JP5005900B2 - Semiconductor element - Google Patents

Semiconductor element Download PDF

Info

Publication number
JP5005900B2
JP5005900B2 JP2005269516A JP2005269516A JP5005900B2 JP 5005900 B2 JP5005900 B2 JP 5005900B2 JP 2005269516 A JP2005269516 A JP 2005269516A JP 2005269516 A JP2005269516 A JP 2005269516A JP 5005900 B2 JP5005900 B2 JP 5005900B2
Authority
JP
Japan
Prior art keywords
layer
hexagonal
semiconductor layer
boron phosphide
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005269516A
Other languages
Japanese (ja)
Other versions
JP2007081260A (en
Inventor
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005269516A priority Critical patent/JP5005900B2/en
Priority to KR1020087008310A priority patent/KR100981077B1/en
Priority to PCT/JP2006/318098 priority patent/WO2007029865A1/en
Priority to DE112006002403T priority patent/DE112006002403T5/en
Priority to US12/066,055 priority patent/US8084781B2/en
Priority to TW95133090A priority patent/TWI310247B/en
Publication of JP2007081260A publication Critical patent/JP2007081260A/en
Application granted granted Critical
Publication of JP5005900B2 publication Critical patent/JP5005900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、単結晶材料層と、その単結晶材料層の表面上に形成された燐化硼素系半導体層とを備えてなる半導体素子に関する。   The present invention relates to a semiconductor element comprising a single crystal material layer and a boron phosphide-based semiconductor layer formed on the surface of the single crystal material layer.

従来から、燐化硼素系半導体層は、例えば、立方晶の閃亜鉛鉱結晶型の燐化ガリウム(GaP)或いは炭化珪素(SiC)単結晶からなる基板上に形成されている(下記の特許文献1参照)。これらの基板と、その上に形成された燐化硼素系半導体層と、それに接合させて設けたIII族窒化物半導体層とを備えた積層構造体から、例えば、化合物半導体LEDが構成されている(下記の特許文献2参照)。また、珪素単結晶(シリコン)を基板として、単量体の燐化硼素(BP)などの燐化硼素系半導体層が形成されている(下記の特許文献3参照)。また、シリコン基板と、単量体のBP層と、その上に設けたIII族窒化物半導体層とを備えた積層構造体からLEDを構成する技術が開示されている(下記の特許文献4参照)。
特開平2−288388号公報 特開平2−275682号公報 米国特許第6194744B1号 米国特許第6069021号
Conventionally, a boron phosphide-based semiconductor layer has been formed on a substrate made of, for example, a cubic zinc blende crystal type gallium phosphide (GaP) or silicon carbide (SiC) single crystal (the following patent documents) 1). For example, a compound semiconductor LED is composed of a laminated structure including these substrates, a boron phosphide-based semiconductor layer formed on the substrate, and a group III nitride semiconductor layer provided to be bonded to the substrate. (See Patent Document 2 below). Further, a boron phosphide-based semiconductor layer such as monomeric boron phosphide (BP) is formed using silicon single crystal (silicon) as a substrate (see Patent Document 3 below). Also disclosed is a technique for constructing an LED from a laminated structure including a silicon substrate, a monomeric BP layer, and a group III nitride semiconductor layer provided thereon (see Patent Document 4 below). ).
JP-A-2-288388 JP-A-2-275682 US Pat. No. 6,194,744 B1 US Pat. No. 6,690,021

しかしながら、例えば、シリコンを基板として、その(111)結晶面からなる表面上に燐化硼素系半導体層を成長させても、双晶や積層欠陥を多量に含む成長層が得られるのみである(下記の非特許文献1参照)。また、例えば、六方晶6H型SiCを基板として、その(0.0.0.1.)結晶面上に単量体のBP層を成長させても、双晶などの結晶欠陥を多量に含む成長層が得られるのみである(下記の非特許文献2参照)。この様な結晶欠陥を多量に含む燐化硼素系半導体層を備えた積層構造体を利用しても、例えば、逆方向電圧が高く、また、光電変換効率も高いLEDを安定して作製できない問題がある。
T. Udagawa and G. Shimaoka, J. Ceramic Processing Res.,(大韓民国), 第4巻、第2号、2003年,80-83頁. T. Udagawa他、Appl. Surf. Sci.,(アメリカ合衆国),第244巻、2004年,285-288頁.
However, for example, even if a boron phosphide-based semiconductor layer is grown on a (111) crystal surface using silicon as a substrate, only a growth layer containing a large amount of twins and stacking faults can be obtained ( Non-patent document 1 below). Further, for example, even when a BP layer of a monomer is grown on the (0.0.0.1.) Crystal plane using hexagonal 6H type SiC as a substrate, it contains a large amount of crystal defects such as twins. Only a growth layer is obtained (see Non-Patent Document 2 below). Even when a laminated structure including a boron phosphide-based semiconductor layer containing a large amount of such crystal defects is used, for example, an LED having a high reverse voltage and a high photoelectric conversion efficiency cannot be stably manufactured. There is.
T. Udagawa and G. Shimaoka, J. Ceramic Processing Res., (South Korea), Vol. 4, No. 2, 2003, pp. 80-83. T. Udagawa et al., Appl. Surf. Sci., (USA), 244, 2004, pp. 285-288.

本発明は、上記従来技術の問題点を克服すべくなされたもので、燐化硼素系半導体層を双晶や積層欠陥等の結晶欠陥の密度の小さな結晶性に優れたものすることができ、この燐化硼素系半導体層を利用して、素子としての諸特性を向上させることができる半導体素子を提供することを目的とする。   The present invention has been made to overcome the above-mentioned problems of the prior art, and the boron phosphide-based semiconductor layer can have excellent crystallinity with a small density of crystal defects such as twins and stacking faults, An object of the present invention is to provide a semiconductor element that can improve various characteristics as an element by using the boron phosphide-based semiconductor layer.

1)上記目的を達成するために、第1の発明は、単結晶材料層と、その単結晶材料層の表面上に形成された燐化硼素系半導体層とを備えてなる半導体素子において、上記単結晶材料層は六方晶からなり、その{1.1.−2.0.}結晶面からなる表面上に、六方晶からなる上記燐化硼素系半導体層が設けられ、上記燐化硼素系半導体層は、上記単結晶材料層の<1.−1.0.0.>方向に平行に<1.―1.0.0.>方向が配向した、表面を{1.1.−2.0.}結晶面とする結晶から構成されているものである。 1) In order to achieve the above object, a first invention provides a semiconductor element comprising a single crystal material layer and a boron phosphide-based semiconductor layer formed on the surface of the single crystal material layer. The single crystal material layer is made of hexagonal crystal, and its {1.1. -2.0. } On the surface of crystalline surfaces, the boron phosphide-based semiconductor layer made of hexagonal crystal provided et al is, the boron phosphide-based semiconductor layer is <1 the single crystal material layer. -1.0.0. > Parallel to the direction <1. -1.0.0. > The direction is oriented and the surface is {1.1. -2.0. } The crystal plane is composed of crystals.

)第の発明は、上記した1)項に記載の発明の構成において、上記単結晶材料層をサファイア(α−アルミナ単結晶)で構成するものである。 2 ) 2nd invention comprises the said single-crystal material layer by a sapphire ((alpha) -alumina single crystal) in the structure of invention mentioned in said 1) term .

)第の発明は、上記した1)項又は2)項に記載の発明の構成において、上記燐化硼素系半導体層は、単量体の燐化硼素(BP)から構成されているものである。 3 ) The third invention is the structure of the invention described in the above item 1) or 2) , wherein the boron phosphide-based semiconductor layer is composed of monomeric boron phosphide (BP). It is.

)第の発明は、上記した1)項から)項の何れか1項に記載の発明の構成において、上記燐化硼素系半導体層上に六方晶のIII族窒化物半導体層を設けるものである。 4 ) According to a fourth aspect of the present invention, there is provided a hexagonal group III nitride semiconductor layer on the boron phosphide-based semiconductor layer in the configuration of the invention described in any one of the above items 1) to 3 ). Is.

本発明によれば、単結晶材料層と、その単結晶材料層の表面上に形成された燐化硼素系半導体層とを備えてなる半導体素子において、上記単結晶材料層は六方晶からなりその{1.1.−2.0.}結晶面からなる表面上に、六方晶からなる上記燐化硼素系半導体層を設けることとしたので、双晶や積層欠陥等の結晶欠陥の密度の小さな結晶性に優れる燐化硼素系半導体層を形成できる。従って、結晶性に優れる燐化硼素系半導体層を利用して、高性能な半導体素子を提供できる。 According to the onset bright, and the single crystal material layer, a semiconductor device comprising a the single crystal material layer boron phosphide-based semiconductor layer formed on the surface of said single crystal material layer comprises a hexagonal That {1.1. -2.0. } Because the boron phosphide-based semiconductor layer composed of hexagonal crystal is provided on the surface composed of a crystal plane, the boron phosphide-based semiconductor layer excellent in crystallinity with a small density of crystal defects such as twins and stacking faults Can be formed. Therefore, a high-performance semiconductor element can be provided by using a boron phosphide-based semiconductor layer having excellent crystallinity.

本発明によれば、六方晶の燐化硼素系半導体層を、六方晶の単結晶材料層の<1.−1.0.0.>方向に、<1.―1.0.0.>方向を平行にして配向した、表面を{1.1.−2.0.}結晶面とする結晶から構成することとしたので、特に、双晶等の結晶欠陥密度の小さな結晶性に優れる六方晶の燐化硼素系半導体層を安定して得ることができる。従って、この様な結晶性に優れる六方晶の燐化硼素系半導体層を利用して、高性能な半導体素子を安定して提供できる。 According to the onset bright, a boron phosphide-based semiconductor layer of hexagonal crystal, the hexagonal single crystal material layer <1. -1.0.0. > Direction, <1. -1.0.0. > The surface is oriented with the directions parallel, and {1.1. -2.0. } Since it is composed of a crystal having a crystal plane, a hexagonal boron phosphide-based semiconductor layer excellent in crystallinity with a small crystal defect density such as twins can be obtained stably. Therefore, a high-performance semiconductor element can be stably provided by using such a hexagonal boron phosphide-based semiconductor layer having excellent crystallinity.

本発明によれば、六方晶の単結晶材料層を、サファイア(α−アルミナ単結晶)で構成しそのサファイアの{1.1.−2.0.}結晶面からなる表面上に、六方晶の燐化硼素系半導体層を設けることとしたので、サファイアの<1.−1.0.0.>方向に、<1.―1.0.0.>方向を平行にして配向し、且つ、表面を{1.1.−2.0.}結晶面とする六方晶の燐化硼素系半導体層を安定して形成するのに効果を上げられる。 According to the onset bright, a single crystal material layer hexagonal, sapphire composed of (alpha-alumina single crystal) of the sapphire {1.1. -2.0. } Since a hexagonal boron phosphide-based semiconductor layer is provided on the surface composed of crystal planes, <1. -1.0.0. > Direction, <1. -1.0.0. > Oriented with the directions parallel and the surface {1.1. -2.0. } Effective in stably forming a hexagonal boron phosphide-based semiconductor layer having a crystal plane.

本発明によれば、六方晶の燐化硼素系半導体層を、単量体の燐化硼素(BP)から構成することとしたので、六方晶の燐化硼素系半導体層を安定して形成することができる。 According to the onset bright, a boron phosphide-based semiconductor layer of hexagonal crystal, so it was decided to consist monomer boron phosphide (BP), stably a boron phosphide-based semiconductor layer of hexagonal crystal form can do.

また本発明によれば、燐化硼素系半導体層上に六方晶のIII族窒化物半導体層を設けたので、良好な格子マッチングに起因して、六方晶のIII族窒化物半導体層を結晶性に優れた層として形成することができ、高輝度でしかも逆方向電圧等の電気的特性に優れる化合物半導体発光素子を提供できる。またその六方晶のIII族窒化物半導体層を電子走行層(チャネル層)として利用すれば、ショットキー(Schottky)接合型の電界効果トランジスタ(FET)を構成でき、高い電子移動度を発現できるため、高周波特性に優れるFETを得ることができる。 According to the onset bright, since there is provided a group III nitride semiconductor layer of hexagonal crystal in the boron phosphide-based semiconductor layer, due to good lattice matching crystal Group III nitride semiconductor layer of hexagonal Therefore, it is possible to provide a compound semiconductor light emitting device that can be formed as a layer having excellent properties, has high luminance, and has excellent electrical characteristics such as reverse voltage. Moreover, if the hexagonal group III nitride semiconductor layer is used as an electron transit layer (channel layer), a Schottky junction field effect transistor (FET) can be formed, and high electron mobility can be expressed. An FET having excellent high frequency characteristics can be obtained.

本発明は、単結晶材料層と、その単結晶材料層の表面上に形成された燐化硼素系半導体層とを備えてなる半導体素子において、単結晶材料層を六方晶で構成しその{1.1.−2.0.}結晶面からなる表面上に、六方晶からなる燐化硼素系半導体層を設けている。   According to the present invention, in a semiconductor element comprising a single crystal material layer and a boron phosphide-based semiconductor layer formed on the surface of the single crystal material layer, the single crystal material layer is formed of hexagonal crystals and {1 .1. -2.0. } A boron phosphide-based semiconductor layer made of hexagonal crystal is provided on the surface made of crystal face.

上記の燐化硼素系半導体層は、硼素(元素記号:B)と燐(元素記号:P)とを必須の構成元素として含むIII−V族化合物半導体材料からなる結晶層である。また六方晶の単結晶材料層としては、サファイア(α―Al23単結晶)、ウルツ鉱結晶型(Wurtzite)のAlN等のIII族窒化物半導体単結晶、酸化亜鉛(ZnO)単結晶、2H型(ウルツ鉱結晶型)または4H型或いは6H型の炭化珪素(SiC)などのバルク(bulk)単結晶を例示できる。中でも、本発明に係る六方晶の燐化硼素系半導体層を形成するためには、サファイア(α−アルミナ単結晶)基板が最も好適に利用できる。 The boron phosphide-based semiconductor layer is a crystal layer made of a III-V group compound semiconductor material containing boron (element symbol: B) and phosphorus (element symbol: P) as essential constituent elements. The hexagonal single crystal material layer includes sapphire (α-Al 2 O 3 single crystal), a group III nitride semiconductor single crystal such as wurtzite crystal type (Wurtzite) AlN, zinc oxide (ZnO) single crystal, Examples thereof include bulk single crystals such as 2H type (wurtzite crystal type) or 4H type or 6H type silicon carbide (SiC). Among them, a sapphire (α-alumina single crystal) substrate can be most suitably used for forming the hexagonal boron phosphide-based semiconductor layer according to the present invention.

燐化硼素系半導体層を設ける表面は、{1.1.−2.0.}結晶面から構成するのが好適である。特に、サファイアの{1.1.−2.0.}結晶面、即ち、A面と通称される表面上に設けるのが好適である。サファイアの{1.1.−2.0.}結晶面(A面)を用いることにより、通例の閃亜鉛鉱結晶型(zinc−blende)ではなく、六方晶(hexagonal)の燐化硼素系半導体層を安定して得ることができる。これは、サファイアの{1.1.−2.0.}結晶面等の無極性の結晶面における結晶を構成する原子が、共有結合性の高い六方晶の燐化硼素系半導体層をもたらすのに好都合に配列しているためと考察される。   The surface on which the boron phosphide-based semiconductor layer is provided is {1.1. -2.0. } It is preferable to compose from a crystal plane. In particular, the {1.1. -2.0. } It is preferably provided on a crystal plane, that is, a surface commonly referred to as an A plane. Sapphire {1.1. -2.0. } By using the crystal plane (plane A), a hexagonal boron phosphide-based semiconductor layer can be stably obtained instead of the usual zincblende crystal type (zinc-blend). This is the same as {1.1. -2.0. } It is considered that atoms constituting a crystal in a non-polar crystal plane such as a crystal plane are conveniently arranged to provide a hexagonal boron phosphide-based semiconductor layer having a high covalent bond.

サファイアの{1.1.−2.0.}結晶面は、CZ(Czochralski)法、ベルヌーイ(Verneuil)法やEFG(edge−defined film−fed growth)法等(BRAIAN R.PAMPLIN edi.,“CRYSTAL GROWTH”,1975,Pergamon Press Ltd.,参照)で育成されたバルク(bulk)単結晶のA面であってもよいし、また、化学的気相堆積法(CVD)法や、スパッタリング法等の物理的手段で成長させたアルミナ単結晶膜のA面であっても構わない。   Sapphire {1.1. -2.0. The crystal plane is determined by CZ (Czochralski) method, Bernoulli method, EFG (edge-defined film-fed growth) method, etc. (BRIAN R. PAMPLIN edi., “CRYSTAL GROWTH”, 1975, Perg. ) Grown on a bulk single crystal, or an alumina single crystal film grown by physical means such as chemical vapor deposition (CVD) or sputtering. It may be the A side.

六方晶の燐化硼素系半導体層は、ハロゲン(halogen)法、ハイドライド(hydride)法、有機金属化学堆積(MOCVD)法等の気相成長手段により形成できる。例えば、トリエチル硼素(分子式(C253B)を硼素(B)源とし、トリエチル燐(分子式(C253P)を燐(P)源とするMOCVD法により形成できる。また、三塩化硼素(分子式BCl3)を硼素源とし、三塩化燐(分子式PCl3)を燐源とするハロゲンCVD法により形成できる。硼素源と燐源との組み合わせに拘らず、六方晶の燐化硼素系半導体層を形成するには、成長温度を700℃以上で1200℃以下とするのが望ましい。これらの成長手段によれば、六方晶の単結晶材料層の{1.1.−2.0.}結晶面からなる表面上には、表面を{1.1.−2.0.}結晶面とする六方晶の燐化硼素系半導体層を形成できる。 The hexagonal boron phosphide-based semiconductor layer can be formed by vapor phase growth means such as a halogen method, a hydride method, or a metal organic chemical deposition (MOCVD) method. For example, it can be formed by MOCVD using triethyl boron (molecular formula (C 2 H 5 ) 3 B) as a boron (B) source and triethyl phosphorus (molecular formula (C 2 H 5 ) 3 P) as a phosphorus (P) source. Further, it can be formed by a halogen CVD method using boron trichloride (molecular formula BCl 3 ) as a boron source and phosphorus trichloride (molecular formula PCl 3 ) as a phosphorus source. Regardless of the combination of the boron source and the phosphorus source, in order to form a hexagonal boron phosphide-based semiconductor layer, it is desirable that the growth temperature is 700 ° C. or higher and 1200 ° C. or lower. According to these growth means, {1.1. -2.0. } On the surface consisting of crystal faces, the surface is {1.1. -2.0. } A hexagonal boron phosphide-based semiconductor layer having a crystal plane can be formed.

六方晶の燐化硼素系半導体層を、例えば、サファイアの{1.1.−2.0.}結晶面からなる表面上に形成するのに際し、その表面に最初に燐源を供給し始め、その後、硼素等のIII族元素の原料を供給すると、特定の結晶方位に画一的に配向した六方晶の燐化硼素系半導体層を形成できる。例えば、サファイアの{1.1.−2.0.}結晶面からなる表面に、ホスフィン(分子式PH3)をトリエチル硼素((C253B)より時間的に先に供給してMOCVD法により燐化硼素系半導体層の形成を開始することとすると、サファイアの<1.−1.0.0.>方向に、<1.−1.0.0.>方向を平行とする六方晶の燐化硼素系半導体層を得ることができる。形成された燐化硼素系半導体層が六方晶の結晶層であるか否かの調査、また六方晶の単結晶材料層の表面についての六方晶の燐化硼素系半導体層の配向関係の調査は、例えば、電子回折またはX線回折などの分析手段で行うことができる。 A hexagonal boron phosphide-based semiconductor layer is formed of, for example, {1.1. -2.0. } When forming on a crystal surface, when a source of phosphorus is first supplied to the surface, and then a group III element material such as boron is supplied, it is uniformly oriented in a specific crystal orientation. A hexagonal boron phosphide-based semiconductor layer can be formed. For example, {1.1. -2.0. } A phosphine (molecular formula PH 3 ) is supplied to the surface consisting of crystal planes in advance of triethylboron ((C 2 H 5 ) 3 B), and formation of a boron phosphide-based semiconductor layer is started by MOCVD. In particular, sapphire <1. -1.0.0. > Direction, <1. -1.0.0. > A hexagonal boron phosphide-based semiconductor layer having a parallel direction can be obtained. The investigation of whether the formed boron phosphide-based semiconductor layer is a hexagonal crystal layer and the investigation of the orientation relationship of the hexagonal boron phosphide-based semiconductor layer with respect to the surface of the hexagonal single crystal material layer For example, it can be performed by analysis means such as electron diffraction or X-ray diffraction.

表面を{1.1.−2.0.}結晶面とし、且つ、<1.−1.0.0.>方向を、六方晶の単結晶材料層の<1.−1.0.0.>方向と平行とする六方晶の燐化硼素系半導体層は、例えば、サファイアの{1.1.−2.0.}結晶面からなる表面上にあって、格子の整合性に優れる方向に配向しているため、双晶や積層欠陥等の結晶欠陥が少ないのが特徴である。特に、六方晶の燐化硼素系半導体層を、上記の表面と配向関係を有する単量体の燐化硼素(BP)層から構成すると、六方晶の単結晶材料層との接合界面から約50nmから100nmを越えた領域において、殆ど双晶を含まない六方晶の燐化硼素系半導体層を得ることができる。双晶の密度が低減されたため、双晶に起因する粒界の密度が少なくなっている様は、透過型電子顕微鏡(英略称:TEM)を利用した一般的な断面TEM技法により観察できる。   The surface is {1.1. -2.0. } The crystal plane and <1. -1.0.0. > Direction of the hexagonal single crystal material layer <1. -1.0.0. The hexagonal boron phosphide-based semiconductor layer parallel to the> direction is, for example, {1.1. -2.0. } Since it is on the surface composed of crystal planes and oriented in a direction excellent in lattice matching, it is characterized by few crystal defects such as twins and stacking faults. In particular, when a hexagonal boron phosphide-based semiconductor layer is composed of a monomeric boron phosphide (BP) layer having an orientation relationship with the above surface, it is approximately 50 nm from the junction interface with the hexagonal single crystal material layer. Thus, a hexagonal boron phosphide-based semiconductor layer containing almost no twins can be obtained in a region exceeding 100 nm. Since the density of twins is reduced, the density of grain boundaries due to twins can be observed by a general cross-sectional TEM technique using a transmission electron microscope (abbreviation: TEM).

結晶性に優れる六方晶の燐化硼素系半導体層、例えば、六方晶の単量体のBP層からなる半導体層は、その上に、結晶性に優れる例えば、III族窒化物半導体層を形成するための下地として利用できる。六方晶の燐化硼素系半導体層に接合させて設けるIII族窒化物半導体層として好適なのは、例えば、ウルツ鉱結晶型のGaN、AlN、窒化インジウム(InN)、及びこれらの混晶である窒化アルミニウム・ガリウム・インジウム(組成式AlXGaYInZN:0≦X,Y,Z≦1、X+Y+Z=1)である。また、窒素(元素記号:N)と窒素以外の燐(元素記号:P)や砒素(元素記号:As)等の第V族元素を含む、例えば、ウルツ鉱結晶型の窒化燐化ガリウム(組成式GaN1-YY:0≦Y<1)などである。 A hexagonal boron phosphide-based semiconductor layer having excellent crystallinity, for example, a semiconductor layer made of a BP layer of hexagonal monomer forms, for example, a group III nitride semiconductor layer having excellent crystallinity. Can be used as a foundation for As the group III nitride semiconductor layer provided by being bonded to the hexagonal boron phosphide-based semiconductor layer, for example, wurtzite crystal type GaN, AlN, indium nitride (InN), and aluminum nitride that is a mixed crystal thereof are used. gallium indium (compositional formula Al X Ga Y in Z N: 0 ≦ X, Y, Z ≦ 1, X + Y + Z = 1) is. Further, for example, a wurtzite crystal type gallium nitride phosphide (composition) containing nitrogen (element symbol: N) and a group V element such as phosphorus (element symbol: P) other than nitrogen and arsenic (element symbol: As). Formula GaN 1-Y P Y : 0 ≦ Y <1).

六方晶の単量体BP層は、そのa軸に近似する格子定数を有するIII族窒化物半導体層を形成するための下地として特に、有用である。例えば、六方晶の単量体のBPのa軸は約0.319ナノメーター(nm)であり、六方晶のGaNのa軸と一致する。このため、六方晶の単量体のBP層上には、良好な格子マッチングに起因して、結晶性に優れるGaN層を形成できる。結晶性に優れるIII族窒化物半導体層を利用すれば、高い強度の発光をもたらすpn接合型ヘテロ構造を構成できる。例えば、GaN層をクラッド(clad)層とし、GaXIn1-XN(0<X<1)層を発光層とするLED用途のヘテロ接合型発光部を構成できる。結晶性に優れるIII族化合物半導体層から構成した発光部を利用すれば、高輝度でしかも逆方向電圧等の電気的特性に優れる化合物半導体発光素子を提供できる。 The hexagonal monomer BP layer is particularly useful as a base for forming a group III nitride semiconductor layer having a lattice constant approximating the a-axis. For example, the a-axis of hexagonal monomer BP is about 0.319 nanometers (nm), which coincides with the a-axis of hexagonal GaN. Therefore, a GaN layer having excellent crystallinity can be formed on the hexagonal monomer BP layer due to good lattice matching. If a group III nitride semiconductor layer having excellent crystallinity is used, a pn junction type heterostructure that provides high intensity light emission can be formed. For example, a heterojunction light-emitting portion for LED use in which a GaN layer is a clad layer and a Ga x In 1-X N (0 <X <1) layer is a light-emitting layer can be configured. By using a light emitting portion composed of a group III compound semiconductor layer having excellent crystallinity, a compound semiconductor light emitting device having high luminance and excellent electrical characteristics such as reverse voltage can be provided.

また、化合物半導体発光素子に限らず、結晶欠陥密度が低減された、結晶性に優れる六方晶のIII族窒化物半導体層を、電子走行層(チャネル層)として利用すれば、ショットキー接合型FETを構成できる。チャネル(channel)層は、例えば、不純物を故意に添加していないアンドープ(undope)でn形のGaN層から構成できる。結晶欠陥密度が低減された六方晶のIII族窒化物半導体層は、高い電子移動度を発現できるため、高周波特性に優れるFETを得るのに好都合である。   Further, not only a compound semiconductor light emitting device but also a hexagonal group III nitride semiconductor layer with reduced crystal defect density and excellent crystallinity can be used as an electron transit layer (channel layer), so that it is a Schottky junction FET. Can be configured. The channel layer can be composed of, for example, an undoped n-type GaN layer to which impurities are not intentionally added. A hexagonal group III nitride semiconductor layer with a reduced crystal defect density can exhibit high electron mobility, and is advantageous for obtaining an FET having excellent high-frequency characteristics.

(実施例1) サファイアのバルク結晶の(1.1.−2.0.)結晶面からなる表面上に、接合させて設けた六方晶の単量体のBP層を利用してLEDを構成する場合を例にして本発明の内容を具体的に説明する。   Example 1 An LED is constructed using a BP layer of a hexagonal monomer bonded and provided on the surface of a bulk crystal of sapphire (1.1.-2.0.). The contents of the present invention will be specifically described by taking the case as an example.

図1に本実施例1に係るLED10の平面構成を模式的に示す。また、図2には、図1に示した破線A−A’に沿ったLED10の断面模式図を示す。   FIG. 1 schematically shows a planar configuration of the LED 10 according to the first embodiment. FIG. 2 is a schematic sectional view of the LED 10 taken along the broken line A-A ′ shown in FIG. 1.

LED10を作製するための積層構造体100は、(1.1.−2.0.)結晶面(通称A面)を表面とするサファイア(α−アルミナ単結晶)を基板101として形成した。基板101の(1.1.−2.0.)結晶面の表面には、一般的なMOCVD法を利用して、層厚を約290nmとする、アンドープでn形の六方晶の単量体BP層を六方晶の燐化硼素系半導体層102として形成した。   The laminated structure 100 for producing the LED 10 was formed using sapphire (α-alumina single crystal) having a (1.1.-2.0.) Crystal plane (commonly referred to as A plane) as the substrate 101. On the surface of the (1.1.-2.0.) Crystal plane of the substrate 101, an undoped n-type hexagonal monomer having a layer thickness of about 290 nm using a general MOCVD method. The BP layer was formed as a hexagonal boron phosphide-based semiconductor layer 102.

一般的なTEM分析により、六方晶の燐化硼素系半導体層102をなす、六方晶の単量体BP層の表面は、(1.1.−2.0.)結晶面であるのが示された。また、電子回折パターンから、サファイア基板101の<1.−1.0.0.>方向と、六方晶の単量体BP層102の<1.−1.0.0.>方向とは平行に配向しているのが示された。更に、断面TEM技法による観察では、六方晶の単量体BP102層の内部には、双晶の存在は殆ど認められなかった。また、サファイア基板101との接合界面から約50nmを超えてより上方の六方晶の単量体BP層の内部の領域には、格子配列上の乱雑さも殆ど確認できなかった。   A general TEM analysis shows that the surface of the hexagonal monomer BP layer forming the hexagonal boron phosphide-based semiconductor layer 102 is a (1.1.-2.0.) Crystal plane. It was done. Further, from the electron diffraction pattern, <1. -1.0.0. > Direction of the hexagonal monomer BP layer 102. -1.0.0. It was shown to be oriented parallel to the> direction. Furthermore, in the observation by the cross-sectional TEM technique, the presence of twins was hardly observed in the hexagonal monomer BP102 layer. In addition, in the region inside the hexagonal monomer BP layer, which is higher than about 50 nm from the bonding interface with the sapphire substrate 101, the disorder on the lattice arrangement was hardly confirmed.

六方晶の燐化硼素系半導体層102をなす、六方晶の単量体BP層の(1.1.−2.0.)結晶面からなる表面上には、ウルツ鉱結晶型で六方晶のn形のGaN層(層厚=2100nm)103を成長させた。一般的なTEMを利用した分析によれば、六方晶の燐化硼素系半導体層102をなす、六方晶の単量体BP層との接合界面近傍の六方晶のGaN層103の内部領域には、双晶や積層欠陥は殆ど認められなかった。   On the surface composed of the (1.1.-2.0.) Crystal face of the hexagonal monomer BP layer forming the hexagonal boron phosphide-based semiconductor layer 102, a wurtzite crystal type hexagonal crystal layer is formed. An n-type GaN layer (layer thickness = 2100 nm) 103 was grown. According to an analysis using a general TEM, an internal region of the hexagonal GaN layer 103 in the vicinity of the junction interface with the hexagonal monomer BP layer that forms the hexagonal boron phosphide-based semiconductor layer 102 is formed in the internal region. Almost no twins or stacking faults were observed.

六方晶のn形GaN層103の(1.1.−2.0.)表面上には、六方晶のn形のAl0.15Ga0.85Nからなる下部クラッド層(層厚=150nm)104、Ga0.85In0.15N井戸層/Al0.01Ga0.99N障壁層を1周期としその5周期からなる多重量子井戸構造の発光層105、及び層厚を50nmとするp形Al0.10Ga0.90Nからなる上部クラッド層106をこの順序で積層し、pn接合型DH構造の発光部を構成した。上記の上部クラッド層106の表面上には、更に、p形のGaN層(層厚=80nm)をコンタクト層107として堆積し、積層構造体100の形成を終了した。 On the (1.1.-2.0.) Surface of the hexagonal n-type GaN layer 103, a lower cladding layer (layer thickness = 150 nm) 104 made of hexagonal n-type Al 0.15 Ga 0.85 N, Ga A 0.85 In 0.15 N well layer / Al 0.01 Ga 0.99 N barrier layer having one period and a light emitting layer 105 having a multi-quantum well structure consisting of five periods, and an upper clad composed of p-type Al 0.10 Ga 0.90 N having a layer thickness of 50 nm The layers 106 were stacked in this order to form a light emitting portion having a pn junction DH structure. A p-type GaN layer (layer thickness = 80 nm) was further deposited as a contact layer 107 on the surface of the upper cladding layer 106, and the formation of the multilayer structure 100 was completed.

上記のp形コンタクト(contact)層107の一部の領域には、金(元素記号:Au)・酸化ニッケル(NiO)合金からなるp形オーミック(Ohmic)電極108を形成した。一方のn形オーミック電極109は、その電極109を設ける領域に在る下部クラッド層104や発光層105等の層をドライエッチング手段で除去した後、露出させたn形GaN層103の表面に形成した。これより、LED10を構成した。   A p-type ohmic electrode 108 made of a gold (element symbol: Au) / nickel oxide (NiO) alloy is formed in a partial region of the p-type contact layer 107. One n-type ohmic electrode 109 is formed on the surface of the exposed n-type GaN layer 103 after the layers such as the lower cladding layer 104 and the light emitting layer 105 in the region where the electrode 109 is provided are removed by dry etching means. did. From this, LED10 was comprised.

このLED10のp形及びn形オーミック電極108、109間に、順方向に、20mAの素子駆動電流を通流して、発光特性を調査した。LED10から出射される主たる発光の波長は約460nmであった。チップ(chip)状態での発光輝度は約1.6カンデラ(cd)であった。また、pn接合型DH構造の発光部を構成するIII族窒化物半導体層104〜106やn形オーミック電極109を設けたn形GaN層103を、六方晶のBP層上に設けることにより、結晶性に優れるIII族窒化物半導体層から構成できたため、逆方向電流を10μAとした際の逆方向電圧は、15Vを超える高値となった。更に、III族窒化物半導体層の結晶性の良好さにより、局所的な耐圧不良(local breakdown)も殆ど認められなかった。   A light emission characteristic was investigated by passing a device drive current of 20 mA in the forward direction between the p-type and n-type ohmic electrodes 108 and 109 of the LED 10. The wavelength of the main light emitted from the LED 10 was about 460 nm. The light emission luminance in the chip state was about 1.6 candela (cd). Further, by providing the n-type GaN layer 103 provided with the group III nitride semiconductor layers 104 to 106 and the n-type ohmic electrode 109 constituting the light emitting portion of the pn junction type DH structure on the hexagonal BP layer, Therefore, the reverse voltage when the reverse current was 10 μA was a high value exceeding 15V. Further, due to the crystallinity of the group III nitride semiconductor layer, almost no local breakdown was observed.

実施例1に記載のLEDの平面模式図である。1 is a schematic plan view of an LED described in Example 1. FIG. 図1に示す破線A−A’に沿ったLEDの断面模式図である。It is a cross-sectional schematic diagram of LED along the broken line A-A 'shown in FIG.

符号の説明Explanation of symbols

10 化合物半導体LED
100 LED用途積層構造体
101 サファイア基板(六方晶単結晶材料層)
102 六方晶燐化硼素系半導体層(六方晶単量体BP層)
103 六方晶III族窒化物半導体層(GaN層)
104 下部クラッド層
105 発光層
106 上部クラッド層
107 コンタクト層
108 p形オーミック電極
109 n形オーミック電極
10 Compound semiconductor LED
100 Laminated structure for LED 101 Sapphire substrate (hexagonal single crystal material layer)
102 Hexagonal boron phosphide semiconductor layer (hexagonal monomer BP layer)
103 Hexagonal group III nitride semiconductor layer (GaN layer)
104 lower clad layer 105 light emitting layer 106 upper clad layer 107 contact layer 108 p-type ohmic electrode 109 n-type ohmic electrode

Claims (4)

単結晶材料層と、その単結晶材料層の表面上に形成された燐化硼素系半導体層とを備えてなる半導体素子において、
上記単結晶材料層は六方晶からなり、その{1.1.−2.0.}結晶面からなる表面上に、六方晶からなる上記燐化硼素系半導体層が設けられ、
上記燐化硼素系半導体層は、上記単結晶材料層の<1.−1.0.0.>方向に平行に<1.―1.0.0.>方向が配向した、表面を{1.1.−2.0.}結晶面とする結晶から構成されている、
ことを特徴とする半導体素子。
In a semiconductor element comprising a single crystal material layer and a boron phosphide-based semiconductor layer formed on the surface of the single crystal material layer,
The single crystal material layer is made of hexagonal crystal, and its {1.1. -2.0. } On the surface of crystalline surfaces, the boron phosphide-based semiconductor layer is provided, et al is made of hexagonal,
The boron phosphide-based semiconductor layer is <1. -1.0.0. > Parallel to the direction <1. -1.0.0. > The direction is oriented and the surface is {1.1. -2.0. } It is composed of a crystal as a crystal plane,
The semiconductor element characterized by the above-mentioned.
上記単結晶材料層はサファイア(α−アルミナ単結晶)からなる層である、請求項1に記載の半導体素子。The semiconductor element according to claim 1, wherein the single crystal material layer is a layer made of sapphire (α-alumina single crystal). 上記燐化硼素系半導体層は、単量体の燐化硼素(BP)から構成されている、請求項1又は2に記載の半導体素子。The semiconductor element according to claim 1, wherein the boron phosphide-based semiconductor layer is composed of monomeric boron phosphide (BP). 上記燐化硼素系半導体層上に六方晶のIII族窒化物半導体層が設けられている、請求項1乃至3の何れか1項に記載の半導体素子。4. The semiconductor element according to claim 1, wherein a hexagonal group III nitride semiconductor layer is provided on the boron phosphide-based semiconductor layer. 5.
JP2005269516A 2005-09-07 2005-09-16 Semiconductor element Expired - Fee Related JP5005900B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005269516A JP5005900B2 (en) 2005-09-16 2005-09-16 Semiconductor element
KR1020087008310A KR100981077B1 (en) 2005-09-07 2006-09-06 Compound semiconductor device
PCT/JP2006/318098 WO2007029865A1 (en) 2005-09-07 2006-09-06 Compound semiconductor device
DE112006002403T DE112006002403T5 (en) 2005-09-07 2006-09-06 Compound semiconductor device
US12/066,055 US8084781B2 (en) 2005-09-07 2006-09-06 Compound semiconductor device
TW95133090A TWI310247B (en) 2005-09-07 2006-09-07 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269516A JP5005900B2 (en) 2005-09-16 2005-09-16 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2007081260A JP2007081260A (en) 2007-03-29
JP5005900B2 true JP5005900B2 (en) 2012-08-22

Family

ID=37941212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269516A Expired - Fee Related JP5005900B2 (en) 2005-09-07 2005-09-16 Semiconductor element

Country Status (1)

Country Link
JP (1) JP5005900B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809690B2 (en) * 1989-01-13 1998-10-15 株式会社東芝 Compound semiconductor material, semiconductor device using the same, and method of manufacturing the same
JP2809692B2 (en) * 1989-04-28 1998-10-15 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JPH03211888A (en) * 1990-01-17 1991-09-17 Toshiba Corp Semiconductor device and manufacture thereof
JP3754120B2 (en) * 1996-02-27 2006-03-08 株式会社東芝 Semiconductor light emitting device
JP3646655B2 (en) * 2001-02-06 2005-05-11 昭和電工株式会社 Group III nitride semiconductor light emitting diode
JP3700609B2 (en) * 2001-06-04 2005-09-28 昭和電工株式会社 COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
JP3567926B2 (en) * 2002-04-16 2004-09-22 昭和電工株式会社 pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JP3779255B2 (en) * 2002-10-22 2006-05-24 昭和電工株式会社 Group III nitride semiconductor device, manufacturing method thereof, and light-emitting diode
JP4282976B2 (en) * 2002-11-28 2009-06-24 昭和電工株式会社 BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE
JP2005005657A (en) * 2003-06-09 2005-01-06 Sc Technology Kk Crystal layer structure of field effect transistor
JP4063801B2 (en) * 2003-08-08 2008-03-19 昭和電工株式会社 Light emitting diode

Also Published As

Publication number Publication date
JP2007081260A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP3749498B2 (en) Crystal growth substrate and ZnO-based compound semiconductor device
US7250320B2 (en) Semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, image display device, manufacturing method thereof, illuminating device and manufacturing method thereof
KR101010773B1 (en) Zinc oxide compound semiconductor element
JP4327339B2 (en) Semiconductor layer forming substrate and semiconductor device using the same
JP4652888B2 (en) Method for manufacturing gallium nitride based semiconductor multilayer structure
US8299451B2 (en) Semiconductor light-emitting diode
KR20080101707A (en) Gan substrate, and epitaxial substrate and semiconductor light-emitting device employing the substrate
JP6721816B2 (en) Nitride semiconductor template and UV LED
KR100992499B1 (en) Semiconductor light-emitting diode
KR20120039324A (en) Gallium nitride type semiconductor light emitting device and method of fabricating the same
JP4700464B2 (en) Compound semiconductor device
JP2007073732A (en) Compound semiconductor element
JP4960621B2 (en) Nitride semiconductor growth substrate and manufacturing method thereof
JP4374720B2 (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP5005900B2 (en) Semiconductor element
US10763395B2 (en) Light emitting diode element and method for manufacturing same
JP6117821B2 (en) Composite substrate and functional element
JPH09237938A (en) Iii-v group compound semiconductor device
JP2006024903A (en) Gallium nitride based semiconductor multilayer structure
KR100981077B1 (en) Compound semiconductor device
JP5005902B2 (en) Compound semiconductor device
JP4809669B2 (en) Multilayer structure, method for forming the same, and semiconductor element
JP3592616B2 (en) Group III nitride semiconductor light emitting device
JP2000012896A (en) Group iii nitride semiconductor element
JP5005905B2 (en) Compound semiconductor device and compound semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees