductor layer having a controlled surface structure, it is preferable to use Si single crystal (silicon) as a substrate. The crystal plane of the surface of silicon used as the substrate is optimally the (001) plane.

燐化硼素系III−V族化合物半導体層は、基板上に、有機金属化学的気相堆積(以下「MOCVD」とも記す)手段、ハロゲン(halogen)気相エピタキシャル(VPE)成長手段、ハイドライド(水素化物;hydride)VPE手段、または、分子線エピタキシャル(以下「MBE」とも記す)成長手段等により形成できる。しかし、BP系半導体層の成長には、一般に蒸気圧の高い燐(P)源を利用することから、MOCVD手段またはVPE手段が適する。中でも、MOCVD手段は、本発明に係わる表面の原子構造を有する燐化硼素系III−V族化合物半導体層を安定して得るのに最適である。MOCVD手段で燐化硼素系III−V族化合物半導体層を形成するには、例えば、トリエチル硼素(分子式:(C253B)を硼素(B)源とし、ホスフィン(分子式:PH3)を燐源とする(J.Ceremic Process. Res.,4(2)(2003),80.参照)。Si基板の(001)面上に燐化硼素系III−V族化合物半導体層をMOCVD法で形成する場合、適する成長温度は750℃以上で1200℃以下である。1200℃を超える高温での燐化硼素系III−V族化合物半導体層の成長は、B132等のBPの多量体が形成されるため好ましくない。 The boron phosphide-based III-V compound semiconductor layer is formed on a substrate by metal organic chemical vapor deposition (hereinafter also referred to as “MOCVD”), halogen vapor phase epitaxy (VPE) growth, hydride (hydrogen). Hydride) VPE means, molecular beam epitaxial (hereinafter also referred to as “MBE”) growth means, or the like. However, the growth of the BP-based semiconductor layer generally uses a phosphorus (P) source having a high vapor pressure, so that MOCVD means or VPE means are suitable. Among them, the MOCVD means is optimal for stably obtaining a boron phosphide-based III-V group compound semiconductor layer having a surface atomic structure according to the present invention. In order to form a boron phosphide-based III-V group compound semiconductor layer by MOCVD, for example, triethylboron (molecular formula: (C 2 H 5 ) 3 B) is used as a boron (B) source and phosphine (molecular formula: PH 3 ) As a phosphorus source (see J. Ceremic Process. Res., 4 (2) (2003), 80.). When a boron phosphide-based III-V group compound semiconductor layer is formed by MOCVD on the (001) plane of the Si substrate, a suitable growth temperature is 750 ° C. or higher and 1200 ° C. or lower. Growth of a boron phosphide-based III-V group compound semiconductor layer at a high temperature exceeding 1200 ° C. is not preferable because a BP multimer such as B 13 P 2 is formed.

本発明の、表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層を得るには、MOCVD手段で燐化硼素系III−V族化合物半導体層を成長させた後、高真空中で熱処理するのが好適である。熱処理は、1×10-6Pa以下の高真空中で施すのが適する。熱処理温度としては、800℃以上で1200℃以下とするのが適する。硼素(B)と、硼素とは別の第III族元素を構成元素として含む燐化硼素系III−V族化合物半導体層にあって、好適な熱処理温度は、第III族元素の種類によって異なる。アルミニウム(Al)を構成元素として含む燐化硼素系III−V族化合物半導体層の場合の好適な熱処理温度は、約900℃から1200℃である。ガリウム(Ga)を構成元素として含む燐化硼素系III−V族化合物半導体層についての好適な熱処理温度は、より低く約900℃から1000℃である。また、インジウム(In)を構成元素として含む燐化硼素系III−V族化合物半導体層についての好適な熱処理温度は、更に低く800℃から900℃である。 In order to obtain a boron phosphide-based III-V compound semiconductor layer having a surface atomic arrangement structure of (2 × 2) according to the present invention, a boron phosphide-based III-V compound semiconductor layer is grown by MOCVD. After that, it is preferable to perform heat treatment in a high vacuum. The heat treatment is suitably performed in a high vacuum of 1 × 10 −6 Pa or less. The heat treatment temperature is suitably 800 ° C. or higher and 1200 ° C. or lower. In a boron phosphide-based III-V compound semiconductor layer containing boron (B) and a group III element different from boron as constituent elements, a suitable heat treatment temperature varies depending on the type of group III element. A preferable heat treatment temperature in the case of a boron phosphide-based III-V compound semiconductor layer containing aluminum (Al) as a constituent element is about 900 ° C. to 1200 ° C. A suitable heat treatment temperature for the boron phosphide-based III-V compound semiconductor layer containing gallium (Ga) as a constituent element is lower than about 900 ° C. to 1000 ° C. Further, a preferable heat treatment temperature for the boron phosphide-based III-V group compound semiconductor layer containing indium (In) as a constituent element is 800 ° C. to 900 ° C., which is even lower.

熱処理時間は、熱処理温度を1000℃とする場合、5分以上10分以内とするのが適当である。熱処理温度を低温とする程、熱処理時間は長時間とするのが適する。熱処理によって出現する燐化硼素系III−V族化合物半導体層の表面構造は、例えば、反射電子線回折(RHEED)手段による回折像から同定できる((社)応用物理学会薄膜・表面物理分科会編集、「薄膜作製ハンドブック」(共立出版(株)、1994年10月5日発行、初版2刷)、195頁参照)。   The heat treatment time is suitably 5 minutes or more and 10 minutes or less when the heat treatment temperature is 1000 ° C. The lower the heat treatment temperature, the longer the heat treatment time. The surface structure of a boron phosphide-based III-V compound semiconductor layer that appears by heat treatment can be identified, for example, from a diffraction image by means of reflected electron diffraction (RHEED) (edited by the Japan Society of Applied Physics, Thin Film / Surface Physics Subcommittee) "Thin Film Fabrication Handbook" (Kyoritsu Shuppan Co., Ltd., published on October 5, 1994, first edition 2), see page 195).

燐化硼素系III−V族化合物半導体層の表面からのRHEED像において、例えば、[011]及びそれと直交する[01−1]の双方の方向に、バルク(bulk)結晶の2倍の周期で回折像が生ずれば、その表面は(2×2)の原子構造を有していると評価される。III−V族化合物半導体にあって、(2×2)表面構造が出現するのは、通常、表面の結晶面が(111)面である場合である((社)電子情報通信学会、「ナノエレクトロニクスを支える材料解析」((社)電子情報通信学会、平成8年11月1日発行、初版)、107〜108頁参照)。本発明の、表面の原子構造が(2×2)で、かつ表面の結晶が(001)面である結晶を得るには、(001)面を表面とする珪素単結晶を基板として、MOCVD手段で形成した燐化硼素系III−V族化合物半導体層を、上記の如くの真空度の高真空中で、上記の如くの温度条件で熱処理することが肝要である。   In the RHEED image from the surface of the boron phosphide-based III-V compound semiconductor layer, for example, in both directions [011] and [01-1] orthogonal thereto, the period is twice that of the bulk crystal. If a diffraction image is generated, the surface is evaluated as having a (2 × 2) atomic structure. In the III-V compound semiconductor, the (2 × 2) surface structure usually appears when the crystal plane of the surface is the (111) plane (National Institute of Electronics, Information and Communication Engineers, “Nano”). Material analysis that supports electronics "(see IEICE, November 1, 1996, first edition), pages 107-108). In order to obtain a crystal of the present invention having a surface atomic structure of (2 × 2) and a surface crystal of (001) plane, MOCVD means using a silicon single crystal having the (001) plane as a substrate It is important to heat-treat the boron phosphide-based III-V compound semiconductor layer formed in (1) in the high vacuum with the above-described degree of vacuum under the above-described temperature conditions.

燐化硼素系III−V族化合物半導体層の表面を(2×2)構造の原子配列を有するものとすれば、それに接合させて設けるIII族窒化物半導体層の配向性を均一と成すことができ、しいては、III族窒化物半導体層の表面を画一的な配向を有する結晶面から構成できる。配向性の揃ったIII族窒化物半導体層は、配向を異にする結晶の合着に因り発生する粒界を殆ど含まないため、良質なものとなる。従って、この様な粒界密度の小さなIII族化合物半導体層を利用して素子を構成すれば、素子駆動電流の漏洩(leak)が低減でき、効率に優れる半導体素子を構成できる。III族窒化物半導体層に含まれる粒界の密度は、例えば、同層の断面透過電子顕微鏡(TEM)像から求められる。   If the surface of the boron phosphide-based III-V compound semiconductor layer has an atomic arrangement of (2 × 2) structure, the orientation of the group III nitride semiconductor layer provided by bonding to it can be made uniform. In other words, the surface of the group III nitride semiconductor layer can be composed of crystal planes having a uniform orientation. A group III nitride semiconductor layer with uniform orientation is of a high quality because it hardly contains grain boundaries generated due to the coalescence of crystals having different orientations. Therefore, if an element is configured using such a group III compound semiconductor layer having a low grain boundary density, leakage of the element driving current can be reduced, and a semiconductor element having excellent efficiency can be configured. The density of the grain boundaries contained in the group III nitride semiconductor layer is obtained from, for example, a cross-sectional transmission electron microscope (TEM) image of the same layer.

このような、(2×2)構造の原子配列を有する燐化硼素系III−V族化合物半導体層の表面上に、III族窒化物半導体層を形成するには、高真空中で成膜を行うMBE手段が適する。高真空な雰囲気を要するMBE手段を利用すれば、特定の構造の表面を有する燐化硼素系III−V族化合物半導体層を得るための熱処理を施すことができるとともに、引き続き、同MBE装置内でIII族窒化物半導体層の成長が果たせて利便だからである。また、MBE手段によれば、六方晶結晶も成膜出来るが、MOCVD手段とは相違して、より低温で成長できるため、立方晶のIII族窒化物半導体層を成長するのに優位である。III族窒化物半導体層の結晶形(晶系)は、X線回折法(XRD)、或いは電子線回折法(TED)法等の分析手段により調査することができる。   In order to form a group III nitride semiconductor layer on the surface of such a boron phosphide-based III-V group compound semiconductor layer having an atomic arrangement of (2 × 2) structure, film formation is performed in a high vacuum. The MBE means to perform is suitable. If MBE means that requires a high vacuum atmosphere is used, a heat treatment for obtaining a boron phosphide-based III-V compound semiconductor layer having a surface with a specific structure can be performed. This is because the growth of the group III nitride semiconductor layer can be accomplished conveniently. The MBE means can also form a hexagonal crystal, but unlike the MOCVD means, it can be grown at a lower temperature, which is advantageous for growing a cubic group III nitride semiconductor layer. The crystal form (crystal system) of the group III nitride semiconductor layer can be investigated by analysis means such as an X-ray diffraction method (XRD) or an electron beam diffraction method (TED) method.

特定の表面構造を有する燐化硼素系III−V族化合物半導体層は、種々のIII族窒化物半導体素子を構成するのに利用できる。例えば、不純物を添加しないアンドープで高抵抗のIII族窒化物半導体層を緩衝(buffer)層または電子走行層(channel層)として電界効果型トランジスタを構成することができる。また、珪素(Si)或いはゲルマニウム(Ge)等のn形不純物を添加したn形III族窒化物半導体層からなる緩衝層またはクラッド(clad)層と、また例えば、マグネシウム(Mg)或いはベリリウム(Be)等の元素周期律表の第II族元素をドーピング(doping)したp形のIII族窒化物半導体層を利用すれば、発光ダイオード(LED)やレーザダイオード(LD)を構成できる。導電性の結晶基板を用いて、縦(上下)方向に動作電流を流通して動作させるLEDやLDを構成する場合にあって、III族窒化物半導体層の伝導形は、下層の燐化硼素系III−V族化合物半導体層のそれに通常は合致させる。また、燐化硼素系III−V族化合物半導体層の導電型は、導電性基板の伝導形に合致させるのが通例である。   A boron phosphide-based III-V compound semiconductor layer having a specific surface structure can be used to form various group III nitride semiconductor devices. For example, a field effect transistor can be formed by using an undoped high-resistance group III nitride semiconductor layer to which no impurities are added as a buffer layer or an electron transit layer (channel layer). Further, a buffer layer or a clad layer made of an n-type group III nitride semiconductor layer to which an n-type impurity such as silicon (Si) or germanium (Ge) is added, and for example, magnesium (Mg) or beryllium (Be If a p-type group III nitride semiconductor layer doped with a group II element in the periodic table of elements such as) is used, a light emitting diode (LED) or a laser diode (LD) can be configured. In the case of configuring an LED or LD that operates by flowing an operating current in the vertical (vertical) direction using a conductive crystal substrate, the conductivity type of the group III nitride semiconductor layer is boron phosphide below. It is usually matched with that of the system III-V compound semiconductor layer. Further, the conductivity type of the boron phosphide-based III-V compound semiconductor layer is usually matched with the conductivity type of the conductive substrate.

特に、表面の結晶面を(001)面とする立方晶のIII族窒化物半導体層は、III族窒化物半導体素子を構成するのにより利便である。例えば、LDを構成するにあって、(001)面を表面とするIII族窒化物半導体層を利用すれば、(001)−表面に垂直に(110)面からなる劈開面を形成でき、劈開面を共振面とするLDを簡便に構成できる。また、立方晶のIII族窒化物半導体では、価電子帯のバンド(band)が縮退しているため(生駒俊明、生駒英明共著、「化合物半導体の基礎物性入門」((株)培風館、1991年9月10日発行、初版)、17頁参照)、p形伝導層が得られ易い長所がある。加えて、MBE法では、p形不純物を電気的に補償(compensation)する水素等を含まない高真空中でIII族窒化物半導体層を成長させる。このため、MBE手段で成長させたIII族窒化物半導体層にあっては、MOCVD手段によるIII族窒化物半導体層とは異なり、成膜後に脱水素化のための煩雑な熱処理を必要としない。従って、例えば、MBE手段により形成した、低抵抗のp形燐化硼素系III−V族化合物半導体層を用いれば、順方向電圧(Vf)の小さなpn接合型LEDを簡便に構成できる。   In particular, a cubic group III nitride semiconductor layer whose surface crystal plane is the (001) plane is more convenient for constituting a group III nitride semiconductor device. For example, when a group III nitride semiconductor layer having a (001) plane as a surface is used in forming an LD, a cleavage plane composed of a (110) plane can be formed perpendicularly to the (001) -surface. An LD having a surface as a resonance surface can be simply configured. Also, in the cubic group III nitride semiconductor, the band of the valence band is degenerated (co-authored by Toshiaki Ikoma and Hideaki Ikoma, “Introduction to Basic Properties of Compound Semiconductors” (Baifukan Co., Ltd., 1991) (September 10 issue, first edition), p. 17), there is an advantage that a p-type conductive layer is easily obtained. In addition, in the MBE method, the group III nitride semiconductor layer is grown in a high vacuum that does not contain hydrogen or the like that electrically compensates p-type impurities. For this reason, in the group III nitride semiconductor layer grown by MBE means, unlike the group III nitride semiconductor layer by MOCVD means, complicated heat treatment for dehydrogenation is not required after film formation. Therefore, for example, if a low resistance p-type boron phosphide-based III-V compound semiconductor layer formed by MBE means is used, a pn junction type LED having a small forward voltage (Vf) can be easily constructed.

燐化硼素系III−V族化合物半導体層に接合させて設けたIII族窒化物半導体層上に、更に、III−V族化合物半導体層を堆積させてなる積層構造体から半導体素子を構成することもできる。例えば、導電性のSi単結晶基板上に形成した、格子定数を0.454nmとする単量体の燐化硼素(BP)に接合させて、それと格子ミスマッチの小さな立方晶GaN(格子定数=0.451nm)層を設け、そのGaN層上に更に、Ga1-XInXN(0<X<1)/GaN超格子構造から成る発光層、Al1-XGaXN(0<X<1)から成るクラッド層、例えば、低抵抗のGaN層から成るオーミック(Ohmic)電極形成用層(コンタクト層)を設けて積層構造体を構成できる。導電性のSi基板と、上記積層構造体の最表層を成す電極形成用層との双方に、オーミック電極を設ければLEDを構成できる。 A semiconductor element is formed from a laminated structure in which a group III-V compound semiconductor layer is further deposited on a group III nitride semiconductor layer provided bonded to a boron phosphide-based group III-V compound semiconductor layer. You can also. For example, it is bonded to monomeric boron phosphide (BP) having a lattice constant of 0.454 nm formed on a conductive Si single crystal substrate, and cubic GaN having a small lattice mismatch (lattice constant = 0). .451 nm) layer, and a Ga 1 -X In X N (0 <X <1) / GaN superlattice light emitting layer, Al 1 -X Ga X N (0 <X < A clad layer made of 1), for example, an ohmic electrode forming layer (contact layer) made of a low-resistance GaN layer can be provided to form a laminated structure. If an ohmic electrode is provided on both the conductive Si substrate and the electrode forming layer that forms the outermost layer of the laminated structure, an LED can be configured.

上記の様な特定の表面構造を有する燐化硼素系III−V族化合物半導体層に接合して設けたIII族窒化物半導体層上に、更に、半導体層等を積層するにあって、それらの層の成長手段は、MBE法には限定されないが、III族窒化物半導体層と同一のMBE手段で成長させるのが積層構造体を簡便に得るに得策となる。積層する半導体層を立方晶のIII族窒化物半導体層とした場合、半導体層の表面の結晶面の方位は、燐化硼素系III−V族化合物半導体層に接合して設けたIII族窒化物半導体層の表面の面方位と同一であるのが通例である。例えば、表面の結晶面を(001)面とする立方晶のIII族窒化物半導体層上に、MBE手段により立方晶の結晶層が得られる条件下で成長させたIII族窒化物半導体層の表面は、(001)面であるのが通例である。表面の結晶面方位はXRD,TED等の回折手段により判定できる。   When further laminating a semiconductor layer or the like on a group III nitride semiconductor layer provided bonded to a boron phosphide-based group III-V compound semiconductor layer having a specific surface structure as described above, The layer growth means is not limited to the MBE method, but growing by the same MBE means as that of the group III nitride semiconductor layer is advantageous for obtaining a laminated structure easily. When the stacked semiconductor layer is a cubic group III nitride semiconductor layer, the crystal plane orientation of the surface of the semiconductor layer is a group III nitride provided bonded to the boron phosphide group III-V compound semiconductor layer. Usually, it is the same as the surface orientation of the surface of the semiconductor layer. For example, the surface of a group III nitride semiconductor layer grown on a cubic group III nitride semiconductor layer whose surface crystal plane is the (001) plane under the condition that a cubic crystal layer is obtained by MBE means Is usually the (001) plane. The crystal plane orientation of the surface can be determined by diffraction means such as XRD and TED.

上記のように、本発明の積層構造体は、III族窒化物半導体層が、表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層に接合して設けられている。表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層は、その表面に接合させて設けるIII族窒化物半導体層を画一的な配向を有する結晶から構成するに優位に作用し、一定の面方位の表面を有するIII族窒化物半導体層を安定してもたらす。したがって、燐化硼素系III−V族化合物半導体層とIII族窒化物半導体層との良好なヘテロ接合を形成することができる。そして、この良好なヘテロ結合を有する積層構造体からは、立方晶のIII族窒化物半導体材料の特有の性質に基づいた高性能な半導体素子を構成することができる。   As described above, in the stacked structure of the present invention, a group III nitride semiconductor layer is provided by bonding to a boron phosphide-based III-V compound semiconductor layer having a surface atomic arrangement structure of (2 × 2). It has been. A boron phosphide-based III-V compound semiconductor layer having an atomic arrangement structure of (2 × 2) on the surface is composed of a crystal having a uniform orientation as a group III nitride semiconductor layer provided bonded to the surface. Therefore, the group III nitride semiconductor layer having a surface having a certain plane orientation is stably produced. Therefore, a good heterojunction between the boron phosphide-based III-V compound semiconductor layer and the group III nitride semiconductor layer can be formed. A high-performance semiconductor element based on the characteristic properties of the cubic group III nitride semiconductor material can be formed from the laminated structure having a good hetero bond.

特に、原子配列構造を(2×2)とし、表面を(001)面とする燐化硼素系III−V族化合物半導体層は、その表面上に、(001)面を表面とする立方晶のIII族窒化物半導体層を安定してもたらす作用を有する。   In particular, a boron phosphide-based III-V compound semiconductor layer having an atomic arrangement structure of (2 × 2) and a surface of (001) is a cubic crystal having a (001) plane on the surface. It has the effect of stably providing a group III nitride semiconductor layer.

(第1実施例) (001)−珪素単結晶(シリコン)基板上に設けた単量体の燐化硼素(BP)層の表面に、窒化ガリウム(GaN)半導体層を接合させて積層構造体を構成する場合を例にして、本発明を具体的に説明する。   First Embodiment (001) —Laminated structure in which a gallium nitride (GaN) semiconductor layer is bonded to the surface of a monomeric boron phosphide (BP) layer provided on a silicon single crystal (silicon) substrate The present invention will be described in detail by taking the case of configuring the above as an example.

図1は第1実施例の積層構造体の断面構造を模式的に示す図である。燐(P)をドーピングしてn伝導形とした表面の結晶面方位が(001)面であるSi単結晶基板100の表面上には、トリエチル硼素(分子式:(C253B)を硼素(B)源とし、ホスフィン(分子式:PH3)を燐(P)源とする常圧(略大気圧)MOCVD手段により、900℃で燐化硼素層101を形成した。燐化硼素層101を成膜する際にMOCVD装置に供給する硼素源に対する燐源の濃度比率、所謂、V/III比率は約430に設定した。成膜速度を毎分約30nmとして約500nmの層厚の燐化硼素層101を形成した後、MOCVD装置内で室温近傍の温度迄、冷却した。 FIG. 1 is a diagram schematically showing a cross-sectional structure of the laminated structure of the first embodiment. Triethylboron (molecular formula: (C 2 H 5 ) 3 B) is formed on the surface of the Si single crystal substrate 100 having a (001) plane crystal plane orientation doped with phosphorus (P) to have an n conductivity type. Boron phosphide layer 101 was formed at 900 ° C. by atmospheric pressure (substantially atmospheric pressure) MOCVD means using as a boron (B) source and phosphine (molecular formula: PH 3 ) as a phosphorus (P) source. The concentration ratio of the phosphorus source to the boron source supplied to the MOCVD apparatus when forming the boron phosphide layer 101, so-called V / III ratio, was set to about 430. A boron phosphide layer 101 having a thickness of about 500 nm was formed at a film formation rate of about 30 nm per minute, and then cooled to a temperature near room temperature in an MOCVD apparatus.

冷却後、燐化硼素層101のキャリア濃度を一般的な電解C(容量)−V(電圧)法により測定した。燐化硼素層101は、不純物を故意に添加していないアンドープのn形導電層であり、そのキャリア濃度は約1×1019cm-3であった。また、燐化硼素層101は、立方晶の閃亜鉛鉱型の結晶層であり、表面の面方位は、Si基板100の表面と同じく、(001)面であった。 After cooling, the carrier concentration of the boron phosphide layer 101 was measured by a general electrolytic C (capacity) -V (voltage) method. The boron phosphide layer 101 is an undoped n-type conductive layer to which impurities are not intentionally added, and its carrier concentration was about 1 × 10 19 cm −3 . Further, the boron phosphide layer 101 was a cubic zinc blende type crystal layer, and the surface orientation of the surface was the (001) plane, similar to the surface of the Si substrate 100.

次に、表面に燐化硼素層101を形成したSi単結晶基板100をMBE装置内に移し、1×10-6Paの高真空中で、Si単結晶基板100の温度を室温から850℃に上昇させた。Si単結晶基板100の温度を850℃に維持したままで、30分間、保持した。この加熱処理により、燐化硼素層101の(001)面101aの原子配列構造を、(2×2)の再配列構造とした。この際に得られた反射電子線回折(RHEED)像を図2に示す。 Next, the Si single crystal substrate 100 having the boron phosphide layer 101 formed on the surface is transferred into the MBE apparatus, and the temperature of the Si single crystal substrate 100 is changed from room temperature to 850 ° C. in a high vacuum of 1 × 10 −6 Pa. Raised. The temperature of the Si single crystal substrate 100 was maintained at 850 ° C. and held for 30 minutes. By this heat treatment, the atomic arrangement structure of the (001) plane 101a of the boron phosphide layer 101 was changed to a (2 × 2) rearrangement structure. A reflection electron diffraction (RHEED) image obtained at this time is shown in FIG.

燐化硼素層101の(001)面101aに、(2×2)の原子配列構造が形成されているのを確認後、同一のMBE装置内で、引き続き、III族窒化物半導体層としてのn形GaN層102を形成した。n形GaN層102の成長は、高純度窒素ガスをプラズマ化して発生させた窒素ラジカルを窒素源として720℃で成長させた。ガリウム(Ga)源は、金属ガリウムとした。3時間に亘り、窒素源及びガリウム源を燐化硼素層101の表面に向けて照射し続け、層厚を約1.2μmとするn形GaN層102を成膜した。成膜直後に撮像したRHEED像から、GaN層102の表面は、下地の燐化硼素層101の(001)面と同じく、(2×2)の原子配列構造であった。然る後、高真空中で室温近傍の温度迄、冷却して、Si単結晶基板100/燐化硼素層101/n形窒化ガリウム層102から成る積層構造体10の形成を終了した。   After confirming that a (2 × 2) atomic arrangement structure is formed on the (001) plane 101a of the boron phosphide layer 101, the n-layer as a group III nitride semiconductor layer is continued in the same MBE apparatus. A GaN layer 102 was formed. The n-type GaN layer 102 was grown at 720 ° C. using nitrogen radicals generated by converting high-purity nitrogen gas into plasma as a nitrogen source. The gallium (Ga) source was metallic gallium. For 3 hours, a nitrogen source and a gallium source were continuously irradiated toward the surface of the boron phosphide layer 101 to form an n-type GaN layer 102 having a layer thickness of about 1.2 μm. From the RHEED image taken immediately after the film formation, the surface of the GaN layer 102 had a (2 × 2) atomic arrangement structure, similar to the (001) plane of the underlying boron phosphide layer 101. After that, it was cooled to a temperature near room temperature in a high vacuum, and the formation of the laminated structure 10 composed of the Si single crystal substrate 100 / the boron phosphide layer 101 / the n-type gallium nitride layer 102 was completed.

n形GaN層102の断面の透過電子線回折(TED)像から、n形GaN層102は、表面が(001)面である燐化硼素層101の面に、(001)面を平行にして積重した単結晶層であるのが示された。また、n形GaN層102の表面の結晶面は、(2×2)の原子配列構造を有する燐化硼素層101と同じ(001)面であった。   From the transmission electron diffraction (TED) image of the cross section of the n-type GaN layer 102, the n-type GaN layer 102 has the (001) plane parallel to the surface of the boron phosphide layer 101 whose surface is the (001) plane. It was shown to be a stacked single crystal layer. The crystal plane of the surface of the n-type GaN layer 102 was the same (001) plane as the boron phosphide layer 101 having a (2 × 2) atomic arrangement structure.

(第2実施例) Si単結晶基板上に、燐化硼素系III−V族化合物半導体層と、それに接合させて設けたIII族窒化物半導体層とを備えた積層構造体から発光ダイオード(LED)を構成する場合を例にして本発明を具体的に説明する。   Second Embodiment A light emitting diode (LED) is formed from a laminated structure including a boron phosphide-based III-V group compound semiconductor layer and a group III nitride semiconductor layer bonded to the Si single crystal substrate. The present invention will be specifically described with reference to an example of the case of ().

図3は第2実施例のLEDの平面構造を模式的に示す図、図4は図3のLEDの断面構造を模式的に示す図である。   FIG. 3 is a diagram schematically showing a planar structure of the LED of the second embodiment, and FIG. 4 is a diagram schematically showing a sectional structure of the LED of FIG.

表面の面方位を(100)面とするSi単結晶基板200上には、燐化硼素系III−V族化合物半導体層として、アンドープでn形の燐化硼素・ガリウム混晶(組成式B0.98Ga0.02P)層201を形成した。このn形の燐化硼素・ガリウム混晶201は、(C253B)を硼素(B)源とし、トリメチルガリウム(分子式:(C253Ga)をGa源とし、PH3を燐(P)源とする常圧(略大気圧)MOCVD手段により、850℃で形成した。燐化硼素・ガリウム混晶201を成膜する際にMOCVD装置に供給する硼素源とガリウム源の総量に対する燐源の濃度比率、所謂、V/III比率は約400に設定した。成膜速度を毎分約30nmとして約500nmの層厚の燐化硼素・ガリウム混晶201を形成した後、MOCVD装置内で室温近傍の温度迄、冷却した。 An undoped n-type boron phosphide / gallium mixed crystal (composition formula B 0.98 ) is formed as a boron phosphide-based III-V compound semiconductor layer on a Si single crystal substrate 200 having a surface orientation of (100). A Ga 0.02 P) layer 201 was formed. This n-type boron phosphide / gallium mixed crystal 201 uses (C 2 H 5 ) 3 B) as a boron (B) source, trimethyl gallium (molecular formula: (C 2 H 5 ) 3 Ga) as a Ga source, It was formed at 850 ° C. by a normal pressure (substantially atmospheric pressure) MOCVD means using PH 3 as a phosphorus (P) source. The concentration ratio of the phosphorus source to the total amount of boron source and gallium source supplied to the MOCVD apparatus when forming the boron phosphide / gallium mixed crystal 201 was set to about 400. A boron phosphide / gallium mixed crystal 201 having a layer thickness of about 500 nm was formed at a deposition rate of about 30 nm per minute, and then cooled to a temperature near room temperature in an MOCVD apparatus.

次に、表面に燐化硼素・ガリウム混晶201を形成したSi単結晶基板200をMBE装置内に移し、1×10-6Paの高真空中で、Si単結晶基板200の温度を室温から800℃に上昇させた。Si単結晶基板200の温度を800℃に維持したままで、15分間保持した。この加熱処理により、燐化硼素・ガリウム混晶201の(001)面201aを、(2×2)の再配列構造とした。 Next, the Si single crystal substrate 200 with the boron phosphide / gallium mixed crystal 201 formed on the surface is transferred into the MBE apparatus, and the temperature of the Si single crystal substrate 200 is increased from room temperature in a high vacuum of 1 × 10 −6 Pa. Raised to 800 ° C. The temperature of the Si single crystal substrate 200 was maintained at 800 ° C. and held for 15 minutes. By this heat treatment, the (001) plane 201a of the boron phosphide / gallium mixed crystal 201 was changed to a (2 × 2) rearranged structure.

燐化硼素・ガリウム混晶201の(001)面201aに、RHEED法により、(2×2)の原子配列構造が形成されているのを確認後、同一のMBE装置内で、引き続き、珪素(Si)のビームを照射しつつ、Siをドーピングし、III族窒化物半導体層としてn形GaN層202を形成した。n形GaN層202の成長は、高純度窒素ガスをプラズマ化して発生させた窒素ラジカルを窒素源として720℃で成長させた。ガリウム(Ga)源は、金属ガリウムとした。3時間に亘り、窒素源及びガリウム源を燐化硼素・ガリウム混晶201の表面に向けて照射し続け、キャリア濃度を約4×1018cm-3とし、層厚を約1.2μmとするn形GaN層202を成膜した。 After confirming that a (2 × 2) atomic arrangement structure was formed on the (001) surface 201a of the boron phosphide / gallium phosphide mixed crystal 201 by the RHEED method, silicon ( While irradiating a Si) beam, Si was doped to form an n-type GaN layer 202 as a group III nitride semiconductor layer. The n-type GaN layer 202 was grown at 720 ° C. using nitrogen radicals generated by converting high-purity nitrogen gas into a plasma as a nitrogen source. The gallium (Ga) source was metallic gallium. For 3 hours, the surface of the boron phosphide / gallium mixed crystal 201 is continuously irradiated with a nitrogen source and a gallium source, the carrier concentration is about 4 × 10 18 cm −3 , and the layer thickness is about 1.2 μm. An n-type GaN layer 202 was formed.

n形GaN層202の成膜直後に撮像したRHEED像から、n形GaN層202の表面は、下地とした燐化硼素・ガリウム混晶201の面と同じく、(2×2)の原子配列構造を有していた。また、n形GaN層202は、立方晶であり、その表面は(001)面であった。   From the RHEED image imaged immediately after the formation of the n-type GaN layer 202, the surface of the n-type GaN layer 202 is the same as the surface of the boron phosphide / gallium mixed crystal 201 used as a base, and a (2 × 2) atomic arrangement structure Had. The n-type GaN layer 202 was a cubic crystal and the surface thereof was a (001) plane.

然る後、高真空を維持しつつ、MBE法により、n形GaN層202上に、次の(イ)〜(ニ)に記載の立方晶のGaN系III族窒化物半導体層203〜206を成長させて、本発明に係わるLED2を作製するための積層構造体20を構成した。   Thereafter, the cubic GaN-based group III nitride semiconductor layers 203 to 206 described in (a) to (d) below are formed on the n-type GaN layer 202 by MBE while maintaining a high vacuum. The laminated structure 20 for producing LED2 concerning this invention was comprised by making it grow.

(イ)8層のn形立方晶GaN層(層厚=15nm)からなる障壁層と、7層のn形立方晶窒化ガリウム・インジウム混晶層(組成式:Ga0.95In0.05N)(層厚=2.0nm)層からなる井戸層とを交互に形成してなる量子井戸構造層203 (A) A barrier layer composed of eight n-type cubic GaN layers (layer thickness = 15 nm) and seven n-type cubic gallium nitride / indium mixed crystal layers (composition formula: Ga 0.95 In 0.05 N) (layers) Quantum well structure layer 203 formed by alternately forming well layers composed of (thickness = 2.0 nm) layers

(ロ)立方晶窒化アルミニウム・ガリウム混晶層(組成式:Al0.25Ga0.75N)からなる高抵抗層(層厚=1.5nm)204 (B) High resistance layer (layer thickness = 1.5 nm) 204 composed of a cubic aluminum nitride / gallium mixed crystal layer (composition formula: Al 0.25 Ga 0.75 N)

(ハ)立方晶p形Al0.10Ga0.90N層(キャリア濃度=6×1017cm-3、層厚=2.0nm)205
(ニ)立方晶p形Al0.05Ga0.95N層(キャリア濃度=9×1017cm-3、層厚=350nm)206
(C) Cubic p-type Al 0.10 Ga 0.90 N layer (carrier concentration = 6 × 10 17 cm −3 , layer thickness = 2.0 nm) 205
(D) Cubic p-type Al 0.05 Ga 0.95 N layer (carrier concentration = 9 × 10 17 cm −3 , layer thickness = 350 nm) 206

次に、積層構造体20の最表層をなすp形Al0.05Ga0.95N層206の中央部に、金(Au)・ガリウム(Ga)・ニッケル(Ni)合金膜p形オーミック電極207を形成した。一方、n形Si単結晶基板200の裏面の略全面には、アルミニウム(Al)膜からなるn形オーミック電極208を設け、LED2を作製した。 Next, a gold (Au) / gallium (Ga) / nickel (Ni) alloy film p-type ohmic electrode 207 is formed at the center of the p-type Al 0.05 Ga 0.95 N layer 206 that forms the outermost layer of the multilayer structure 20. . On the other hand, an n-type ohmic electrode 208 made of an aluminum (Al) film was provided on substantially the entire back surface of the n-type Si single crystal substrate 200 to produce LED2.

順方向電流を20mAとした際に、LED2からは、中心波長を450nmとする青色帯光が放射された。また、一般的な積分球を利用して測定された、樹脂でモールドする以前のチップ状態での発光強度は約5ミリワット(mW)に達した。順方向電圧(Vf)は3.3Vであり、本発明によれば、例えば、効率に優れる青色帯LEDが提供されることが示された。   When the forward current was 20 mA, LED 2 emitted blue light having a center wavelength of 450 nm. In addition, the light emission intensity in a chip state before molding with a resin, measured using a general integrating sphere, reached about 5 milliwatts (mW). The forward voltage (Vf) is 3.3 V, and according to the present invention, for example, it has been shown that a blue band LED having excellent efficiency is provided.

このように高強度の青色発光が得られたのは、燐化硼素・ガリウム混晶201の(001)面201aを、(2×2)の再配列構造としたことが主要因である。   The blue light emission with high intensity was obtained mainly because the (001) plane 201a of the boron phosphide / gallium mixed crystal 201 had a (2 × 2) rearrangement structure.

第1実施例の積層構造体の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the laminated structure of 1st Example. 第1実施例の燐化硼素層における(2×2)の表面原子配列構造を示すRHEED像(電子線入射方向//[011])である。It is a RHEED image (electron beam incident direction // [011]) showing the (2 × 2) surface atomic arrangement structure in the boron phosphide layer of the first example. 第2実施例のLEDの平面構造を示す模式的に示す図である。It is a figure which shows typically the planar structure of LED of 2nd Example. 図3のLEDの断面構造を模式的に示す図である。It is a figure which shows typically the cross-section of LED of FIG.

符号の説明Explanation of symbols

10 積層構造体
100 Si単結晶基板
101 燐化硼素層
101a 燐化硼素層の表面
102 n形GaN層
2 LED
20 積層構造体
200 Si単結晶基板
201 燐化硼素・ガリウム混晶
201a 燐化硼素・ガリウム混晶の表面
202 n形GaN層
203 量子井戸構造層
204 立方晶窒化アルミニウム・ガリウム混晶層(高抵抗層)
205 立方晶p形Al0.10Ga0.90N層
206 立方晶p形Al0.05Ga0.95N層
207 p形オーミック電極
208 n形オーミック電極
10 laminated structure 100 Si single crystal substrate 101 boron phosphide layer 101a surface of boron phosphide layer 102 n-type GaN layer 2 LED
20 Laminated structure 200 Si single crystal substrate 201 Boron phosphide / gallium mixed crystal 201a Surface of boron phosphide / gallium mixed crystal 202 n-type GaN layer 203 Quantum well structure layer 204 Cubic aluminum nitride / gallium mixed crystal layer (high resistance layer)
205 cubic p-type Al 0.10 Ga 0.90 N layer 206 cubic p-type Al 0.05 Ga 0.95 N layer 207 p-type ohmic electrode 208 n-type ohmic electrode

Claims (7)

結晶からなる基板と、その基板上に設けられた表面の原子配列構造を(2×2)とする燐化硼素系III−V族化合物半導体層と、上記燐化硼素系III−V族化合物半導体層の表面に接合されたIII族窒化物半導体層とを備えている、ことを特徴とする積層構造体。   A substrate made of crystal, a boron phosphide-based III-V compound semiconductor layer having a surface atomic arrangement of (2 × 2) provided on the substrate, and the boron phosphide-based III-V compound semiconductor described above And a III-nitride semiconductor layer bonded to the surface of the layer. 上記III族窒化物半導体層の表面の結晶面方位は、上記燐化硼素系III−V族化合物半導体層の表面の結晶面方位と同一である、請求項1に記載の積層構造体。   2. The stacked structure according to claim 1, wherein a crystal plane orientation of the surface of the group III nitride semiconductor layer is the same as a crystal plane orientation of the surface of the boron phosphide-based III-V compound semiconductor layer. 上記III族窒化物半導体層は立方晶である、請求項1または2に記載の積層構造体。   The stacked structure according to claim 1, wherein the group III nitride semiconductor layer is a cubic crystal. 上記基板は、表面の結晶面を(001)面とする珪素単結晶であり、上記基板上の燐化硼素系III−V族化合物半導体層およびIII族窒化物半導体層の各表面の結晶面をそれぞれ(001)面とする、請求項1から3の何れか1項に記載の積層構造体。   The substrate is a silicon single crystal whose surface crystal plane is a (001) plane, and the crystal planes of the respective surfaces of the boron phosphide-based III-V group compound semiconductor layer and the group III nitride semiconductor layer on the substrate are defined as The laminated structure according to any one of claims 1 to 3, wherein each is a (001) plane. 結晶からなる基板上に、燐化硼素系III−V族化合物半導体層およびIII族窒化物半導体層を積層してなる積層構造体の形成方法において、
上記基板上に、有機金属化学的気相堆積手段により、燐化硼素系III−V族化合物半導体層を形成した後、該燐化硼素系III−V族化合物半導体層の表面を真空中で、800℃以上1200℃以下の温度で熱処理を施して当該燐化硼素系III−V族化合物半導体層の表面を(2×2)の原子配列構造とし、次にその燐化硼素系III−V族化合物半導体層の表面上に、分子線エピタキシャル手段によりIII族窒化物半導体層を形成して積層構造体とする、
ことを特徴とする積層構造体の形成方法。
In a method for forming a laminated structure in which a boron phosphide-based III-V group compound semiconductor layer and a group III nitride semiconductor layer are stacked on a substrate made of crystal,
After forming a boron phosphide-based III-V compound semiconductor layer on the substrate by metalorganic chemical vapor deposition means, the surface of the boron phosphide-based III-V compound semiconductor layer is vacuumed. The surface of the boron phosphide-based III-V compound semiconductor layer is subjected to a heat treatment at a temperature of 800 ° C. or higher and 1200 ° C. or lower to form a (2 × 2) atomic arrangement structure, and then the boron phosphide-based III-V group On the surface of the compound semiconductor layer, a group III nitride semiconductor layer is formed by molecular beam epitaxial means to form a laminated structure.
A method for forming a laminated structure.
請求項1から4の何れか1項に記載の積層構造体を用いて構成されている、ことを特徴とする半導体素子。   A semiconductor device comprising the laminated structure according to any one of claims 1 to 4. 請求項5に記載の形成方法で形成された積層構造体を用いて構成されている、ことを特徴とする半導体素子。   6. A semiconductor device comprising a laminated structure formed by the forming method according to claim 5.
JP2005341423A 2005-03-25 2005-11-28 Multilayer structure, method for forming the same, and semiconductor element Expired - Fee Related JP4809669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341423A JP4809669B2 (en) 2005-03-25 2005-11-28 Multilayer structure, method for forming the same, and semiconductor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005088586 2005-03-25
JP2005088586 2005-03-25
JP2005341423A JP4809669B2 (en) 2005-03-25 2005-11-28 Multilayer structure, method for forming the same, and semiconductor element

Publications (2)

Publication Number Publication Date
JP2006303418A true JP2006303418A (en) 2006-11-02
JP4809669B2 JP4809669B2 (en) 2011-11-09

Family

ID=37471302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341423A Expired - Fee Related JP4809669B2 (en) 2005-03-25 2005-11-28 Multilayer structure, method for forming the same, and semiconductor element

Country Status (1)

Country Link
JP (1) JP4809669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092917A (en) * 2008-10-03 2010-04-22 Seiko Epson Corp Method of manufacturing semiconductor device, and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125957A (en) * 1996-10-23 1998-05-15 Nippon Telegr & Teleph Corp <Ntt> Iii type nitride semiconductor element and manufacture thereof
JPH11204883A (en) * 1996-12-30 1999-07-30 Sony Corp Manufacture of semiconductor device
JP2003303779A (en) * 2002-04-11 2003-10-24 Showa Denko Kk Boron phosphide base semiconductor layer, method for manufacturing the same, and boron phosphide base semiconductor element
JP2004031874A (en) * 2002-06-28 2004-01-29 Toshiba Ceramics Co Ltd Epitaxial growing system for semiconductor
JP2004039839A (en) * 2002-07-03 2004-02-05 Showa Denko Kk Method for manufacturing p-type boron phosphide semiconductor layer, boron phosphide semiconductor element and light emitting diode
JP2004063519A (en) * 2002-07-25 2004-02-26 Showa Denko Kk Chemical vapor deposition method of group iii nitride semiconductor layer and group iii nitride semiconductor element
JP2004103671A (en) * 2002-09-06 2004-04-02 Toshiba Ceramics Co Ltd METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH
JP2004153169A (en) * 2002-10-31 2004-05-27 Showa Denko Kk Method of manufacturing p-type boron phosphide semiconductor layer, compound semiconductor element, zener diode, and light emitting diode
JP2004273822A (en) * 2003-03-10 2004-09-30 Toshiba Ceramics Co Ltd GaN SEMICONDUCTOR AND ITS MANUFACTURING METHOD

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125957A (en) * 1996-10-23 1998-05-15 Nippon Telegr & Teleph Corp <Ntt> Iii type nitride semiconductor element and manufacture thereof
JPH11204883A (en) * 1996-12-30 1999-07-30 Sony Corp Manufacture of semiconductor device
JP2003303779A (en) * 2002-04-11 2003-10-24 Showa Denko Kk Boron phosphide base semiconductor layer, method for manufacturing the same, and boron phosphide base semiconductor element
JP2004031874A (en) * 2002-06-28 2004-01-29 Toshiba Ceramics Co Ltd Epitaxial growing system for semiconductor
JP2004039839A (en) * 2002-07-03 2004-02-05 Showa Denko Kk Method for manufacturing p-type boron phosphide semiconductor layer, boron phosphide semiconductor element and light emitting diode
JP2004063519A (en) * 2002-07-25 2004-02-26 Showa Denko Kk Chemical vapor deposition method of group iii nitride semiconductor layer and group iii nitride semiconductor element
JP2004103671A (en) * 2002-09-06 2004-04-02 Toshiba Ceramics Co Ltd METHOD OF MANUFACTURING SiC FILM THROUGH EPITAXIAL GROWTH
JP2004153169A (en) * 2002-10-31 2004-05-27 Showa Denko Kk Method of manufacturing p-type boron phosphide semiconductor layer, compound semiconductor element, zener diode, and light emitting diode
JP2004273822A (en) * 2003-03-10 2004-09-30 Toshiba Ceramics Co Ltd GaN SEMICONDUCTOR AND ITS MANUFACTURING METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092917A (en) * 2008-10-03 2010-04-22 Seiko Epson Corp Method of manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JP4809669B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US7622398B2 (en) Semiconductor device, semiconductor layer and production method thereof
TWI476947B (en) An epitaxial wafer, a gallium nitride-based semiconductor device, a gallium nitride-based semiconductor device, and a gallium oxide wafer
JP4652888B2 (en) Method for manufacturing gallium nitride based semiconductor multilayer structure
JP3752810B2 (en) Epitaxial wafer, manufacturing method thereof, and semiconductor device
TW200814369A (en) III nitride compound semiconductor laminated structure
JP2017028076A (en) Group iii nitride light emitting element manufacturing method
JP2006332611A (en) Nitride semiconductor element
JP4174913B2 (en) Group III nitride semiconductor light emitting device
JP2007073873A (en) Semiconductor element
JP4791075B2 (en) Compound semiconductor light emitting device
KR101405693B1 (en) Semiconductor light emitting device and fabrication method thereof
JP4705384B2 (en) Gallium nitride semiconductor device
JP4700464B2 (en) Compound semiconductor device
JP4809669B2 (en) Multilayer structure, method for forming the same, and semiconductor element
JP3603603B2 (en) III-nitride semiconductor light emitting device substrate
US7573075B2 (en) Compound semiconductor device, production method of compound semiconductor device and diode
JP4431290B2 (en) Semiconductor element and semiconductor layer
JP2006024903A (en) Gallium nitride based semiconductor multilayer structure
JP4987240B2 (en) Compound semiconductor device, method of manufacturing compound semiconductor device, diode device
JP5005902B2 (en) Compound semiconductor device
JP2018022814A (en) Nitride semiconductor device and method of manufacturing the same
JP5005900B2 (en) Semiconductor element
JPH11260720A (en) Epitaxial wafer
JP4864435B2 (en) Compound semiconductor laminated structure, compound semiconductor device and lamp
JP2002305322A (en) Group iii nitride semiconductor light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees