TWI310247B - Compound semiconductor device - Google Patents

Compound semiconductor device Download PDF

Info

Publication number
TWI310247B
TWI310247B TW95133090A TW95133090A TWI310247B TW I310247 B TWI310247 B TW I310247B TW 95133090 A TW95133090 A TW 95133090A TW 95133090 A TW95133090 A TW 95133090A TW I310247 B TWI310247 B TW I310247B
Authority
TW
Taiwan
Prior art keywords
layer
hexagonal
semiconductor layer
crystal
phosphide
Prior art date
Application number
TW95133090A
Other languages
Chinese (zh)
Other versions
TW200805704A (en
Inventor
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005259042A external-priority patent/JP2007073732A/en
Priority claimed from JP2005261946A external-priority patent/JP2007073872A/en
Priority claimed from JP2005266418A external-priority patent/JP2007081084A/en
Priority claimed from JP2005269516A external-priority patent/JP5005900B2/en
Priority claimed from JP2005277536A external-priority patent/JP5005902B2/en
Priority claimed from JP2005286495A external-priority patent/JP4700464B2/en
Priority claimed from JP2005312758A external-priority patent/JP5005905B2/en
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200805704A publication Critical patent/TW200805704A/en
Application granted granted Critical
Publication of TWI310247B publication Critical patent/TWI310247B/en

Links

Landscapes

  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

1310247 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關一種化合物半導體裝置,其係藉著將電 極配置在堆疊結構上建構而成,該堆疊結構係利用六方單 晶、形成在該單晶表面上之磷化硼爲底的半導體層及由在 該磷化硼爲底的半導體層上的化合物半導體形成的化合物 半導體層提供,該化合物半導體裝置在前述單晶層的( • 1.1 .-2.0.)晶面形成的表面上提供前述六方晶體的磷化硼 爲底的半導體層。 【先前技術】 至今,如JP-A HEI 2-28 83 8 8中揭示的,舉例來說, 已在立方閃鋅礦型晶體磷化鎵(GaP )或碳化矽(SiC ) 單晶製成的基材上形成該磷化硼爲底的半導體層。 在 JP-A HEI 2-28 8 3 7 1 及 JP-A HEI 2-27 56 8 2 中,揭 •示化合物半導體裝置的發光二極體(LED )係由此基材、 形成在彼上面的磷化硼爲底的半導體層及依接合至彼的方 式配置的III族氮化物半導體層構成。在美國專利案號 6 1 94744 B1中,揭示例如單體磷化硼(BP )等的磷化砸 爲底的半導體層係形成在充當基材的矽單晶(矽)上。在 美國專利案號6069021中,揭示由矽基材、單體BP層及 配置在該單體BP層上面的III族氮化物半導體層提供的 堆疊結構建構LED的技術。 如JP-A HEI 2-275682中揭示的,在運用形成在單晶 (2) 1310247 基材上的磷化硼爲底的半導體層之led結構中,至今已 在立方閃鋅礦型晶體磷化硼層上配置歐姆電極。如 JP-A HEI 4-84486所揭示,即使在習知的雷射二極體( LD)中,歐姆電極係經配置與立方磷化硼層相接觸。 再者,如JP-B SHO 55-3 834中揭示的,至今已利用 由硼化鎵(GaN)形成且配置在單晶基材上的III族氮化 物半導體層提供的堆疊結構建構藍色-及綠色LED。在 φ JP-A HEI 4-213878中,舉例來說,揭示由III族氮化物半 導體材料形成的包覆層(clad layer )與發光層的異質接 面建構的該短波長可見光或近紫外線或紫外線LED的發 光部分。 JP-A HEI 10-287497中揭示連在高頻下操作的場效電 晶體(FET ),舉例來說,都利用例如氮化鋁一鎵( AlxGal-xN : 05X^1 )等的III族氮化物半導體層配置在矽 基材上而提供的堆疊結構來建構。 • 同時,如 JP-A 2004- 1 8629 1中揭示的,已知使用立 方閃鋅礦型晶體磷化硼爲底的半導體層作爲包覆層而建構 雙異質(DH)結構的發光部分之技術。 構成發光部分的發光層及構成作爲發光層的阻障層之 包覆層的立方磷化硼爲底的半導體層可,如 JP-A HEI 3-87019中揭示的,藉由運用用於底層的立方閃 鋅礦型晶體砷化鎵(GaAs )而形成。 即使是基材係由矽形成且磷化硼爲底的半導體層係長 在該基材的(1 1 1 )晶面形成的表面上,無論如何,因此 (3) 1310247 長成的層最終仍含有大量的結晶性缺陷,例如堆疊不良及 攣晶(T. Udagawa 與 G. Shimaoka,J. Ceramic Processing Res.(大韓民國),第4卷,第2冊,2003年,第80至 83頁)。若基材由六方6H-型SiC形成且單體BP層長在 彼之(〇.〇.0.1.)晶面上,因此長成的層最終含有大量的 結晶性缺陷,例如攣晶(T. Udagawa等人,Applied Surf.Sci·,(美國),第 244 卷,2004 年,第 285 至 288 鲁頁)。即使是使用由含大量此等結晶性缺陷的磷化硼爲底 的半導體層提供的堆疊結構,舉例來說,仍會有無法穩定 製造反向具有高電壓且光電轉換顯示高效率的LED。 長在藍寶石(a -Al2〇3單晶)基材上的GaN層,舉 例來說,含有大量的結晶性缺陷,例如位錯。即使是以含 大量的結晶性缺陷,例如位錯,的III族氮化物半導體層 用於功能層,例如發光層,仍然會有製成的L E D不能提 高反向電壓或增進光電轉換效率的問題。再者,舉例來說 •,藉由作爲電子傳輸層(通道層)的FET結構,含大量 的結晶性缺陷的III族氮化物半導體層由於無法獲得高電 子移動性而有不能完全適當地增進高頻性質,例如輸出功 率,的問題。 該傳統磷化硼爲底的半導體材料及III族氮化物半導 體材料製成的薄層含有反相邊界(「晶體電子顯微鏡」, 由Hiroyasu Saka編寫且由Uchida Rokakuho股份有限公 司發行,1997年,11月25日,第1版,第64至65頁) (Y Abe等人,晶體生長期刊(Holland),第283卷, (4) 1310247 第2005年,第41至47頁)。至今,該化合物半導體裝 置並不一定運用具有優異結晶性性質的半導體層而製造。 附帶地’在此使用的一詞「反相範疇(APD )」或「反相 邊界」(AP B )表示晶體中的原子排列相關的相偏離1 8 0 度(半周期)的邊界。二元合金的排序相中經常都會發生 此邊界。 含有大量反相邊界並顯露不良結晶性之磷化硼爲底的 •半導體層及ΙΠ族氮化物半導體層將妨礙獲得發光效率優 異的LED及電氣性質優異且具有充分穩定性的FET之努 力成果。 即使是鄰接含有大量結晶性缺陷的立方磷化硼爲底的 半導體層配置歐姆電極,彼等仍有無法穩定地製造反向具 有高電壓且出現高光電轉換效率的LED之問題,因爲用 於操作該裝置的操作電流(裝置操作電流)將經由結晶性 缺陷’例如攣晶,而招致預期的洩漏。即使是在充當結晶 ®性缺陷的立方磷化硼爲底-的半導體層的表面上配置蕭特基 接點(Schottky contact),彼等仍有不能穩定地製造優於 高頻性質的FET之問題,因爲最終將形成遇到大洩漏電 流及不足的擊穿電壓問題的閘極且汲極電流將顯露出不良 的夾止(pinch-off)性質。 儘管上述已揭示可藉由III族氮化物半導體材料形成 與發光層的異質接面建構短波長可見光或近紫外 線或紫外線LED的發光部分,但是在傳統立方晶體製成 層上形成的磷化硼爲底的半導體層最後將變成含大量 (5) 1310247 結晶性缺陷的晶體層,因爲與該底層沒有充分的晶格配合 。該層,舉例來說,將伴隨,由於與底層的晶格不相配, 最終將變成含大量平面缺陷,例如攣晶及堆疊缺陷,的結 晶性層的問題。在以舉例來說,含大量的結晶性缺陷的磷 . 化硼爲底的半導體層作爲包覆層而製造該LED的發光部 ^ 分的情況下,仍未能達到穩定地製造高亮度的LED,因爲 _ 發光層用於操作該LED的電流之短路流動的發生將妨礙 -φ用於發光的表面膨脹。 本發明就上述先前技藝的現況而創作並針對下列目標 〇 (1)本發明的目標在於提供使磷化硼爲底的半導體 層能含有僅小密度的結晶性缺陷,例如攣晶及堆疊缺陷, 及優異的結晶性,且能藉由使用該磷化硼爲底的半導體層 而增進該裝置的不同性質的半導體裝置。 • ( 2 )本發明另一目的在於提供能獲得由結晶性優異 修的半導體層提供之堆疊結構的化合物半導體裝置,即使該 半導體層係供於具有含大量結晶性缺陷且能增進該裝置的 特徵性質的III族氮化物半導體層之基材上亦同。 (3)本發明另一目的在於提供一化合物半導體裝置 ,該化合物半導體裝置能藉由使用含僅小量反相邊界之具 優異性質的磷化硼爲底的半導體材料或III族氮化物半導 體材料製成的薄層而製造光學性質及電氣性質優異。 (4 )本發明另一目的在於提供能供給磷化硼爲底的 半導體層的半導體裝置,該磷化硼爲底的半導體層能降低 -8 - (6) 1310247 裝置操作電流洩漏,充當發光裝置時提高光電轉換效率, 提高反向電壓’充當場效電晶體時賦予閘極以高擊穿電壓 ’並改良汲極電流的夾止性質。 (5)本發明另一目的在於提供能建構包覆層的半導 體發光裝置’該包覆層構成含磷化砸爲底的半導體層的 DH結構發光部分,該磷化硼爲底的半導體層具有僅含小 量結晶性缺陷並增進發光性質的優異性質。 【發明內容】 本發明的第一個形態,就完成上述目的的觀點而言, 係有關一種化合物半導體裝置,其係藉著將電極配置在堆 疊結構上建構而成,該堆疊結構係利用六方單晶、形成在 該單晶表面上之磷化硼爲底的半導體層及配置在該磷化硼 爲底的半導體層上且由化合物半導體形成的化合物半導體 層提供,且其特徵爲具有由六方晶體形成並配置該單晶層 鲁的(1 · 1 . - 2.0 .)晶面形成的表面上的磷化硼爲底的半導體 層。 本發明的第二個形態的特徵爲具有本發明第一個形態 的結構中的單晶層,其係上述由藍寶石(α-Α12〇3單晶) 形成。 本發明的第三個形態的特徵爲具有本發明第一個形態 的結構中的六方單晶層’其係由六方π I族氮化物半導體 形成。 本發明的第四個形態的特徵爲具有本發明第一個形態 -9 - 1310247 σ) 的結構中的磷化硼爲底的半導體層,其係由具有充當其表 面的(1 · 1 · - 2 · 0 _ )晶面之晶體形成。 本發明的第五個形態的特徵爲具有本發明第一個形態 的結構中的磷化硼爲底的半導體層’其係由具有充當其表 面的(1 · 〇 · -1 · 〇 ·)晶面之晶體形成。 本發明的第六個形態的特徵爲具有本發明第一個形態 的結構中的碟化硼爲底的半導體層內側的(0.0.0.1.)晶 •面,其係實質上平行於該層的厚度方向排列,且該層的η 個(η表示2或更大的正整數)連續性(0.0·0·2.)晶面的 距離實質上等於該單晶層的c -軸長度。 本發明的第七個形態的特徵爲使本發明第六個形態的 結構中的前述(〇.〇.0.2.)晶面的數目η爲6或更小。 本發明的第八個形態的特徵爲具有本發明第一個形態 的結構中的前述化合物半導體層,其係由六方半導體材料 形成。 • 本發明的第九個形態的特徵爲具有本發明第一個形態 的結構中的前述磷化砸爲底的半導體層與前述化合物半導 體層,彼等係沿著充當界面的(1.1.-2.0.)晶面接合。 本發明的第十個形態的特徵爲具有本發明第一個形態 的結構中的前述磷化硼爲底的半導體層與前述化合物半導 體層’彼等係沿著充當界面的(1.0.-1.0.)晶面接合。 本發明的第十一個形態的特徵爲具有本發明第九或十 個形態的結構中之構成前述化合物半導體層的(〇.〇.〇. I )晶面及構成前述磷化硼爲底的半導體層的(〇.〇·〇.〗_)1310247 (1) EMBODIMENT OF THE INVENTION [Technical Field] The present invention relates to a compound semiconductor device constructed by arranging electrodes on a stacked structure which is formed by using a hexagonal single crystal. Provided on the surface of the single crystal, a boron nitride-based semiconductor layer and a compound semiconductor layer formed of a compound semiconductor on the phosphide-based semiconductor layer, the compound semiconductor device in the aforementioned single crystal layer (• 1.1) .-2.0.) The surface of the crystal face is provided with a phosphide boron-based semiconductor layer of the aforementioned hexagonal crystal. [Prior Art] Up to now, as disclosed in JP-A HEI 2-28 83 8 8 , for example, has been made of cubic sphalerite crystal gallium phosphide (GaP) or tantalum carbide (SiC) single crystal. The phosphide boron-based semiconductor layer is formed on the substrate. In JP-A HEI 2-28 8 3 7 1 and JP-A HEI 2-27 56 8 2, a light-emitting diode (LED) of a compound semiconductor device is formed on the substrate and formed thereon. The phosphide-based semiconductor layer is composed of a group III nitride semiconductor layer disposed in such a manner as to be bonded to each other. In U.S. Patent No. 6, 1 944 744 B1, it is disclosed that a phosphide ruthenium-based semiconductor layer such as a monomer phosphide (BP) or the like is formed on a ruthenium single crystal (ruthenium) serving as a substrate. In U.S. Patent No. 6,609,021, a technique for constructing an LED in a stacked structure provided by a tantalum substrate, a monomer BP layer, and a group III nitride semiconductor layer disposed over the monomer BP layer is disclosed. As disclosed in JP-A HEI 2-275682, in the LED structure using a boron nitride-based semiconductor layer formed on a single crystal (2) 1310247 substrate, phosphating of cubic sphalerite crystals has hitherto been used. An ohmic electrode is disposed on the boron layer. As disclosed in JP-A HEI 4-84486, even in the conventional laser diode (LD), the ohmic electrode is configured to be in contact with the cubic boron phosphide layer. Further, as disclosed in JP-B SHO 55-3 834, a stacked structure provided by a group III nitride semiconductor layer formed of gallium hydride (GaN) and disposed on a single crystal substrate has hitherto been constructed in blue - And green LED. In φ JP-A HEI 4-213878, for example, the short-wavelength visible or near-ultraviolet or ultraviolet light constructed by a heterojunction of a clad layer formed of a group III nitride semiconductor material and a light-emitting layer is disclosed. The light emitting part of the LED. A field effect transistor (FET) connected to a high frequency operation is disclosed in JP-A HEI 10-287497, for example, using a group III nitrogen such as aluminum nitride-gallium (AlxGal-xN: 05X^1). The stacked structure of the semiconductor layer provided on the germanium substrate is constructed. In the meantime, as disclosed in JP-A 2004- 1 8629 1, a technique of constructing a light-emitting portion of a double heterogeneous (DH) structure using a cubic sphalerite-type crystalline boron phosphide-based semiconductor layer as a cladding layer is known. . A light-emitting layer constituting a light-emitting portion and a cubic phosphide-based semiconductor layer constituting a cladding layer as a barrier layer of the light-emitting layer may be used as the substrate, as disclosed in JP-A HEI 3-87019 The cubic sphalerite crystal is formed by gallium arsenide (GaAs). Even if the substrate is formed of tantalum and the boron nitride-based semiconductor layer is grown on the surface formed by the (1 1 1 ) crystal plane of the substrate, in any case, the layer formed by (3) 1310247 eventually still contains A large number of crystalline defects, such as poor stacking and twinning (T. Udagawa and G. Shimaoka, J. Ceramic Processing Res., Vol. 4, Vol. 2, 2003, pp. 80-83). If the substrate is formed of hexagonal 6H-type SiC and the monomer BP layer is on the surface of the other (〇.〇.0.1.) crystal, the grown layer eventually contains a large number of crystalline defects, such as twins (T. Udagawa et al., Applied Surf. Sci., (USA), Vol. 244, 2004, pp. 285-288, ru). Even in the case of using a stacked structure provided by a phosphide-based semiconductor layer containing a large amount of such crystalline defects, for example, there is still an inability to stably manufacture an LED having a high voltage in reverse and a high efficiency in photoelectric conversion display. A GaN layer grown on a sapphire (a-Al2〇3 single crystal) substrate, for example, contains a large amount of crystal defects such as dislocations. Even if a group III nitride semiconductor layer containing a large amount of crystal defects such as dislocations is used for a functional layer such as a light-emitting layer, there is still a problem that the fabricated L E D cannot raise the reverse voltage or improve the photoelectric conversion efficiency. Further, for example, by the FET structure as the electron transport layer (channel layer), the group III nitride semiconductor layer containing a large amount of crystal defects cannot be sufficiently appropriately increased due to the inability to obtain high electron mobility. Frequency properties, such as output power, are problems. The thin layer of the conventional boron phosphide-based semiconductor material and the group III nitride semiconductor material contains a reverse phase boundary ("Crystal Electron Microscopy", written by Hiroyasu Saka and issued by Uchida Rokakuho Co., Ltd., 1997, 11 25th, 1st edition, pp. 64-65) (Y Abe et al., Journal of Crystal Growth, Vol. 283, (4) 1310247, 2005, pp. 41-47). Heretofore, the compound semiconductor device is not necessarily manufactured by using a semiconductor layer having excellent crystallinity properties. Incidentally, the term "inverse domain (APD)" or "inverse boundary" (AP B ) as used herein means that the phase of the atomic arrangement in the crystal deviates from the boundary of 180 degrees (half cycle). This boundary often occurs in the ordered phase of binary alloys. The semiconductor layer and the bismuth nitride semiconductor layer, which contain a large number of reversed-phase boundaries and exhibit poor crystallinity, will hinder the achievement of LEDs with excellent luminous efficiency and FETs with excellent electrical properties and sufficient stability. Even if an ohmic electrode is disposed adjacent to a cubic phosphide-based semiconductor layer containing a large amount of crystal defects, there is still a problem that it is impossible to stably manufacture an LED having a high voltage and high photoelectric conversion efficiency in reverse, because it is used for operation. The operating current (device operating current) of the device will cause a desired leak via crystalline defects such as twins. Even if Schottky contacts are disposed on the surface of a cubic boron phosphide-based semiconductor layer serving as a crystallization® defect, they still have problems in that FETs superior to high-frequency properties cannot be stably manufactured. Because the gate that encounters large leakage currents and insufficient breakdown voltage problems will eventually form and the gate current will exhibit poor pinch-off properties. Although it has been disclosed above that the light-emitting portion of the short-wavelength visible light or the near-ultraviolet or ultraviolet LED can be formed by forming a heterojunction junction with the light-emitting layer of the group III nitride semiconductor material, the boron phosphide formed on the layer formed by the conventional cubic crystal is The bottom semiconductor layer will eventually become a crystalline layer containing a large amount of (5) 1310247 crystalline defects because there is insufficient lattice coordination with the underlayer. This layer, for example, will accompany the problem of a crystalline layer containing a large number of planar defects, such as twins and stacked defects, due to incompatibility with the underlying crystal lattice. In the case where, for example, a semiconductor layer containing a large amount of crystal defects and a boron nitride-based semiconductor layer is used as a cladding layer to fabricate a light-emitting portion of the LED, it has not been possible to stably produce a high-brightness LED. Because the occurrence of a short-circuit flow of the current used to operate the LED of the luminescent layer will prevent -φ from being used for surface expansion of the luminescence. The present invention has been made in view of the foregoing state of the art and aims at the following objects: (1) It is an object of the present invention to provide a semiconductor layer having a boron phosphide as a base capable of containing only a small density of crystalline defects such as twins and stacking defects. And a semiconductor device which is excellent in crystallinity and which can enhance the different properties of the device by using the phosphide boron-based semiconductor layer. (2) Another object of the present invention is to provide a compound semiconductor device capable of obtaining a stacked structure provided by a semiconductor layer excellent in crystallinity, even if the semiconductor layer is provided with a feature containing a large amount of crystal defects and enhancing the device The same applies to the substrate of the group III nitride semiconductor layer of the nature. (3) Another object of the present invention is to provide a compound semiconductor device capable of using a phosphide-based semiconductor material or a group III nitride semiconductor material having excellent properties including only a small amount of reversed phase boundaries. The resulting thin layer is excellent in optical properties and electrical properties. (4) Another object of the present invention is to provide a semiconductor device capable of supplying a boron nitride-based semiconductor layer which can reduce the operating current leakage of the device -8 - (6) 1310247 and function as a light-emitting device When the photoelectric conversion efficiency is improved, the reverse voltage 'acting as a field effect transistor gives the gate a high breakdown voltage' and improves the pinch-off property of the gate current. (5) Another object of the present invention is to provide a semiconductor light-emitting device capable of constructing a cladding layer which constitutes a DH structure light-emitting portion of a phosphide-based semiconductor layer, the phosphide-based semiconductor layer having It contains only a small amount of crystalline defects and enhances the excellent properties of luminescent properties. SUMMARY OF THE INVENTION A first aspect of the present invention, in terms of accomplishing the above object, relates to a compound semiconductor device constructed by arranging electrodes on a stacked structure using a hexagonal single a crystal, a phosphide-borated semiconductor layer formed on the surface of the single crystal, and a compound semiconductor layer disposed on the phosphide-based semiconductor layer and formed of a compound semiconductor, and characterized by having hexagonal crystals A boron nitride-based semiconductor layer on the surface of the (1·1 . - 2.0 . ) crystal plane of the single crystal layer is formed and disposed. A second aspect of the present invention is characterized by having a single crystal layer in the structure of the first aspect of the present invention, which is formed of sapphire (α-Α12〇3 single crystal). A third aspect of the present invention is characterized in that the hexagonal single crystal layer in the structure of the first aspect of the present invention is formed of a hexagonal π I nitride semiconductor. A fourth aspect of the present invention is characterized by having a boron phosphide-based semiconductor layer in a structure having the first aspect of the present invention -9 - 1310247 σ), which has a surface (1 · 1 · - serving as its surface) 2 · 0 _ ) crystal formation of crystal faces. A fifth aspect of the present invention is characterized in that the boron phosphide-based semiconductor layer in the structure of the first aspect of the present invention is composed of (1 · 〇· -1 · 〇·) crystals serving as a surface thereof The crystal of the surface is formed. A sixth aspect of the present invention is characterized in that, in the structure of the first aspect of the present invention, the (0.0.0.1.) crystal face of the inner side of the dish-formed boron-based semiconductor layer is substantially parallel to the layer The thickness direction is aligned, and the distance of n (n represents a positive integer of 2 or more) continuity (0.0·0·2.) crystal plane of the layer is substantially equal to the c-axis length of the single crystal layer. The seventh aspect of the present invention is characterized in that the number η of the aforementioned (〇.〇.0.2.) crystal faces in the structure of the sixth aspect of the present invention is 6 or less. An eighth aspect of the invention is characterized in that the compound semiconductor layer of the structure of the first aspect of the invention is formed of a hexagonal semiconductor material. A ninth aspect of the present invention is characterized in that the phosphide-based semiconductor layer and the compound semiconductor layer in the structure having the first aspect of the present invention are along the interface (1.1.-2.0). .) Crystal face bonding. A tenth aspect of the present invention is characterized in that, in the structure having the first aspect of the present invention, the phosphide-boron-based semiconductor layer and the compound semiconductor layer are disposed along the interface (1.0.-1.0. ) Crystal face bonding. An eleventh aspect of the present invention is characterized in that, in the structure of the ninth or tenth aspect of the present invention, the crystal face constituting the compound semiconductor layer and the phosphide boron-based Semiconductor layer (〇.〇·〇.〗_)

-10 - (8) 1310247 晶面’彼等係實質上平行於前述半導體層的堆疊方向排列 〇 本發明的第十二個形態的特徵爲具有本發明第一個形 態的結構中的前述磷化硼爲底的半導體層,其係由不含反 相邊界的六方磷化硼爲底的半導體形成。 本發明的第十三個形態的特徵爲具有本發明第一個形 態的結構中的前述電極,彼等係配置使得裝置操作電流依 鲁實質上平行於構成前述磷化硼爲底的半導體層的( 0·0.0_1·)晶面及構成前述化合物半導體層的(0.0.0.1.) 晶面二者之方向流動。 本發明的第十四個形態的特徵爲具有本發明第一個形 態的結構中的前述電極,彼等係配置使得裝置操作電流依 實質上垂直於構成前述磷化硼爲底的半導體層的( 〇·〇.0.1.)晶面及構成前述化合物半導體層的(〇.〇〇.1·) 晶面之方向流動。 # 本發明的第十五個形態的特徵爲具有本發明第一個形 態的結構中的前述磷化硼爲底的半導體層,其係由六方單 體磷化硼形成。 本發明的第十六個形態的特徵爲本發明第十四個形態 的結構中的前述六方單體磷化硼的C-軸長度落在〇·52奈 米或更大及0.53奈米或更小的範圍內。 根據本發明的第一個形態’因爲藉著將電極配置在堆 疊結構,該堆疊結構係利用六方單晶、形成在該單晶表面 上之磷化硼爲底的半導體層及配置在該磷化硼爲底的半導 -11 - 1310247 Ο) 體層上且由化合物半導體形成的化合物半導體層提供,上 建構而成的化合物半導體裝置係供至前述單晶層與由六方 晶體形成的前述磷化硼爲底的半導體層的(1.1 .-2.0.)晶 面形成的表面上,所以會形成含有僅小密度的結晶性缺陷 ,例如攣晶及堆疊缺陷,及優異的結晶性之磷化硼爲底的 半導體層。結果,可利用結晶性優異的磷化硼爲底的半導 體層以便提供高性能的半導體裝置。 φ 根據本發明的第二個形態,因爲該六方單晶層係由藍 寶石(a -Al2〇3單晶)形成且該六方磷化硼爲底的半導體 層係配置在由(1.1.-2.0.)晶面形成的藍寶石表面上,所 以可穩定地形成具有平行於該藍寶石的< 1.-1.0.〇>方向 取向之<1.-1.〇.〇>方向且具有充當表面的(1.1.-2.0.)晶 面之六方磷化硼爲底的半導體層。 根據本發明的第三個形態,因爲該六方單晶層係由 III族氮化物半導體形成,且利用具有充當其表面的( 擊1.1.-2.0.)晶面之六方III族氮化物半導體及接合至該III 族氮化物半導體表面而配置之六方磷化硼爲底的半導體層 構成的第一堆疊結構部分,所以該III族氮化物半導體中 所含的位錯可進一步經由該堆疊結構部分的界面擴散而抑 制,並朝磷化硼爲底的半導體層側增殖。另外根據本發明 的第三個形態,構成前述第一堆疊結構部分的六方磷化硼 爲底的半導體層可藉著使六方III族氮化物半導體進一步 接合至上側表面而在其上側表面上提供第二堆疊結構部分 。經由進一步提供第二堆疊結構部分,可產生具有進一步 -12- 5 (10) 1310247 降低的密度之例如穿透位錯等的結晶性缺陷之III族氮化 物半導體。本發明的第三個形態,因此,能產製能供給結 晶性優異的半導體層之堆疊結構,並顯露出能製造特徵性 質優異的化合物半導體裝置之功效。 根據本發明的第四個形態,因爲該磷化硼爲底的半導 體層係配置在由該六方單晶層的(1.1.-2.0.)晶面形成與 具有充當其表面的(1.1.-2.0.)晶面形成的表面上,所以 馨可獲得具有充當(1.1.-2A.)晶面的表面之六方磷化硼爲 底的半導體層,該表面具有平行於該六方單晶層的 < 1.-1.0.0>方向取向之< 1.-1.0.0>方向。上述的磷化硼 爲底的半導體層含有僅小密度的結晶性缺陷,例如攣晶, 且結晶性優異。結果,可利用結晶性優異的六方磷化硼爲 底的半導體層以便穩定地提供高性能的半導體裝置。再者 ,本發明的第四個形態能在構成該六方單晶層的表面之( 1.1.-2.0.)晶面上形成該磷化硼爲底的半導體層,該磷化 ®硼爲底的半導體層具有接合至該表面的(1.1.-2.0.)晶面 ,具有充當其表面的(1·1··2·〇.)晶面,且具有依垂直方 向排列在彼內的(〇.〇.0.1.)晶面,且也能在構成該磷化 硼爲底的半導體層的表面之(1.1.-2.0.)晶面上形成由III 族氮化物半導體構成的化合物半導體層,該化合物半導體 層具有接合至該表面的(1.1.-2.0.)晶面,具有充當其表 面的(1.1.-2.0.)晶面,且具有依垂直方向排列在彼內的 (〇 · 〇 · 〇 . 1 .)晶面。本發明的第四個形態,因此,使該磷 化硼爲底的半導體層及該化合物半導體層能各自變成顯示 -13- (11) 1310247 幾乎沒有結晶性缺陷,例如反相邊界、堆疊缺陷或攣晶, 的可辨視痕跡且結晶性優異的層,並顯示能製造放射高強 度光的半導體發光裝置之功效。 根據本發明的第五個形態,因爲該六方磷化硼爲底的 - 半導體層係配置在該六方單晶層的 (1 · 1 . - 2.0 .)晶面形 • 成的表面上且係由具有充當其表面的(1.0.-1.0.)晶面之 ' 晶體形成,所以可穩定地獲得具有充當表面的(1.0.-1.0. -·)晶面之六方磷化硼爲底的半導體層,該表面具有平行於 該六方單晶層的< 1.-1.〇·〇>方向取向之<!._〗·〇.〇>方向 。該磷化硼爲底的半導體層含有僅小密度的結晶性缺陷, 例如攣晶’且結晶性優異。因此,本發明的第五個形態可 利用由此結晶性優異的六方磷化硼爲底的半導體層而穩定 地提供高性能的半導體裝置。再者,本發明的第五個形態 能在構成該六方單晶層的表面之(1 . 1 · - 2.0 ·)晶面上形成 六方磷化硼爲底的半導體層,該六方磷化硼爲底的半導體 鲁層具有接合至該表面的(1.0.-1』.)晶面,具有充當其表 面的(1_0·-1·0·)晶面’且具有依垂直方向排列在彼內的 (0.0.0.1·)晶面,且也能在構成該磷化硼爲底的半導體 層的表面之(1.0.-1.0.)晶面上形成由六方III族氮化物 半導體形成的化合物半導體層,該六方III族氮化物半導 體層具有接合至該表面的(1.1.-2.0.)晶面,具有充當其 表面的(1 _ 1 · - 2.0 ·)晶面’且具有依垂直方向排列在彼內 的(0.0.0 · 1 .)晶面。本發明的第五個形態,因此,使該 磷化硼爲底的半導體層及該化合物半導體層能各自變成顯 -14- (12) 1310247 示幾乎沒有結晶性缺陷,例如反相邊界、堆疊缺陷或攣晶 ,的可辨視痕跡且結晶性優異的層,並顯示能製造放射高 強度光的半導體發光裝置之功效。 根據本發明的第六個形態,前述磷化硼爲底的半導體 層具有實質上平行於該層的厚度方向排在彼內的( 0·0.0.1.)晶面,且該層的η個(η表示2或更大的正整數 )連續性(〇·〇.〇.2.)晶面的距離實質上等於前述單晶層 •的c-軸長度。因爲該六方磷化硼爲底的半導體具有與該六 方單晶的優異長期配對性質,此六方磷化硼爲底的半導體 最終含有僅小量結晶性缺陷且結晶性優異。本發明的第六 個形態,因此,能形成含有僅含小量結晶性缺陷且結晶性 優異的六方磷化硼爲底的半導體之化合物半導體裝置,因 此,顯露出增進該化合物半導體裝置的特徵性質之功效。 根據本發明的第七個形態,因爲該磷化硼爲底的半導 體層係形成使得該(0.0.0.2 .)晶面的數目η可爲6或更 鲁小’所以所獲得的六方磷化硼爲底的半導體層含有僅小量 不合宜的位錯並具有優異的品質。由此此結構,本發明的 第七個形態顯露出能製造電氣擊穿電壓優異的LED之功 效。 根據本發明的第八個形態,因爲該化合物半導體層係 由六方半導體材料形成,所以利用含有僅小密度的反相邊 界且結晶性優異的III族氮化物半導體層將帶來能製造高 發光強度的短波長可見光LED的功效。 根據本發明的第九個形態,因爲該磷化硼爲底的半導 -15- (13) 1310247 體層與該化合物半導體層係形成以便沿著充當界面的( 1.1.-2.0.)晶面接合,所以可穩定地形成由不含反相邊界 之六方磷化硼爲底的半導體層及不含反相邊界之六方化合 物半導體層組成的堆疊結構。由於該堆疊結構,因此,本 發明的第九個形態將帶來能穩定製造半導體裝置,例如短 波長可見光LED,其優於光學及電氣性質的功效。 根據本發明的第十個形態,因爲該磷化硼爲底的半導 鲁體層與該化合物半導體層係形成以便沿著充當界面的( 1.0.-1.0.)晶面接合,所以可穩定地形成由不含反相邊界 之六方磷化硼爲底的半導體層及不含反相邊界之六方化合 物半導體層組成的堆疊結構。本發明的第十個形態,因此 ,將帶來能穩定製造,舉例來說’短波長可見光led,其 由於該堆疊結構而優於光學及電氣性質的功效。 根據本發明的第十一個形態’因爲構成該化合物半導 體層的(〇.〇.0.1.)晶面及構成該磷化硼爲底的半導體層 鲁的(0.0.0.1.)晶面係平行於該化合物半導體的堆疊方向 排列,所以可降低對裝置操作電流流動的阻抗。本發明的 第十一個形態,因此,將帶來能製造較不會遇到電力損耗 問題之顯示高效率光電轉換及高頻場效電晶體(FET)的 LED之功效。 根據本發明的第十二個形態’因爲該磷化硼爲底的半 導體層係由,舉例來說’不含反相邊界的六方磷化硼爲底 的半導體形成,所以經由接合此磷化硼爲底的半導體至化 合物半導體形成的化合物半導體層而得到的產物可有效地 -16 - (14) 1310247 作爲用於配置不含反相邊界的六方化合物半導體層之材料 層。再者’本發明的第十二個形態將帶來使不含反相邊界 的六方化合物半導體層能作爲,舉例來說,發光層並後繼 地能製造得到高強度發光的半導體裝置之功效。 根據本發明的第十三個形態,因爲該等電極係配置使 得該裝置操作電流可依實質上平行於構成該磷化硼爲底的 半導體層的(0.0.0.1.)晶面及構成該化合物半導體層的 ® ( 0.0.0.1.)晶面二者之方向流動,所以該操作電流可更 平順地流動。本發明的第十三個形態,因此,將帶來能製 造,舉例來說,具有正向小電流的led之功效。 根據本發明的第十四個形態,因爲該等電極係配置使 得該裝置操作電流可依實質上垂直於構成該磷化硼爲底的 半導體層的(0.0.0.1.)晶面及構成該化合物半導體層的 (0·0.0. 1.)晶面二者之方向流動,所以該操作電流可流 動同時僅遇到小的阻抗。本發明的第十四個形態,因此, ®將帶來能製造熱產生僅造成小輸出損失的高頻功率FET 之功效。 根據本發明的第十五個形態,因爲該磷化硼爲底的半 導體層係由六方單體磷化硼形成,所以僅招致小洩漏電流 的歐姆電極或蕭特基接點習慣上可藉著在含特別小密度結 晶性缺陷的六方單體磷化硼層表面上配置電極而形成。本 發明的第十五個形態,因此,將帶來能便於提供具有高光 電轉換效率的發光裝置或附有高擊穿電壓的閘極並改良汲 極電流的夾止性質的FET之功效。 -17- (15) 1310247 根據本發明的第十六個形態,因爲該磷化硼爲底的半 導體層係由六方單體磷化硼形成,使得該磷化硼的c-軸長 度可落在0.52奈米或更大及0.53奈米或更小的範圍內, 所以可製造由含有僅小量結晶性缺陷,例如攣晶及堆疊缺 . 陷,的六方單體磷化硼形成之層(磷化硼層)。再者,藉 著使用結晶性優異的磷化硼層可獲得優異品質的化合物半 • 導體層。本發明的第十六個形態,因此,能形成含結晶性 .φ優異的磷化硼爲底的半導體層之化合物半導體裝置,並後 繼地帶來增進該化合物半導體裝置的特徵性質之功效。 【實施方式】 本發明係有關一種化合物半導體裝置,其係藉著將電 極配置在堆疊結構上建構而成,該堆疊結構係利用六方單 晶、形成在該單晶表面上之磷化硼爲底的半導體層及配置 在該磷化硼爲底的半導體層上且由化合物半導體形成的化 •合物半導體層提供,該化合物半導體裝置在前述單晶層的 (1.1.-2.0.)晶面形成的表面上提供前述由六方晶體形成 的磷化硼爲底的半導體層。 上述的磷化硼爲底的半導體層係由含有充當基本組成 元素的硼(B)及磷(P)的III至V族化合物半導體材料 形成的晶體層。舉例來說,其係由單體磷化硼(BP )或 聚合物B6P ( B12P2 )或由例如含充當組成元素的硼(B ) 及硼以外的ΠΙ族元素之磷化硼鋁(Bi-χΑΙχΡ其中0<X < 1 )、磷化硼鎵(BuGaxP其中〇 < X< 1 )及磷化硼銦 -18- (16) 1310247 (ΒυΙηχΡ其中0<χ<1)等的多單元混合晶體形成 導體層。另外’該半導體層係由混合晶體形成,例如 含充當組成元素的磷(Ρ)以外的V族元素之氮磷化 BNyPi-Y其中〇 < γ < i )及砷磷化硼(BPi-yAsy其中( • < 1 ) °在含硼(B )以外的III族元素之混合晶體中 . 硼(B )以外的ΠΙ族元素的較佳組成比例(上述組 •中的元素X )爲0·40或更小。這是因爲組成比例(: 超過0.40時,容易突然地形成非六方而是立方晶體 化硼爲底的半導體層。 以上使用的措辭「由六方晶體形成的磷化硼爲底 導體層」表示含充當基本組成元素的硼(Β)及磷( 之六方晶體層。在考慮因素時,例如晶體生長容易度 成控制複雜度,該六方磷化硼爲底的半導體層較佳地 體磷化砸(ΒΡ )形成。有關六方單晶層的具體例, 證例如藍寶石(α -Αΐ2〇3單晶)及纖維鋅礦型Α1Ν • ΠΙ族氮化物半導體單晶及例如氧化鋅(ΖηΟ )單晶、 型(纖維鋅礦型)或4Η-型或6Η-型碳化矽或其單晶 的塊狀單晶(bulk single crystals)。除此之外,可 具有充當其表面的非極性晶面並配置在例如LiAl〇2 立方晶體上之III族氮化物半導體層作爲例子。尤其 了達到形成本發明預期的六方磷化硼爲底的半導體層 的,最有益地可利用藍寶石(α-氧化鋁單晶)基材。 以上使用的措辭「六方磷化硼爲底的半導體層」 具有充當其單位晶格的六方Bravais晶格的六方磷化 的半 例如 硼( 0 < Y ,該 成式 =χ) 的磷 的半 :ρ ) 及組 由單 可引 等的 2H- 層等 引證 等的 是爲 的目 表示 硼爲 -19- (17) 1310247 底的半導體材料(「晶體電子顯檢查」,由 Hiroyasu Saka 編寫並由 Uchida Rokakuh〇 發行 ’ 1997 年,11 月 25 日,第1版,第3至7頁)。該六方磷化硼爲底的半導體 層當中,特別是不含反相邊界的六方磷化硼爲底的半導體 層較佳爲藉由使用用於底層的六方單晶形成。 彼上面配置磷化硼爲底的半導體層的表面較佳地由( 1 . 1 · -2.0 .)晶面形成。較佳地,此層較地配置在所謂藍寶 φ石(1.1.-2.0.)晶面的表面上,換言之A -平面。藉著使用 的藍寶石(1.1 .-2.0·)晶面(A-平面)’可穩定獲得的並 非普通的閃鋅礦型而是六方磷化硼爲底的半導體層。這可 解釋爲假設構成例如藍寶石的(1 . 1 . - 2.0 ·)晶面等的非極 性晶面中的晶體之原子爲求便於製造具有高共價鍵結性質 的六方磷化硼爲底的半導體層而排列。 前述藍寶石的(1.1.-2.0.)晶面可爲藉由 CZ ( Czochr.alski)法、Vernouil法或.EFG (邊緣界定塡膜生長 鲁)法(舉例來說,參照BRAIAN R. PAMPLIN編著,「晶 體生長」,1975年,Pergamon出版股份有限公司)長成 的塊狀單晶的A-平面或藉由化學氣相沈積(CVD )法或 藉由例如濺鍍法的物理手段長成的氧化鋁單晶膜的A-2JS 面。 前述六方磷化硼爲底的半導體層可藉由例如鹵素法、 氫化物法或有機金屬化學氣相沈積(MOCVD )法等的氣 相生長手段來形成。那可藉由,舉例來說,以三乙基硼( (C2H5)3B)作爲硼(B)來源及三乙基磷((C2H5)3P)作 -20- (18) 1310247 爲磷(P )來源的MOCVD法而形成。那可藉由以三氯化 硼(BC13 )作爲硼來源及三氯化磷(PC13 )作爲磷(P ) 來源的鹵素CVD而形成。不拘硼來源及磷來源的組合, 用於該六方磷化硼爲底的半導體層的形成的生長溫度較佳 爲7 00 °C或更高且1 200 °C或更低。藉由這些生長手段,可 在由(1 · 1 · -2 · 0 .)晶面形成的六方單晶層表面上形成具有 充當其表面的(1.1.-2.0.)晶面的六方磷化硼爲底的半導 φ體層。 若該六方磷化硼爲底的半導體層係形成在,舉例來說 ,藍寶石的(1.1.-2.0.)晶面形成的表面上,依特定晶體 取向獨自取向的六方磷化硼爲底的半導體層可藉由先開始 供應磷來源至該表面,後繼地供應例如硼的III族元素原 料而形成。若磷化硼爲底的半導體層的形成係藉由,舉例 來說,時程上在三乙基硼((c2h5)3b)之前供應膦(ph3 )至由藍寶石的(1.1.-2.0.)晶面形成的表面而根據 鲁MOCVD法開始,就可獲得具有平行於該藍寶石的 < 1·-1·0.0_>方向延展之< 1.-1.0·0·>方向的六方磷化硼 爲底的半導體層。有關所形成的磷化硼爲底的半導體層是 六方晶體層與否的問題之硏究及有關該六方單晶層相關的 六方磷化硼爲底的半導體層的取向之硏究可藉由,舉例來 說,例如電子繞射或X-射線繞射等的分析手段來進行。 若該六方磷化硼爲底的半導體層具有由(1.1.-2.0.) 晶面形成的表面及平行於六方單晶層的< 1.-1.0.0.>方向 延展之<1.-1.〇.〇.>方向,此六方磷化硼爲底的半導體層 t. £ -21 - (19) 1310247 的特徵爲含有僅小量的例如攣晶及堆疊缺陷等的結晶性缺 陷,因爲其係配置在,舉例來說,藍寶石的(1.1.-2.0.) 晶面形成的表面上,且依優於晶格配對性質的方向取向。 特別是若該六方磷化硼爲底的半導體層係由具有與上述表 - 面的取向關係的單體磷化硼(BP)形成,幾本上不含攣 _ 晶的六方磷化硼爲底的半導體層可在超過與該六方單晶層 _ 的界面約50奈米至100奈米的距離的區域中獲得。藉由 •鲁攣晶密度的降低而降低攣晶造成的邊界密度的情況可藉由 普通斷面TEM技術觀察到。 例如,舉例來說,六方單體BP層製成的半導體層等 結晶性優異的六方磷化硼爲底的半導體層可作爲用於彼上 形成例如,舉例來說,III族氮化物半導體層等結晶性優 異的單晶層的底層。有關依接合到該六方磷化硼爲底的半 導體層的方式有益地配置的III族氮化物半導體層的具體 例,可引證纖維鋅礦型GaN、A1N、氮化銦(InN )及其 鲁混合晶體,換言之.氮化銘—録—姻(AlxGaylnzN其中 0SX,Y,ZS1及X + Y + Z=l)。再者,可引證含氮(N)及氮 以外的例如磷(Ρ )及砷(As )等的V族元素的纖維鋅礦 型氮磷化鎵(GaNi — γΡγ其中0SY<1)。 含僅小量的例如攣晶等的結晶性缺陷的六方BP層, 由於結晶性優異,可有效地作爲用於彼上形成具有優異品 質的六方化合物半導體層的底層。有關該六方化合物半導 體層的具體例,可引證2H-型(纖維鋅礦型)或4H-型或 6H-型SiC、ZnO (氧化鋅)、纖維鋅礦型GaN、A1N、氮 -22 - (20) 1310247 化銦(InN )及其混合晶體,換言之氮化鋁一鎵一銦( AlxGaYInzN 其中 0SX,Y,ZS1 及 X + Y + Z=l)。再者,可引 證含氮(Ν )及氮以外的例如磷(Ρ )及砷(As )等的 V 族元素的纖維鋅礦型六方氮磷化鎵(GaNi-γΡγ其中〇^Υ< 1 )。 不限於該化合物半導體發光裝置的蕭特基能障FET 可藉由使用含降低密度的結晶性缺陷且優於結晶性的六方 • III族氮化物半導體層作爲電子傳輸層(通道層)而建構 。該通道層可由未摻雜的η-型GaN層形成,亦即由避開 雜質的刻意添加得到的層。含降低密度的結晶性缺陷之六 方ΠΙ族氮化物半導體層可有益地用於製造高頻性質優異 的FET,因爲彼能顯露出高電子移動性。 本發明能實現上述的結構使得該化合物半導體層的( 0.0.0.1·)晶面及構成該磷化硼爲底的半導體層的( 0·0.0.1.)晶面可平行於該化合物半導體層的堆疊方向排 •列。 本發明能實現上述的結構使得上述的電極可使該裝置 操作電流依實質上平行於構成該磷化硼爲底的半導體層的 (〇·〇·0.1.)晶面及構成該化合物半導體層的的(0.0.0. )晶面的方向流動。 « 再者,本發明能實現上述的結構使得上述的電極可使 該裝置操作電流依實質上垂直於構成該磷化硼爲底的半導 體層的(0·0·0·1·)晶面及構成該化合物半導體層的的( α·0_〇·ι:)晶面的方向流動。 -23- (21) 1310247 再者,本發明能實現上述的結構使得該六方單體磷化 硼的c -軸長度可落在0.52奈米或更大及0.53奈米或更小 的範圍內。 在該六方單晶的非極性表面,例如該(1.1 .-2.0.)晶 面’上形成六方BP層的期間,(A )用於生長該BP層的 溫度爲750 °C或更高且900 °C或更低,及(B)供至該生長 反應系統的磷來源對硼來源的濃度比例(所謂的V/III比 肇例)係介於250或更高及550或更低的範圍內。再者,( C)若該BP層的生長速率係落在每分鐘20奈米或更大及 每分鐘50奈米或更小的範圍內,就可穩定地形成依平行 於增加層厚度方向(相對於前述單晶表面的垂直及堆疊方 向)的速度的方式規則排列之具有(〇 · 〇 . 〇 . 1 .)晶面的六 方B P層。 該六方BP層的生長速率,當每單位時間供至該生長 反應系統的硼來源濃度提高時,可實質上正比於前述生長 隹溫度範圍內的濃度提高。當每單位時間供至該生長反應系 統的硼來源濃度固定時’生長速率將隨生長溫度增高而提 高。若此溫度落到75〇°C以下,因爲該硼來源及該磷來源 的熱分解並未充分地進行,所以生長速率突然掉落且無法 達到上述的有益生長速率。 若該六方BP層係’舉例來說,藉由使用膦(pH3) 作爲磷來源及三乙基硼((c2h5)3B )作爲硼來源的 MOCVD法形成’此形成係將生長溫度固定在800。(3下而 實行,該PH3/(C2H5)3B比例,亦即,供至該生長反應系 -24 - (22) 1310247 統的原料濃度比例,在400下,且生長速率在每女 奈米下。若生長溫度超過9〇〇它,過高將會有可能 舉例來說,組成式B6P之類的聚合磷化硼晶體突然 缺點。 若生長速率落到每分鐘20奈米或若該速率超 鐘5〇奈米’任一例都將使其難以穩定地獲得由具 化學組成的單體BP形成。若生長速率陡落至不到 鲁2〇奈米,最終形成非計量化學組成的BP層中含窄 )比磷(P)更大量的程度將突然增高。若生長速 超過每分鐘5〇奈米,過高將會有突然增高最終形 點。 具有實質上計量化學組成並在滿足(A)項中 有益生長溫度及(B)項中說明的有益 V/III比例 步滿足(C)項中說明的有益生長速率的生長條件 的六方BP層的六方單位晶格中的c-軸長度(參照 鲁來說,「供材料硏究員用的晶體電子顯微鏡 Hiroyasu S aka 編寫且由 Uchida Rokakuho 股份有 發行,1997年,11月25日,第1版,第3至7頁 在0.52奈米或更大且0.53奈米或更小的範圍中。 在具有依垂直方向(該BP層的生長方向,堆 )幾乎平行關係的方式排列的(〇·〇.〇. 1.)晶面的71 層中,用於操作該裝置的電流(裝置操作電流)可 依平行於(0 · 0 . 〇 . 1 .)晶面的方向流動。第3圖槪 例說明由垂直於該六方BP層20的C-軸方向的方 h鐘35 引發, 形成的 過每分 有計量 每分鐘 r硼(b 率高到 成的缺 說明的 並進一 下形成 ,舉例 」,由 限公司 )將落 疊方向 、方BP 輕易地 略地舉 向觀看 -25- (23) 1310247 的磷原子(p )與硼原子(B )的排列情形。附帶地’該 C-軸方向垂直於該(〇·〇·〇.1·)晶面。在垂直於該六方BP 層20的C-軸的方向,如第3圖舉例說明的有間隙20H ’ 取決於磷原子(P)與硼原子(B)的排列。藉由構成該 六方BP層20的磷與硼原子(P與B),電流(電子)’ 通過存在於該(〇.〇.0.1.)晶面上的間隙20H而無可察覺 地發散之後,將依平行於該(〇. 〇. 〇. 1.)晶面的方向方便 鲁地流動。 源於上述晶體中的磷及硼原子排列的間隙存在依平行 於(0.0.0.1.)晶面的方向之六方BP層中。在第4圖中, 由平行於該六方BP層20的c -軸方向的方向觀看磷原子 (P )及硼原子(B )晶體的排列。如第4圖舉例說明的 ,在平面視圖中有假設正六邊形的間隔20H。在周圍的磷 及硼原子’因此,達到使該裝置操作電流流動而不會被發 散的支配目的。該六方BP層20的c-軸係垂直於第4圖 •的頁面。 依垂直於該單晶表面呈形成於含(0.0 _ 0 ·丨·)晶面的 六方單晶上的六方BP層的特徵爲含有僅小量之例如攣晶 及堆疊缺陷等的結晶性缺陷。這可解釋爲假設該B P層係 配置在依幾乎平行關係規則排列之六方單晶具有( 0·0.0.1 .)晶面的小極性表面上。此結構有利於使使該裝 置操作電流依平行或垂直於該六方BP層的(mi.)晶 面的方向流動而不會受到攣晶邊界妨礙的目的。攣晶產生 的邊界岔度隨攣晶密度的減小而降低的情況可由普通斷面-10 - (8) 1310247 crystal planes 'are arranged substantially parallel to the stacking direction of the above-mentioned semiconductor layers. The twelfth aspect of the invention is characterized by the aforementioned phosphating in the structure having the first aspect of the invention A boron-based semiconductor layer formed of a semiconductor having hexagonal phosphide as a base without a reverse phase boundary. A thirteenth aspect of the present invention is characterized in that the electrode having the structure of the first aspect of the present invention is configured such that the device operating current is substantially parallel to the semiconductor layer constituting the phosphide boron base. The (0·0.0_1·) crystal plane and the (0.0.0.1.) crystal plane constituting the compound semiconductor layer flow in the direction of both. A fourteenth aspect of the present invention is characterized in that the electrode according to the first aspect of the present invention is configured such that the device operating current is substantially perpendicular to a semiconductor layer constituting the phosphide boron base (晶·〇.0.1.) The crystal plane and the direction of the (〇.〇〇.1·) crystal plane constituting the compound semiconductor layer. The fifteenth aspect of the invention is characterized in that the boron phosphide-based semiconductor layer in the structure having the first aspect of the invention is formed of hexagonal monocrystalline boron phosphide. The sixteenth aspect of the present invention is characterized in that the hexagonal monomer phosphide boron of the structure of the fourteenth aspect of the present invention has a C-axis length of 〇·52 nm or more and 0.53 nm or more. Small range. According to the first aspect of the present invention, since the electrode is disposed in a stacked structure, the stacked structure utilizes a hexagonal single crystal, a phosphide-bored semiconductor layer formed on the surface of the single crystal, and is disposed in the phosphating. a boron-based semiconducting-11 - 1310247 Ο) is provided on a bulk layer and is provided by a compound semiconductor layer formed of a compound semiconductor, and the compound semiconductor device constructed thereon is supplied to the foregoing single crystal layer and the foregoing boron phosphide formed of hexagonal crystals. On the surface of the (1.1.-2.0.) crystal plane of the bottom semiconductor layer, crystal defects containing only a small density, such as twinning and stacking defects, and excellent crystallinity of boron phosphide are formed. Semiconductor layer. As a result, a phosphide boron-based semiconductor layer excellent in crystallinity can be utilized in order to provide a high-performance semiconductor device. φ According to the second aspect of the present invention, the hexagonal single crystal layer is formed of sapphire (a-Al2〇3 single crystal) and the hexagonal phosphide-based semiconductor layer is disposed by (1.1.-2.0. The crystal face is formed on the surface of the sapphire, so that the <1.-1.〇.〇> direction parallel to the <1.-1.0.〇> direction of the sapphire can be stably formed and has a surface A hexagonal phosphide-based semiconductor layer of (1.1.-2.0.) crystal faces. According to a third aspect of the present invention, the hexagonal single crystal layer is formed of a group III nitride semiconductor, and a hexagonal group III nitride semiconductor having a crystal face serving as a surface thereof is bonded and bonded. a first stacked structural portion composed of a hexagonal phosphide-based semiconductor layer disposed to the surface of the group III nitride semiconductor, so that dislocations contained in the group III nitride semiconductor can further pass through an interface of the stacked structural portion It is diffused and suppressed, and proliferates toward the side of the semiconductor layer on which boron phosphide is used. Further, according to the third aspect of the present invention, the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion can provide the first surface on the upper surface thereof by further bonding the hexagonal group III nitride semiconductor to the upper side surface. Two stacking structure parts. By further providing the second stacked structure portion, a group III nitride semiconductor having a crystalline defect such as a threading dislocation or the like having a reduced density of further -12 - 5 (10) 1310247 can be produced. According to the third aspect of the present invention, it is possible to produce a stacked structure in which a semiconductor layer having excellent crystallinity can be supplied, and to exhibit the effect of producing a compound semiconductor device having excellent characteristics. According to a fourth aspect of the present invention, the boron nitride-based semiconductor layer is formed by (1.1.-2.0.) crystal planes of the hexagonal single crystal layer and has a surface (1.1.-2.0) serving as a surface thereof. .) on the surface formed by the crystal face, so that a hexagonal phosphide-based semiconductor layer having a surface serving as a (1.1.-2A.) crystal plane having a surface parallel to the hexagonal single crystal layer may be obtained. 1.-1.0.0> Direction Orientation<1.-1.0.0> Direction. The above-mentioned semiconductor layer of boron phosphide has a crystal defect of only a small density, for example, twin crystal, and is excellent in crystallinity. As a result, a semiconductor layer having hexagonal phosphide having excellent crystallinity as a base can be utilized in order to stably provide a high-performance semiconductor device. Furthermore, the fourth aspect of the present invention can form the phosphide boron-based semiconductor layer on the (1.1.-2.0.) crystal plane constituting the surface of the hexagonal single crystal layer, the phosphating® boron-based The semiconductor layer has a (1.1.-2.0.) crystal plane bonded to the surface, having a (1·1·······.) crystal plane serving as a surface thereof, and having a vertical alignment in the same direction (〇. a 0.1.) crystal plane, and a compound semiconductor layer composed of a group III nitride semiconductor, which is also formed on the (1.1.-2.0.) crystal plane of the surface of the semiconductor layer constituting the phosphide boron-based semiconductor layer, The semiconductor layer has a (1.1.-2.0.) crystal plane bonded to the surface, having a (1.1.-2.0.) crystal plane serving as a surface thereof, and having a vertical alignment in the same direction (〇·〇·〇. 1 .) crystal face. According to a fourth aspect of the present invention, the phosphide-based semiconductor layer and the compound semiconductor layer can each become a display-13-(11) 1310247 with almost no crystal defects such as a reverse phase boundary, a stack defect or A layer which is crystallizable and has excellent crystallinity, and shows the effect of producing a semiconductor light-emitting device which emits high-intensity light. According to the fifth aspect of the present invention, the hexagonal phosphide-based semiconductor layer is disposed on the surface of the hexagonal single crystal layer (1·1 . - 2.0 . ) a crystal having a (1.0.-1.0.) crystal plane serving as a surface thereof, so that a hexagonal phosphide-based semiconductor layer having a (1.0.-1.0.-·) crystal plane serving as a surface can be stably obtained. The surface has a <!._〗 〇.〇> direction parallel to the <1.-1.〇·〇> direction of the hexagonal single crystal layer. The semiconductor layer in which the boron phosphide is a base contains a crystal defect of only a small density, for example, twin crystals, and is excellent in crystallinity. Therefore, the fifth aspect of the present invention can stably provide a high-performance semiconductor device by using a semiconductor layer having hexagonal phosphide as a base which is excellent in crystallinity. Furthermore, the fifth aspect of the present invention can form a hexagonal phosphide-based semiconductor layer on the (1.1·· 2.0·) crystal plane constituting the surface of the hexagonal single crystal layer, and the hexagonal phosphide is The bottom semiconductor layer has a (1.0.-1". crystal plane bonded to the surface, having a (1_0·-1·0·) crystal plane serving as its surface and having a vertical direction in it ( a 0.0.0.1·) crystal plane, and a compound semiconductor layer formed of a hexagonal group III nitride semiconductor can also be formed on a (1.0.-1.0.) crystal plane constituting a surface of the phosphide boron-based semiconductor layer. The hexagonal group III nitride semiconductor layer has a (1.1.-2.0.) crystal plane bonded to the surface, having a (1 _ 1 · - 2.0 ·) crystal plane serving as a surface thereof and having a vertical alignment in the same (0.0.0 · 1 .) crystal face. According to a fifth aspect of the present invention, the phosphide-based semiconductor layer and the compound semiconductor layer can each become a display-14-(12) 1310247, exhibiting almost no crystal defects, such as a reverse phase boundary, a stack defect. Or a layer which is crystallizable and which is excellent in crystallinity, and exhibits an effect of producing a semiconductor light-emitting device which emits high-intensity light. According to a sixth aspect of the present invention, the phosphide-boron-based semiconductor layer has a (0·0.0.1.) crystal plane substantially parallel to the thickness direction of the layer, and n of the layer (η represents a positive integer of 2 or more) The distance of the crystal plane of the continuity (〇·〇.〇.2.) is substantially equal to the c-axis length of the aforementioned single crystal layer. Since the hexagonal phosphide-based semiconductor has excellent long-term matching properties with the hexagonal single crystal, the hexagonal phosphide-based semiconductor finally contains only a small amount of crystal defects and is excellent in crystallinity. According to the sixth aspect of the present invention, it is possible to form a compound semiconductor device including a semiconductor having only a small amount of crystal defects and having excellent crystallinity as a base, and thus exhibiting the characteristic properties of the semiconductor device of the compound. The effect. According to the seventh aspect of the present invention, since the boron nitride-based semiconductor layer is formed such that the number η of the (0.0.0.2 .) crystal faces can be 6 or less, the hexagonal phosphide obtained is obtained. The bottom semiconductor layer contains only a small amount of unfavorable dislocations and has excellent quality. With this configuration, the seventh aspect of the present invention reveals the effect of producing an LED excellent in electrical breakdown voltage. According to the eighth aspect of the present invention, since the compound semiconductor layer is formed of a hexagonal semiconductor material, a group III nitride semiconductor layer containing only a small density of reversed-phase boundaries and excellent in crystallinity can be used to produce high luminous intensity. The efficacy of short-wavelength visible light LEDs. According to a ninth aspect of the present invention, the boron phosphide-based semiconductive-15-(13) 1310247 bulk layer is formed with the compound semiconductor layer so as to be bonded along the (1.1.-2.0.) crystal plane serving as an interface. Therefore, a stacked structure composed of a hexagonal phosphide-based semiconductor layer having no reverse-phase boundary and a hexagonal compound semiconductor layer having no reverse-phase boundary can be stably formed. Due to the stacked structure, the ninth aspect of the present invention will result in stable fabrication of semiconductor devices, such as short-wavelength visible light LEDs, which are superior to optical and electrical properties. According to the tenth aspect of the present invention, since the boron phosphide-based bottom semiconductor layer is formed with the compound semiconductor layer so as to be bonded along the (1.0.-1.0.) crystal plane serving as an interface, it can be stably formed. A stacked structure composed of a hexagonal phosphide-based semiconductor layer without an inversion boundary and a hexagonal compound semiconductor layer having no reversed boundary. The tenth aspect of the present invention, therefore, will result in stable manufacturing, for example, 'short-wavelength visible light LED, which is superior to optical and electrical properties due to the stacked structure. According to the eleventh aspect of the present invention, the (0.0.0.1.) crystal plane of the semiconductor layer constituting the semiconductor layer of the compound and the semiconductor layer constituting the phosphide boron is parallel. Arranged in the stacking direction of the compound semiconductor, the impedance against the flow of the operating current of the device can be reduced. According to the eleventh aspect of the present invention, it is possible to produce an LED capable of producing a high-efficiency photoelectric conversion and a high-frequency field effect transistor (FET) which is less likely to encounter a power loss problem. According to the twelfth aspect of the present invention, since the phosphide-borated semiconductor layer is formed by, for example, a hexagonal phosphide-based semiconductor having no reverse phase boundary, the boron phosphide is bonded via the bonding. The product obtained as a compound semiconductor layer formed of a semiconductor to a compound semiconductor can be effectively used as a material layer for arranging a hexagonal compound semiconductor layer having no reverse phase boundary. Further, the twelfth aspect of the present invention brings about the effect of enabling a hexagonal compound semiconductor layer having no reverse phase boundary as, for example, a light-emitting layer and subsequently capable of producing a semiconductor device having high-intensity light emission. According to the thirteenth aspect of the present invention, the device operating current can be substantially parallel to the (0.0.0.1.) crystal plane of the semiconductor layer constituting the phosphide boron and constitute the compound. The direction of the ® (0.0.0.1.) crystal plane of the semiconductor layer flows, so the operating current can flow more smoothly. The thirteenth aspect of the present invention, therefore, will bring about the effect of being able to manufacture, for example, a LED having a positive small current. According to the fourteenth aspect of the present invention, the electrode current is configured such that the device operating current is substantially perpendicular to a (0.0.0.1.) crystal plane of the semiconductor layer constituting the phosphide boron base and constitutes the compound. The direction of both (0.0.0. 1.) crystal faces of the semiconductor layer flows, so the operating current can flow while encountering only a small impedance. According to the fourteenth aspect of the present invention, therefore, ® will bring about the effect of producing a high-frequency power FET which generates heat only with a small output loss. According to the fifteenth aspect of the present invention, since the phosphide-boron-based semiconductor layer is formed of hexagonal monomer phosphide, an ohmic electrode or a Schottky junction which causes only a small leakage current is customarily used. It is formed by disposing an electrode on the surface of a hexagonal monomer phosphide layer containing a particularly small density of crystalline defects. According to the fifteenth aspect of the invention, it is possible to provide an FET capable of facilitating the provision of a light-emitting device having high photo-electric conversion efficiency or a gate electrode having a high breakdown voltage and improving the pinch-off property of the gate current. -17-(15) 1310247 According to the sixteenth aspect of the invention, since the boron nitride-based semiconductor layer is formed of hexagonal monomer phosphide, the c-axis length of the boron phosphide may fall on In the range of 0.52 nm or more and 0.53 nm or less, it is possible to produce a layer formed of hexagonal phosphide boron containing only a small amount of crystal defects such as twins and stacking defects. Boron layer). Further, an excellent quality semi-conductor layer can be obtained by using a boron phosphide layer excellent in crystallinity. According to the sixteenth aspect of the present invention, it is possible to form a compound semiconductor device containing a semiconductor layer having a phosphide boron as a base having excellent crystallinity and φ, and to further improve the characteristic properties of the compound semiconductor device. [Embodiment] The present invention relates to a compound semiconductor device constructed by disposing an electrode on a stacked structure using a hexagonal single crystal and a boron phosphide formed on the surface of the single crystal. And a semiconductor layer disposed on the phosphide-based semiconductor layer and formed of a compound semiconductor layer formed of a compound semiconductor, wherein the compound semiconductor device is formed on a (1.1.-2.0.) crystal plane of the single crystal layer The aforementioned semiconductor layer of boron phosphide as a base formed of a hexagonal crystal is provided on the surface. The above-mentioned semiconductor layer of boron phosphide as a base is a crystal layer formed of a group III to group V compound semiconductor material containing boron (B) and phosphorus (P) which serve as basic constituent elements. For example, it is composed of a monomeric boron phosphide (BP) or a polymer B6P (B12P2) or a phosphide-alumina (Bi-χΑΙχΡ) containing, for example, boron (B) as a constituent element and a lanthanum element other than boron. a multi-cell mixed crystal of 0 <X < 1 ), borophosphide phosphide (BuGaxP, 〇 <X< 1 ) and boron phosphide indium-18- (16) 1310247 (ΒυΙηχΡ where 0 < χ <1) A conductor layer is formed. Further, the semiconductor layer is formed of a mixed crystal, for example, a nitrogen phosphating BNyPi-Y containing a group V element other than phosphorus (germanium) serving as a constituent element, wherein 〇 < γ < i ) and arsenic phosphide (BPi- yAsy where ( • < 1 ) ° is in a mixed crystal of a group III element other than boron (B). The preferred composition ratio of the lanthanum element other than boron (B) (the element X in the above group) is 0 40 or less. This is because the composition ratio (: when it exceeds 0.40, it is easy to form a semiconductor layer which is not hexagonal but cubic crystallized boron as the base. The above-mentioned wording "boron phosphide formed by hexagonal crystals is the bottom." "Conductor layer" means a hexagonal crystal layer containing boron (yttrium) and phosphorus as basic constituent elements. When considering factors such as crystal growth ease into control complexity, the hexagonal phosphide-based semiconductor layer is preferably used. The formation of bismuth phosphide (ΒΡ). Specific examples of the hexagonal single crystal layer, such as sapphire (α - Αΐ 2 〇 3 single crystal) and wurtzite type Ν 1 Ν ΠΙ 氮化 nitride semiconductor single crystal and such as zinc oxide (ΖηΟ Single crystal, type (wurtzite type) or 4Η-type or 6Η-type tantalum carbide or its single crystal bulk single crystals. In addition, it may have a non-polar crystal plane serving as its surface and be disposed on, for example, a LiAl〇2 cubic crystal. The Group III nitride semiconductor layer is exemplified. In particular, to achieve the hexagonal phosphide-based semiconductor layer contemplated by the present invention, the sapphire (α-alumina single crystal) substrate can be utilized most advantageously. a hexagonal phosphide-based semiconductor layer having a hexagonal phosphating half of a hexagonal Bravais lattice serving as its unit lattice, such as boron (0 < Y, the formula = χ) of phosphorus: ρ) and groups A semiconductor material with a boron content of -19-(17) 1310247 is used for the purpose of the 2H-layer, etc. ("Crystal Electron Display", written by Hiroyasu Saka and issued by Uchida Rokakuh〇" 1997, November 25, 1st edition, pp. 3-7.) Among the hexagonal phosphide-based semiconductor layers, especially the hexagonal phosphide-based semiconductor layer without a reverse phase boundary is preferred. To use the hexagonal for the bottom layer The surface of the semiconductor layer on which the phosphide-based phosphide is disposed is preferably formed by a (1. 1 · -2.0 .) crystal plane. Preferably, the layer is relatively disposed in the so-called sapphire φ stone (1.1 .-2.0.) on the surface of the crystal face, in other words A-plane. By using the sapphire (1.1.-2.0·) crystal plane (A-plane), it is not the ordinary sphalerite type but the hexagonal a semiconductor layer of boron phosphide as a base. This can be interpreted as assuming that atoms of crystals in a non-polar crystal plane constituting a (1.1 to 2.0) crystal plane such as sapphire have high covalent bonding for ease of manufacture. The hexagonal phosphide of nature is arranged as a bottom semiconductor layer. The (1.1.-2.0.) crystal plane of the aforementioned sapphire may be by CZ (Czochr. alski) method, Vernuuil method or .EFG (edge-defining film growth) method (for example, according to BRAIAN R. PAMPLIN, "Crystal Growth", 1975, Pergamon Publishing Co., Ltd.) The A-plane of a bulk single crystal grown or oxidized by chemical vapor deposition (CVD) or by physical means such as sputtering A-2JS surface of aluminum single crystal film. The hexagonal phosphide-based semiconductor layer can be formed by a gas phase growth means such as a halogen method, a hydride method or an organometallic chemical vapor deposition (MOCVD) method. That can be, for example, using triethylboron ((C2H5)3B) as the source of boron (B) and triethylphosphorus ((C2H5)3P) as -20-(18) 1310247 for phosphorus (P) Formed by the MOCVD method of the source. That can be formed by halogen CVD using boron trichloride (BC13) as the boron source and phosphorus trichloride (PC13) as the phosphorus (P) source. The growth temperature for the formation of the hexagonal phosphide-based semiconductor layer is preferably 700 ° C or higher and 1 200 ° C or lower, regardless of the combination of the boron source and the phosphorus source. By these growth means, hexagonal boron phosphide having a (1.1.-2.0.) crystal plane serving as a surface thereof can be formed on the surface of the hexagonal single crystal layer formed of the (1 · 1 · -2 · 0 .) crystal plane. The bottom semiconducting φ body layer. If the hexagonal phosphide-based semiconductor layer is formed on, for example, a surface formed by a (1.1.-2.0.) crystal plane of sapphire, a hexagonal phosphide-based semiconductor which is independently oriented according to a specific crystal orientation The layer can be formed by first supplying a source of phosphorus to the surface, followed by supplying a source of a group III element such as boron. If the boron phosphide-based semiconductor layer is formed by, for example, supplying phosphine (ph3) to triethylboron ((c2h5)3b) to sapphire (1.1.-2.0.) The surface formed by the crystal face is started according to the Lu MOCVD method, and hexagonal phosphating having a <1.-1.0·0·> direction parallel to the <1·-1·0.0_> direction of the sapphire can be obtained. A boron-based semiconductor layer. A study on whether the formed boron nitride-based semiconductor layer is a hexagonal crystal layer or not, and an orientation of the hexagonal phosphide-based semiconductor layer associated with the hexagonal single crystal layer may be utilized. For example, an analysis method such as electron diffraction or X-ray diffraction is performed. If the hexagonal phosphide-based semiconductor layer has a surface formed of (1.1.-2.0.) crystal faces and a <1.-1.0.0.> direction extending parallel to the hexagonal single crystal layer <1 .-1.〇.〇.> direction, the hexagonal phosphide-based semiconductor layer t. £ -21 - (19) 1310247 is characterized by containing only a small amount of crystallinity such as twinning and stacking defects. Defect, because it is disposed on, for example, the surface of the sapphire (1.1.-2.0.) crystal plane, and is oriented in a direction superior to the lattice pairing property. In particular, if the hexagonal phosphide-based semiconductor layer is formed of a monomeric boron phosphide (BP) having an orientation relationship with the surface-surface, a hexagonal phosphide containing no yttrium is used as a base. The semiconductor layer can be obtained in a region exceeding a distance of about 50 nm to 100 nm from the interface of the hexagonal single crystal layer. The reduction of the boundary density caused by twinning by the reduction of the density of the ruthenium crystal can be observed by the ordinary cross-sectional TEM technique. For example, a hexagonal phosphide-based semiconductor layer having excellent crystallinity such as a semiconductor layer made of a hexagonal monomer BP layer can be used as a semiconductor layer for forming, for example, a group III nitride semiconductor layer. A bottom layer of a single crystal layer excellent in crystallinity. A specific example of a group III nitride semiconductor layer which is advantageously disposed in a manner of bonding to the hexagonal phosphide-based semiconductor layer can be cited as wurtzite type GaN, A1N, indium nitride (InN), and a mixture thereof. Crystal, in other words, nitriding Ming - recorded - marriage (AlxGaylnzN where 0SX, Y, ZS1 and X + Y + Z = l). Further, a wurtzite-type gallium phosphide (GaN-γ γ γ wherein 0SY < 1) containing a group V element such as phosphorus (Ρ) and arsenic (As) other than nitrogen (N) and nitrogen can be cited. The hexagonal BP layer containing only a small amount of crystalline defects such as twins is excellent in crystallinity, and can be effectively used as a primer layer for forming a hexagonal compound semiconductor layer having excellent properties on the other. Specific examples of the hexagonal compound semiconductor layer can be cited as 2H-type (wurtzite type) or 4H-type or 6H-type SiC, ZnO (zinc oxide), wurtzite type GaN, A1N, nitrogen-22 - ( 20) 1310247 Indium (InN) and its mixed crystal, in other words, aluminum nitride-gallium-indium (AlxGaYInzN where 0SX, Y, ZS1 and X + Y + Z = l). Further, a wurtzite-type hexagonal nitrogen phosphide (Gani-γΡγ 〇^Υ<1) containing a V group element such as phosphorus (Ρ) and arsenic (As) other than nitrogen (Ν) and nitrogen may be cited. . The Schottky barrier FET, which is not limited to the compound semiconductor light-emitting device, can be constructed by using a hexagonal Group III nitride semiconductor layer containing a crystal defect having a reduced density and superior in crystallinity as an electron transport layer (channel layer). The channel layer may be formed of an undoped n-type GaN layer, that is, a layer obtained by intentional addition avoiding impurities. A hexagonal bismuth nitride semiconductor layer containing a reduced density of crystalline defects can be advantageously used for the fabrication of FETs having excellent high frequency properties because they exhibit high electron mobility. The present invention can realize the above structure such that the (0.0.0.1·) crystal plane of the compound semiconductor layer and the (0·0.0.1.) crystal plane constituting the phosphide boron-based semiconductor layer can be parallel to the compound semiconductor layer. Stacking direction row • column. The present invention can realize the above structure, so that the above-mentioned electrode can make the operating current of the device be substantially parallel to the (〇·〇·0.1.) crystal plane of the semiconductor layer constituting the phosphide boron and constitute the compound semiconductor layer. The direction of the (0.0.0.) crystal plane flows. Further, the present invention can realize the above structure such that the above-mentioned electrodes can cause the operating current of the device to be substantially perpendicular to the (0·0·0·1·) crystal plane of the semiconductor layer constituting the phosphide boron base and The direction of the (α·0_〇·ι:) crystal plane constituting the compound semiconductor layer flows. -23-(21) 1310247 Furthermore, the present invention can achieve the above structure such that the c-axis length of the hexagonal monomer phosphide can fall within the range of 0.52 nm or more and 0.53 nm or less. During the formation of the hexagonal BP layer on the non-polar surface of the hexagonal single crystal, for example, the (1.1.-2.0.) crystal plane, (A) the temperature for growing the BP layer is 750 ° C or higher and 900. °C or lower, and (B) the concentration ratio of the phosphorus source to the boron source supplied to the growth reaction system (so-called V/III ratio example) is in the range of 250 or higher and 550 or lower. . Furthermore, (C) if the growth rate of the BP layer falls within a range of 20 nm or more per minute and 50 nm or less per minute, it can be stably formed in a direction parallel to the thickness of the added layer ( A hexagonal BP layer having a (〇· 〇. 〇. 1 .) crystal plane regularly arranged in a manner of a velocity in a vertical direction and a stacking direction of the surface of the single crystal. The growth rate of the hexagonal BP layer, when the concentration of boron source supplied to the growth reaction system per unit time is increased, can be substantially proportional to the increase in concentration within the aforementioned growth temperature range. When the boron source concentration supplied to the growth reaction system per unit time is fixed, the growth rate will increase as the growth temperature increases. If the temperature falls below 75 ° C, since the boron source and the thermal decomposition of the phosphorus source are not sufficiently performed, the growth rate suddenly drops and the above-mentioned beneficial growth rate cannot be achieved. If the hexagonal BP layer system is formed by, for example, phosphine (pH 3) as a phosphorus source and triethylboron ((c2h5)3B) as a boron source, the formation temperature is fixed at 800. (3), the ratio of PH3/(C2H5)3B, that is, the ratio of the raw materials supplied to the growth reaction system -24 - (22) 1310247, at 400, and the growth rate is under each female nanometer. If the growth temperature exceeds 9 〇〇, too high will be possible, for example, for a sudden disadvantage of the polymerized boron phosphide crystals such as B6P. If the growth rate falls to 20 nm per minute or if the rate exceeds the clock Any of the 5 nanometers will make it difficult to stably obtain the formation of a chemically composed monomer BP. If the growth rate is steeply less than Lu 2 nanometer, the final formation of a non-quantitative chemical composition of the BP layer Narrow) will increase suddenly more than phosphorus (P). If the growth rate exceeds 5 nanometers per minute, too high will suddenly increase the final shape. A hexagonal BP layer having a substantially stoichiometric chemical composition and satisfying the beneficial growth temperature specified in item (A) and the beneficial V/III ratio step described in item (B) satisfying the growth conditions described in item (C) The length of the c-axis in the hexagonal unit lattice (refer to Lu, "The crystal electron microscope for the materials researcher Hiroyasu Saka was prepared and issued by Uchida Rokakuho shares, 1997, November 25, 1st edition , pages 3 to 7 are in the range of 0.52 nm or more and 0.53 nm or less. Arranged in such a manner as to have a nearly parallel relationship in the vertical direction (the growth direction of the BP layer, the stack) (〇·〇 〇. 1.) In the 71 layers of the crystal plane, the current used to operate the device (device operating current) can flow in a direction parallel to the (0 · 0 . 〇. 1 .) crystal plane. Figure 3 The description is initiated by a square clock 35 perpendicular to the C-axis direction of the hexagonal BP layer 20. The formed per minute is measured by the amount of boron per minute (the b rate is as high as the formation of the defect, and the formation is made, for example), Limited company) will simply collapse the direction, square BP easily lifted to watch -25- ( 23) The arrangement of the phosphorus atom (p) and the boron atom (B) of 1310247. Incidentally, the C-axis direction is perpendicular to the (〇·〇·〇.1·) crystal plane. It is perpendicular to the hexagonal BP layer. The direction of the C-axis of 20, as illustrated in Fig. 3, has a gap 20H' depending on the arrangement of the phosphorus atom (P) and the boron atom (B). The phosphorus and boron atoms constituting the hexagonal BP layer 20 (P) And B), the current (electron) will pass through the gap 20H existing on the (〇.〇.0.1.) crystal plane and will diverge unobtrusively, and will be parallel to the (〇. 〇. 〇. 1.) The direction of the crystal face is convenient to flow. The gap between the phosphorus and boron atoms in the crystal is present in the hexagonal BP layer parallel to the direction of the (0.0.0.1.) crystal plane. In Fig. 4, by the parallel The arrangement of the phosphorus atom (P) and the boron atom (B) crystal is observed in the c-axis direction of the hexagonal BP layer 20. As exemplified in Fig. 4, there is a hypothetical regular hexagonal interval 20H in plan view. Phosphorus and boron atoms in the surrounding 'Therefore, the dominating purpose of causing the operating current of the device to flow without being diverged is achieved. The c-axis of the hexagonal BP layer 20 is vertical. Page 4 of Figure 4. The hexagonal BP layer formed on a hexagonal single crystal having a (0.0 _ 0 · 丨 ·) crystal plane perpendicular to the surface of the single crystal is characterized by containing only a small amount of, for example, twins and stacks. A crystalline defect such as a defect. This can be interpreted as assuming that the BP layer is disposed on a small-polar surface having a (0·0.0.1 .) crystal plane in a hexagonal single crystal arranged in an almost parallel relationship. The device operating current is caused to flow in a direction parallel or perpendicular to the (mi.) crystal plane of the hexagonal BP layer without being hindered by the twin boundary. The boundary enthalpy produced by twinning decreases as the twine density decreases.

-26- S (24) 1310247 TEM技術觀察到。 該六方單體BP層特別有用於當作用於形成具有 近彼之a-軸的晶格常數的in族氮化物半導體層之底 該六方單體BP的a-軸測起來約0.319奈米且與該 - GaN的a-軸相同。在該六方單體BP層上,因此,由 異的晶格機械加工而可形成結晶性優異的GaN層。 _ 利用結晶性優異的III族氮化物半導體層,可形成能 -φ高強度發光的p-n接面異質結構。舉例來說,可形成 具有充當包覆層的GaN層的LED中的異質接面發光 及充當發光層的GaxIiM-xNCOSXCl)。藉由利用 晶性優異的III族氮化物半導體層形成之發光部分, 供顯示高亮度且優於例如反向電壓等的電氣性質之化 半導體層。 該六方單體BP層特別有用於當作用於形成纖維 型六方氮化鋁一鎵的目的之底層,該纖維鋅礦型六方 籲鋁一鎵(組成式:AlxGaYN其中0SX,YS1及X + Y=l 有極接近該六方單體BP層之c-軸長度(0.52奈米至 奈米)的c -軸長度。利用該六方單體BP層當作底層 成的AlxGaYN ( 0SX,YS1及X + Y=l)層由於具有因優 晶格機械加工而平行於該六方Β Ρ層的(〇 . 〇 · 〇 · 1 .)晶 則排列的(〇·〇.〇· 1 ·)晶面而能優於結晶性。 依幾乎平行關係規則排列之具有(0.0.0.1·)晶 化合物半導體層,類似於上述的六方ΒΡ層,能使該 操作電流輕易地依該c-軸的方向,亦即垂直於(0 · 0-26- S (24) 1310247 TEM technology observed. The hexagonal monomer BP layer is particularly useful as a bottom of an in-nitride semiconductor layer for forming a lattice constant having an a-axis close to each other. The a-axis of the hexagonal monomer BP is about 0.319 nm and is measured with The - a-axis of GaN is the same. On the hexagonal monomer BP layer, a GaN layer excellent in crystallinity can be formed by mechanical processing of a different lattice. _ A p-n junction heterostructure capable of -φ high-intensity light emission can be formed by using a group III nitride semiconductor layer having excellent crystallinity. For example, heterojunction luminescence in an LED having a GaN layer serving as a cladding layer and GaxIiM-xNCOSXCl as a light-emitting layer can be formed. By using a light-emitting portion formed of a group III nitride semiconductor layer excellent in crystallinity, a semiconductor layer exhibiting high luminance and superior in electrical properties such as a reverse voltage is provided. The hexagonal monomer BP layer is particularly useful as a bottom layer for the purpose of forming a fibrous hexagonal aluminum nitride-gallium type hexagonal aluminum-gallium (composition formula: AlxGaYN where 0SX, YS1 and X + Y= l has a c-axis length close to the c-axis length (0.52 nm to nanometer) of the hexagonal monomer BP layer. The hexagonal monomer BP layer is used as the underlying AlxGaYN (0SX, YS1 and X + Y) =l) The layer is superior to the (〇·〇.〇·1 ·) crystal plane which is arranged parallel to the hexagonal ruthenium layer by the superior lattice machining (〇.〇·〇·1 .) Crystalline. A (0.0.0.1·) crystalline compound semiconductor layer arranged in a nearly parallel relationship, similar to the above-described hexagonal germanium layer, enables the operating current to be easily dependent on the direction of the c-axis, that is, perpendicular to ( 0 · 0

極接 層。 六方 於優 藉由 產生 用於 部分 由結 可提 合物 鋅礦 氮化 )具 0.53 而形 異的 面規 面的 裝置 .0.1. (S -27- (25) 1310247 )晶面的方向流動。也能使該裝置操作電流輕易地依平行 於(0_ 0.0.1.)晶面的方向流動。具有如此排列的( 〇.〇.0.1.)晶面的六方化合物半導體層,因此,可作爲預 期形成化合物半導體裝置的功能層。 舉例來說,藉著利用能藉由具有依幾乎平行關係規則 排列之(〇·〇_〇· 1.)晶面而優於結晶性的 AlxGaYN其中 0<X,Y<1 R X + Y=l )層,可形成能產生高強度發光的p-n 鲁接面異質結構。舉例來說,可形成用於具有充當包覆層的 GaN層的LED中的異質接面發光部分及充當發光層的 GaxIni_xN (0<X<1)。藉由利用由使該裝置操作電流能 輕易流動且具有依幾乎平行關係規則排列之(0·0.0.1.) 晶面的化合物半導體層形成之發光部分,可提供具有反向 低電壓的化合物半導體發光裝置。 當用於附有如上述的六方BP層及形成在彼上的發光 部分之化合物半導體裝置中的堆疊結構設有歐姆電極使該 •裝置操作電流可依平行於該六方BP層或構成該發光部分 的六方化合物半導體層(依垂直於該c-軸的方向)的( 0.0.0.1.)晶面的方向流動’可製成對於該裝置操作電流 流動僅提供低抗性的化合物半導體發光裝置。 舉例來說,利用配置在導電性六方A1N基材3 1上的 六方BP層32及配置在彼上且由AlxGaYInzN ( 0SX,Y,ZS1 ’ X + Y + Z=l )形成的發光部分33提供的堆疊結構30,如 第5圖中舉例說明的,可藉著將一個極性歐姆電極3 4配 置在該發光部分上且另一個極性歐姆電極35在該基材31 -28- (26) 1310247 的反側上而製造。換句話說,此製造係藉由具有數個配置 在該堆疊結構30上面及下方的電極使得彼等可夾住該基 材31、六方BP層32及發光部分33而完成。 舉例來說,可製成利用配置在導電性六方GaN基材 . 41上的六方BP層42及配置在彼上且由 AlxGaYInzN( 0SX,Y,ZS1,X + Y + Z=l )形成的發光部分43提供的堆疊結 _ 構40,如第6圖中舉例說明的,藉著將一個極性歐姆電 -φ極44配置在該發光部分上且另一個極性歐姆電極45在介 於該發光部分43與基材41之間的六方ΒΡ層42表面上 以製造能使裝置操作電流僅以低阻抗依垂直於該( 〇.〇.0.1.)晶面的方向流動的化合物半導體發光裝置。 代替該化合物半導體發光裝置,蕭特基能障MESFET 可藉著利用含有僅低密度的結晶性缺陷且優於結晶性的六 方化合物半導體層當作電子傳輸層(通道層)而製造。該 通道層可由,舉例來說,來自避開雜質的刻意添加的高純 鲁度未摻雜η-型GaN層形成。含有僅低密度的結晶性缺陷 的六方III族氮化物半導體層係便於優於高頻性質的 MESFET的製造,因爲彼能實現高電子移動性。 在製造該MESFET的時候,爲求確保大飽和電流起見 ,適於使裝置操作電流能依垂直於配置充當電子傳輸層( 通道層)53,該通道層係接合到該基材5 1上的六方BP 層52表面上,的六方化合物半導體層的(0.0.0.1·)晶面 的方向(平行於c -軸的方向)流動的源極55及汲極56係 在如第7圖舉例說明的堆疊結構5 0的電子供應層5 4表面 -29- (27) 1310247 上依側向相對立。 因此,本發明已發現與六方磷化硼層的結晶性結構有 關的晶體平面的較佳排列並完成,由於此發現的運用,降 低對於裝置操作電流的流動的阻抗且使適當的裝置能增進 其效能。 本發明能建構利用III族氮化物半導體形成六方單晶 層並附有第一堆疊結構部分,該第一堆疊結構部分由具有 鲁充當其表面的(1.1.-2.0.)晶面之六方III族氮化物半導 體層及以接合到該III族氮化物半導體層表面的方式配置 的六方磷化硼爲底的半導體層組成,的結構或能建構附有 第二堆疊結構部分的結構,該第二堆疊結構部分係使III 族氮化物半導體接合到構成該第一堆疊結構部分的六方磷 化硼爲底的半導體層上側表面而得到。 用於形成第一堆疊結構部分的磷化硼爲底的半導體層 係呈η-型或p -型導電層的形態,取決於目標裝置的種類 •。另外,就目標的裝置來看,使用π-型或V-型高阻抗性磷 化硼爲底的半導體層。 連依接合到該III族氮化物半導體層,例如立方或 3C-型、4Η-型或6Η-型碳化矽(SiC)或GaN (參照,舉 例來說,T. Udagawa 等人,Phys. Stat. Sol., 0 (7) (2003 ) ,第2027頁),的方式配置的立方閃鋅礦型磷化硼爲底 的半導體層都能顯露出抑制由構成第一堆疊結構部分的磷 化硼爲底的半導體層顯現的位錯穿透的功能。使用配置在 例如具有充當其表面的(1.1.-2.0.)晶面之SiC或氧化鋅 -30- (28) 1310247 (ZnO )等的六方晶體層上的六方磷化硼爲底的半導體層 時,顯露出上述的功能更有效。使用配置在具有充當其表 面的(1.1.-2.0.)晶面之III族氮化物半導體層上的六方 磷化硼爲底的半導體層時,顯露出特別地顯著。這是因爲 該晶體系統相同且形成這些晶體的晶面陣列優於配對性質 〇 明確地說,本發明預期提供將III族氮化物半導體層 鲁倂入第一堆疊結構部分中的化合物半導體裝置,該第一堆 疊結構部分由具有充當其表面的(1.1.-2.0.)晶面之六方 III族氮化物半導體層及依接合到該III族氮化物半導體層 表面的方式配置的磷化硼爲底的半導體層組成。 具有充當其表面的(1.1.-2.0.)晶面之六方III族氮 化物半導體層可,舉例來說,形成於由例如不具極性的碳 化矽或G aN單晶等(1 · -1 · 0 · 2 ·)晶面形成的表面上。其可 藉由分子束磊晶(MBE)法形成,舉例來說,在藍寶石的 ♦ ( 1.-1.0.2.)晶面(R-平面)上。 構成第一堆疊結構部分的磷化硼爲底的半導體層最佳 地由六方單體BP形成。該六方單體BP可形成在底層上 ,該底層係由具有充當其表面的小極性晶面之六方晶體形 成。特別是,較佳爲在具有充當其表面的(1.1.-2.0.)晶 面之六方ΙΠ族氮化物半導體層上形成。這是因爲該六方 B P層可輕易地且穩定地形成在該六方晶體的非極性晶面 上。事實上具有充當其表面的(1.1.-2.0.)晶面之六方 AlxGai-XN ( OSXSl )層的優點爲能在彼上形成含僅小量Extremely connected. The hexagonal yoghurt is produced by a device having a surface profile of 0.53 which is partially nitrided by the knot-extractable zinc ore. 0.1. (S -27- (25) 1310247 ) The direction of the crystal plane flows. It is also possible to easily operate the current of the device in a direction parallel to the (0_0.0.1.) crystal plane. The hexagonal compound semiconductor layer having such a (晶.〇.0.1.) crystal face array can be used as a functional layer for predicting formation of a compound semiconductor device. For example, by using AlxGaYN which is superior to crystallinity by having a crystal plane arranged in a nearly parallel relationship, 0 <X,Y<1 RX + Y=l The layer can form a pn-junction heterostructure that produces high-intensity luminescence. For example, a heterojunction light-emitting portion in an LED having a GaN layer serving as a cladding layer and GaxIni_xN (0<X<1) serving as a light-emitting layer may be formed. A compound semiconductor having a reverse low voltage can be provided by using a light-emitting portion formed of a compound semiconductor layer which is easy to flow by the operation current of the device and has a (0·0.0.1.) crystal plane regularly arranged in an almost parallel relationship Light emitting device. When a stack structure for a compound semiconductor device having a hexagonal BP layer as described above and a light-emitting portion formed thereon is provided with an ohmic electrode, the device operating current may be parallel to or constitute the hexagonal BP layer. The flow of the hexagonal compound semiconductor layer (in the direction perpendicular to the direction of the c-axis) in the direction of the (0.0.0.1.) crystal plane can be made into a compound semiconductor light-emitting device which provides only low resistance to the current flow of the device operation. For example, a hexagonal BP layer 32 disposed on the conductive hexagonal A1N substrate 31 and a light emitting portion 33 disposed on the same and formed of AlxGaYInzN (0SX, Y, ZS1 'X + Y + Z = 1 ) are provided. The stacked structure 30, as exemplified in FIG. 5, can be disposed on the light emitting portion by one polarity ohmic electrode 34 and the other polarity ohmic electrode 35 on the substrate 31-28-(26) 1310247 Made on the reverse side. In other words, the fabrication is accomplished by having a plurality of electrodes disposed above and below the stack structure 30 such that they can sandwich the substrate 31, the hexagonal BP layer 32, and the light emitting portion 33. For example, a hexagonal BP layer 42 disposed on a conductive hexagonal GaN substrate 41 and a luminescence disposed on the other side and formed by AlxGaYInzN (0SX, Y, ZS1, X + Y + Z = l ) can be fabricated. The stacked junction structure 40 provided by the portion 43 is disposed on the light emitting portion by the polarity ohmic electric-φ pole 44 and the other polarity ohmic electrode 45 is interposed between the light emitting portion 43 as exemplified in Fig. 6. On the surface of the hexagonal germanium layer 42 between the substrate 41 and the surface of the hexagonal germanium layer 42 is formed to produce a compound semiconductor light-emitting device capable of flowing the device operating current only in a direction perpendicular to the (晶.〇.0.1.) crystal plane. In place of the compound semiconductor light-emitting device, the Schottky barrier MESFET can be manufactured by using a hexagonal compound semiconductor layer containing only a low-density crystalline defect and superior in crystallinity as an electron transport layer (channel layer). The channel layer can be formed, for example, by a highly pure, undoped n-type GaN layer deliberately added to avoid impurities. A hexagonal group III nitride semiconductor layer containing only a low density of crystalline defects facilitates the fabrication of MESFETs superior to high frequency properties because it enables high electron mobility. In the manufacture of the MESFET, in order to ensure a large saturation current, it is suitable for the device operating current to function as an electron transport layer (channel layer) 53 perpendicular to the configuration, the channel layer being bonded to the substrate 51. The source 55 and the drain 56 of the (0.0.0.1·) plane of the hexagonal compound semiconductor layer on the surface of the hexagonal compound layer 52 (parallel to the c-axis direction) are exemplified as shown in FIG. The surface -29-(27) 1310247 of the electron supply layer 5 4 of the stacked structure 50 is laterally opposed. Accordingly, the present inventors have discovered a preferred arrangement and completion of the crystal plane associated with the crystalline structure of the hexagonal boron phosphide layer. Due to the use of this discovery, the impedance to the flow of the operating current of the device is reduced and the appropriate device can be enhanced. efficacy. The present invention can construct a hexagonal single crystal layer by using a group III nitride semiconductor and attaching a first stacked structure portion partially composed of a hexagonal group III having a (1.1.-2.0.) crystal plane serving as a surface thereof. a nitride semiconductor layer and a hexagonal phosphide-based semiconductor layer disposed to be bonded to the surface of the group III nitride semiconductor layer, or a structure capable of constructing a structure with a second stacked structure portion, the second stack The structural portion is obtained by bonding a group III nitride semiconductor to the upper surface of the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion. The phosphide-based semiconductor layer for forming the first stacked structure portion is in the form of an η-type or p-type conductive layer depending on the type of the target device. Further, in view of the intended device, a π-type or V-type high-resistance boron phosphide-based semiconductor layer is used. The bonding is bonded to the group III nitride semiconductor layer, such as cubic or 3C-type, 4Η-type or 6Η-type tantalum carbide (SiC) or GaN (see, for example, T. Udagawa et al., Phys. Stat. Sol., 0 (7) (2003), p. 2027), the configuration of the cubic sphalerite-type phosphide-based semiconductor layer can exhibit the inhibition of boron phosphide composed of the first stacked structure portion. The bottom semiconductor layer exhibits the function of dislocation penetration. When a hexagonal phosphide-based semiconductor layer is disposed on, for example, a hexagonal crystal layer of SiC or zinc oxide-30-(28) 1310247 (ZnO) or the like having a (1.1.-2.0.) crystal plane serving as its surface, It shows that the above functions are more effective. When a hexagonal phosphide-based semiconductor layer disposed on a group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as its surface is used, it is particularly remarkable. This is because the crystal system is the same and the crystal face array forming these crystals is superior to the pairing property. Specifically, the present invention contemplates providing a compound semiconductor device in which the group III nitride semiconductor layer is ruined into the first stacked structure portion, which The first stacked structure portion is made of a hexagonal group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as a surface thereof and a boron phosphide group configured to be bonded to the surface of the group III nitride semiconductor layer. The composition of the semiconductor layer. The hexagonal group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as its surface may be formed, for example, by, for example, a non-polarized tantalum carbide or a GaN single crystal or the like (1 · -1 · 0) · 2 ·) The surface on which the crystal faces are formed. It can be formed by molecular beam epitaxy (MBE), for example, on the ♦ ( 1.-1.0.2.) crystal plane (R-plane) of sapphire. The boron phosphide-based semiconductor layer constituting the first stacked structure portion is preferably formed of hexagonal monomer BP. The hexagonal monomer BP may be formed on the underlayer which is formed of a hexagonal crystal having a small polar crystal face serving as a surface thereof. In particular, it is preferably formed on a hexagonal bismuth nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as a surface thereof. This is because the hexagonal B P layer can be easily and stably formed on the non-polar crystal plane of the hexagonal crystal. In fact, the hexagonal AlxGai-XN (OSXSl) layer having a (1.1.-2.0.) crystal plane serving as its surface has the advantage that it can be formed on only a small amount.

-31 - (29) 1310247 的攣晶及堆疊缺陷且優於結晶性的優異品質的六方單體 BP層。這是因爲具有約0.319奈米的軸之六方BP及該六 方AlxGa!-xN ( 0SXS1 )實質上具有相同的a-軸晶格常數 〇 含僅小密度的結晶性缺陷且構成第一堆疊結構部分的 六方BP層可藉由前述手段形成以引發該六方磷化硼爲底 的半導體層的氣相生長。無論可能適用於該氣相生長的手 φ段爲何,該磷化硼爲底的半導體層較佳地具有依平行於作 爲底層的六方ΙΠ族氮化物半導體層的<1.-1.0.0>方向取 向之<1.-1.0.0>方向。這兩個層的取向關係可,舉例來 說,根據電子繞射影像來硏究。 接著,爲達在由具有充當其表面的(1.1.-2.0.)晶面 之六方晶體形成的底層上形成第一堆疊結構部分的目的而 配置的六方磷化硼爲底的半導體層係賦予抑制由六方晶體 形成的底層中所含之位錯增殖的功能。在由六方 # AlxGai-XN ( )層及藉著以該層作爲底層而形成的 六方 BP層構成的第一堆疊結構部分中,存在該六方 AlxGanN ( 0SXS1 )層中的位錯係藉由含六方BP層的界 面防止依向上的方向的擴散及增殖。由構成第一堆疊結構 部分的六方BP層所顯露的抑制位錯擴散作用可經由第一 堆疊結構部分界面附近區域的斷面TEM觀察而清楚地確 認。 使用含僅小量的攣晶及位錯且配置在具有充當其表面 的(1.1.-2.0.)晶面之六方III族氮化物半導體層中的六-31 - (29) 1310247 is a hexagonal monomer BP layer which is excellent in crystallinity and stacking defects and superior in crystallinity. This is because the hexagonal BP having an axis of about 0.319 nm and the hexagonal AlxGa!-xN (0SXS1) have substantially the same a-axis lattice constant, contain only a small density of crystalline defects and constitute the first stacked structure. A portion of the hexagonal BP layer can be formed by the foregoing means to initiate vapor phase growth of the hexagonal phosphide-based semiconductor layer. Regardless of the hand φ segment that may be suitable for the vapor phase growth, the phosphide boron-based semiconductor layer preferably has a <1.-1.0.0> parallel to the hexagonal bismuth nitride semiconductor layer as the underlayer; Direction direction <1.-1.0.0> direction. The orientation relationship of the two layers can, for example, be based on electron diffraction images. Next, the hexagonal phosphide-based semiconductor layer system is provided for the purpose of forming the first stacked structure portion on the underlayer formed of the hexagonal crystal having the (1.1.-2.0.) crystal plane serving as the surface thereof. The function of dislocation proliferation contained in the underlayer formed by hexagonal crystals. In the first stacked structure portion composed of a hexagonal #AlxGai-XN ( ) layer and a hexagonal BP layer formed by using the layer as a bottom layer, there is a dislocation in the hexagonal AlxGanN ( 0SXS1 ) layer by a hexagonal The interface of the BP layer prevents diffusion and proliferation in the upward direction. The dislocation diffusion inhibiting effect exhibited by the hexagonal BP layer constituting the first stacked structure portion can be clearly confirmed by the cross-sectional TEM observation of the region near the interface of the first stacked structure portion. Six using a hexagonal group III nitride semiconductor layer having only a small amount of twins and dislocations and disposed on a (1.1.-2.0.) crystal plane serving as a surface thereof

S -32- (30) 1310247 方磷化硼爲底的半導體層時,可在彼上面形成含特小密度 之例如擴散位錯等的結晶性缺陷之III族氮化物半導體層 。由此,依循此目的,本發明能任意地建構利用由構成上 述第一堆疊結構部分的磷化硼爲底的半導體層及依接合到 該磷化硼爲底的半導體層的上側表面的方式配置的六方 III族氮化物半導體層構成的第二堆疊結構部分提供的結 構。形成第二堆疊結構部分的III族氮化物半導體層,舉 φ例來說’爲AlxGai-XN ( 0SXS1 )或氮化鎵-銦(組成式 :GaxIm-χΝ ( 0< X< 1 )且註定優於結晶性。 因爲構成第一堆疊結構部分的六方磷化硼爲底的半導 體層係配置在具有充當其表面的(1.1.-2.0.)晶面之六方 III族氮化物半導體層,所以彼同樣地具有充當其表面的 (1.1.-2.0·)晶面。因此,具有充當其表面的(丨」.-2.0. )晶面之六方氮化物半導體層可作爲能有效在彼上形成具 有充當其表面的(1.1.-2.0.)晶面之第二堆疊結構部分的 隹六方III族氮化物半導體層。以具有充當其表面的(K1._ 2.0.)晶面之六方BP層作爲底層時,舉例來說,該第二 堆疊結構部分中就可穩定地獲得具有充當其表面的(1.;1._ 2 . 〇 ·)晶面且含僅小密度的結晶性缺陷之六方111族氮化 物半導體層。 使用’聯合六方磷化硼爲底的半導體層,構成第二堆 疊結構部分之具有優異結晶性的III族氮化物半導體層時 ’可在彼上形成優於結晶性的III族氮化物半導體層形成 的Ρ-η接面異質結構。舉例來說,利用充當發光層的心型 5 -33- (31) 1310247In the case of S-32-(30) 1310247, a semiconductor layer having a boron phosphide as a base, a group III nitride semiconductor layer containing a crystalline defect such as a diffusion dislocation having a particularly small density can be formed thereon. Thus, in accordance with the purpose, the present invention can be arbitrarily constructed by using a phosphide-based semiconductor layer constituting the first stacked structure portion and an upper surface of the semiconductor layer bonded to the phosphide-based semiconductor layer. The structure of the second stacked structure portion of the hexagonal group III nitride semiconductor layer is provided. Forming a group III nitride semiconductor layer of the second stacked structure portion, for example, 'AlxGai-XN (0SXS1) or gallium nitride-indium (composition formula: GaxIm-χΝ (0<X<1) and destined excellent Crystallinity. Since the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion is disposed on a hexagonal group III nitride semiconductor layer having a (1.1.-2.0.) crystal plane serving as a surface thereof, The ground has a (1.1.-2.0·) crystal plane serving as its surface. Therefore, a hexagonal nitride semiconductor layer having a (丨..2.0.) crystal plane serving as its surface can be effectively formed on the other side to serve as its a hexagonal group III nitride semiconductor layer of a second stacked structure portion of a (1.1.-2.0.) crystal face of a surface. When a hexagonal BP layer having a (K1._2.0.) crystal plane serving as a surface thereof is used as a bottom layer, For example, a hexagonal group 111 nitride having a (1.;1. Semiconductor layer. Use 'six hexagonal phosphide-based semiconductor layer to form a second When a group III nitride semiconductor layer having excellent crystallinity is laminated, a Ρ-η junction heterostructure formed over a crystalline group III nitride semiconductor layer can be formed on the other side. For example, it is used as a light-emitting layer. Layer of heart type 5 -33- (31) 1310247

GaxIn丨.XN ( O^X^l )層及充當包覆層的 η-型和 p-型 AlxGai.xN ( 0^X51 )層提供的p-n接面異質結構能形成用 於LED的雙異質(DH)接面發光部分。上述的發光層可 由單一層形成或可在單一或多量子井結構中。在任何情況 下,構成第二堆疊結構部分之優異結晶性的III族氮化物 半導體層的運用能形成含優於結晶性的I11族氮化物半導 體層的發光部分並因此能提供顯示高亮度且優於例如反向 φ電壓等的電氣性質的化合物半導體發光部分。 藉由使用組成與構成第二堆疊結構部分的六方III族 氮化物半導體層不同的III族氮化物半導體層而形成被配 置在含僅小密度的結晶性缺陷且構成第二堆疊結構部分的 六方III族氮化物半導體層上的p-n接面異質結構時,可 抑制含兩種組成不同的ΠΙ族氮化物半導體層的界面中的 結晶性缺陷增殖。結果,該發光部分可利用結晶性更優異 的III族氮化物半導體層形成。據推測組成不同的III族 鲁氮化物半導體層的堆疊導致引發這些半導體層中的應力且 此應力將參與這些半導體層的結晶性。 有關藉由堆疊組成不同的III族氮化物半導體層而形 成的p-n接面異質結構,p-n接面DH結構的發光部分可 利用纖維鋅礦型η-型GaN形成構成第二堆疊結構部分的 III族氮化物半導體層並在彼上依下列順序堆疊具有充當 下包覆層之0.20的鋁組成之η-型Al〇.“Gao.8G層量子井結 構、充當井層的η -型Ga〇.9〇In().i()N層及充當能障層的n-型 Alo.ioGao.90N層的發光層及充當上包覆層之p-型The pn junction heterostructure provided by the GaxIn丨.XN (O^X^l) layer and the η-type and p-type AlxGai.xN ( 0^X51 ) layers serving as the cladding layer can form a double heterogeneity for the LED ( DH) junction light emitting part. The luminescent layer described above may be formed from a single layer or may be in a single or multiple quantum well structure. In any case, the use of the group III nitride semiconductor layer which is excellent in crystallinity constituting the second stacked structure portion can form a light-emitting portion containing a group I4 nitride semiconductor layer superior in crystallinity and thus can provide high luminance and excellent display. For example, a compound semiconductor light-emitting portion of an electrical property such as a reverse φ voltage. A hexagonal III disposed at a portion containing a crystal defect of only a small density and constituting a second stacked structure portion is formed by using a group III nitride semiconductor layer different in composition from a hexagonal group III nitride semiconductor layer constituting the second stacked structure portion. When the pn junction heterostructure on the group nitride semiconductor layer is formed, it is possible to suppress the propagation of crystal defects in the interface of the bismuth nitride semiconductor layer having two different compositions. As a result, the light-emitting portion can be formed using a group III nitride semiconductor layer having more excellent crystallinity. It is speculated that the stacking of the different Group III Zn nitride semiconductor layers results in the initiation of stress in these semiconductor layers and this stress will participate in the crystallinity of these semiconductor layers. With respect to a pn junction heterostructure formed by stacking different group III nitride semiconductor layers, the light-emitting portion of the pn junction DH structure can form a group III constituting the second stacked structure portion using wurtzite-type η-type GaN. The nitride semiconductor layer is stacked on the other side in the following order: η-type Al 具有 having a composition of 0.20 as a lower cladding layer. "Gao. 8G layer quantum well structure, η-type Ga 〇.9 serving as a well layer. 〇In().i()N layer and luminescent layer of n-type Alo.ioGao.90N layer serving as barrier layer and p-type serving as upper cladding layer

(· S -34- (32) 1310247(· S -34- (32) 1310247

Al0.Q5Ga().95N層而獲得。在此使用的措辭「組成不同的 III族氮化物半導體層」表示組成元素不同的晶體層或具 有相同組成成分及不同組成比例的晶體層。 利用組成與構成第二堆疊結構部分的六方III族氮化 - 物半導體層不同的層,僅形成接合到構成第二堆疊結構部 _ 分的六方ΠΙ族氮化物半導體層表面的層,可達到抑制結 '晶性缺陷增殖的作用。再者,如含有幾乎不同組成的III -φ族元素的ΙΠ族氮化物半導體層之以上例示的發光部分結 構中,藉由形成構成該p-n接面DH結構的個別層,可進 一步增進用於抑制結晶性缺陷的增殖之作用。在任何情況 中,由根據本發明第二堆疊結構部分之優異結晶性的III 族氮化物半導體層形成的P-n接面DH結構能穩定地提供 顯示高亮度且優於例如反向電壓等的電氣性質之化合物半 導體發光部分。 代替該化合物半導體發光裝置,可以配置在含僅小密 •度的結晶性缺陷且構成第二堆疊結構部分的六方III族氮 化物半導體層上的η-型III族氮化物半導體層作爲用於蕭 特基能障FET的電子傳輸層(通道層)。此通道層可利 用,舉例來說,避開雜質的刻意添加得到的層未摻雜的 η-型 GaxIn丨-XN ( OSXS1 )而形成。配置在含僅小密度的 結晶性缺陷且構成第二堆疊結構部分的六方III族氮化物 半導體層上的η-型III族氮化物半導體層,因此,可顯露 出高電子移動性。上述本發明的結構,因此,能提供高頻 性質優異的FET。Obtained from Al0.Q5Ga().95N layer. The phrase "constituting a different group III nitride semiconductor layer" as used herein means a crystal layer having a different compositional element or a crystal layer having the same composition and a different composition ratio. With the layer different from the hexagonal group III nitride-material semiconductor layer constituting the second stacked structure portion, only the layer bonded to the surface of the hexagonal bismuth nitride semiconductor layer constituting the second stacked structure portion can be formed, and suppression can be achieved. The role of 'crystal defects' proliferation. Further, in the above-exemplified light-emitting portion structure of the lanthanum nitride semiconductor layer containing a group III-φ group element having almost different composition, by forming individual layers constituting the pn junction DH structure, it is further enhanced for suppression The role of proliferation of crystalline defects. In any case, the Pn junction DH structure formed of the Group III nitride semiconductor layer of excellent crystallinity according to the second stacked structure portion of the present invention can stably provide electrical properties exhibiting high luminance and superior to, for example, reverse voltage and the like. The compound semiconductor light-emitting portion. Instead of the compound semiconductor light-emitting device, an η-type group III nitride semiconductor layer on a hexagonal group III nitride semiconductor layer containing only a small density of crystalline defects and constituting a second stacked structure portion may be disposed for use in Xiao The electron transport layer (channel layer) of the teratom barrier FET. This channel layer can be formed, for example, by intentionally adding the resulting undoped η-type GaxIn丨-XN (OSXS1). The η-type Group III nitride semiconductor layer disposed on the hexagonal group III nitride semiconductor layer containing only a small density of crystalline defects and constituting the second stacked structure portion can exhibit high electron mobility. According to the above configuration of the present invention, it is possible to provide an FET excellent in high frequency properties.

-35- (33) 1310247 本發明,在上述的發明結構中,能利用具有充當其表 面的(1.1.-2.0.)晶面的晶體形成上述的磷化硼爲底的半 導體層。 本發明,在上述的發明結構中,能利用具有充當其表 面的(1 . 0 . -1 · 0 ·)晶面的晶體形成上述的磷化硼爲底的半 導體層。 本發明,在上述的發明結構中,能利用六方半導體材 ♦料形成上述的化合物半導體層。 本發明,在上述的發明結構中,使上述磷化硼爲底的 半導體層及上述化合物半導體層能依接合到充當界面的( 1·1·-2.〇·)晶面的方式形成。 本發明,在上述的發明結構中,使上述磷化硼爲底的 半導體層及上述化合物半導體層能依接合到充當界面的( H-1.0.)晶面的方式形成。 本發明,在上述的發明結構中,能形成含有不含反相 •邊界的六方磷化硼爲底的半導體之上述磷化硼爲底的半導 體層。 特別是,用於上述本發明結構的六方磷化硼爲底的半 導體層較佳地由前述六方材料單晶塊狀或單晶層形成並配 置在具有充當其表面的(1.1.-2.0.)晶面或(1.0.-1.0.) 晶面且具有依垂直於該表面的方向排列的(0.0.0 . 1 ·)晶 面之材料上。較佳爲設置,舉例來說,在由該纖維鋅礦型 六方GaN的(1.1.-2.0.)晶面形成的表面上,或在由( 1.0.-1.0.)晶面形成的表面上。另外,較佳爲設置,舉例-35- (33) 1310247 In the above-described inventive structure, the above-described semiconductor layer of boron phosphide as a base can be formed by using a crystal having a (1.1.-2.0.) crystal plane serving as its surface. According to the present invention, in the above-described inventive structure, the above-described semiconductor layer having phosphide as a base can be formed by using a crystal having a (1 . 0 . -1 · 0 ·) crystal plane serving as a surface thereof. According to the invention, in the above-described configuration, the compound semiconductor layer described above can be formed using a hexagonal semiconductor material. According to the invention, in the above aspect of the invention, the semiconductor layer having the phosphide boron as a base and the compound semiconductor layer can be formed by bonding to a (1·1·-2.〇·) crystal plane serving as an interface. According to the invention, in the above aspect of the invention, the semiconductor layer having the phosphide boron as a base and the compound semiconductor layer can be formed by bonding to a (H-1.0.) crystal plane serving as an interface. According to the present invention, in the above-described configuration, the above-described phosphide-based semiconductor layer containing a hexagonal phosphide-based semiconductor having no reverse phase boundary can be formed. In particular, the hexagonal phosphide-based semiconductor layer used in the above structure of the present invention is preferably formed of the above-mentioned hexagonal material single crystal bulk or single crystal layer and disposed to have a surface (1.1.-2.0.) serving as its surface. A crystal face or a (1.0.-1.0.) crystal face and having a (0.0.0 .1 ·) crystal face arranged in a direction perpendicular to the surface. It is preferably provided, for example, on a surface formed of (1.1.-2.0.) crystal faces of the wurtzite type hexagonal GaN, or on a surface formed of (1.0.-1.0.) crystal faces. In addition, it is preferably set, for example

S -36- (34) 1310247 來說,在氮化鋁(AIN )單晶基材或單晶層的(1 .丨_2 〇 )晶面形成的表面上’或在由(1.0.-1.0.)晶面形成的表 面上。 舉例來說’具有(ι.ι·-2·ο.)晶面作爲其表面之六方 GaN單晶層或Α1Ν單晶層可藉由如使用固體來源或氣體 來源之例如]VIB E法等氣相生長方式,形成於例如具有( 2.)晶面作爲其表面之藍寶石所形成的底層上。 # 該六方單晶層由(1.1.-2.0.)晶面或(1.0.-1.0.)晶 面形成的表面具有依垂直於該表面的方向規則地排列的( 0.0.0.1.)晶面。這個事實將參照第13圖中槪略地舉例說 明的六方材料片段的晶體結構解釋於下。 第13圖爲舉例說明接合區域中的原子排列的槪略圖 。參照第13圖,六方化合物半導體材料10與六方磷化硼 爲底的半導體材料12依相互接合的方式形成且該纖維鋅 礦型六方化合物半導體材料10具有垂直於由其(1.〇.-Φ 1 · 0 .)晶面形成的表面1 0 a所形成的(0.0.0 _ 1 ·)晶面1 1 。在該(〇.〇. 0.1 _)晶面11中,交替地形成具有規則排列 的ΙΠ族元素的II族原子平面1 1 a及具有規則排列的V族 元素的V族原子平面lib。在具有構成該六方化合物單晶 10之交替地規則暴露出來的數排由幾乎不同元素形成的 原子平面11a及lib之表面10a上,同樣爲了達到使含有 例如硼(B )等的III族原子的原子平面與含有例如磷(P )等的V族原子的原子平面交替地規則排列的目的,可 有效地形成沒有反相邊界的磷化硼爲底的半導體層1 2。 -37- (35) 1310247 附帶地,本發明中使用的措辭「不含反相邊界」或「 沒有反向邊界」表示事實上該等邊界存在5個邊界/平方 公分或更小的密度,包括沒有反相邊界的情況。 沒有反向邊界的六方磷化硼爲底的半導體層可藉由前 述六方磷化硼爲底的半導體層的氣相生長手段形成。在藉 由MOCVD法實行此形成的情況中,舉例來說,生長的溫 度較佳爲75 0°C或更高及1 200°C或更低。若溫度落到750 φ °C以下,因爲那將妨礙硼來源及磷來源進行充分地熱分解 ,所以證明不利於促進沒有反向邊界的六方磷化硼爲底的 半導體層的生長。在超過12 00 °C的溫度下生長證明並不 合宜,因爲缺乏形成六方磷化硼爲底的半導體層的晶面而 造成獲得沒有反向邊界的單晶層時的阻礙。特別是招致穩 定地形成沒有反向邊界的六方磷化硼爲底的半導體層的困 難,因爲其將引起缺乏由構成.六方磷化硼爲底的半導體層 的磷(P)形成的原子平面。 # 接著,在藉由MOCVD法形成沒有反相邊界的六方磷 化硼爲底的半導體層時,爲達形成P-型導電層的目的, 供至該生長系統的磷(P )來源對硼(B )來源的比例( 所謂的V/III比例)較佳爲120或更低。再者,該V/III 比例較佳爲介於20或更高及50或更低。接著,爲達形成 顯露η-型傳導度之沒有非相邊界的六方磷化硼爲底的半 導體層的目的,上述的V/III比例較佳爲150或更高。再 者,該V/III比例較佳爲400或更高及1 400或更低。 使用具有充當其表面的(1.1.-2.0.)晶面之六方單晶 -38- (36) 1310247 層時,該表面能在彼上形成經由其(1.1.-2.0.) 到該表面的六方磷化硼爲底的半導體層,藉由傳 方單晶表面上的原子排列而以磊晶的方式生長, 充當其表面的(1.1__2.0.)晶面。使用具有充當 (1.0 -1 _ 0 _)晶面之六方單晶層時,該表面能在 經由其 (1·〇.-1.0·)晶面接合到該表面的六方 底的半導體層,藉由傳承在該六方單晶表面上的 鲁而以磊晶的方式生長,且能具有充當其表面的( )晶面。 爲了參照第13圖的槪略圖而附加解釋,在 其表面 12a 的(1.1.-2.0.)晶面或(1.0.-1.0.) 方磷化硼爲底的半導體材料12的內側,(〇.〇.〇 1 3係依垂直於其表面12a而規則地排列。該(I 晶面1 3交替地形成在具有規則排列的III族元| 之ΙΠ族原子平面13a及具有規則排列的V族5 鲁)之V族原子平面13b內部。也就是說,在由( )晶面或(1.0.-1.0.)晶面形成的六方磷化硼爲 體層12的表面12a中,構成該(〇·〇.〇.1.)晶面 族原子平面13a及V族原子平面13b係交替重複 列。 結果,具有充當其表面的(1.1.-2.0.)晶面 1.0.)晶面之六方III族氮化物半導體層有效地 例來說,爲達形成沒有反相邊界的六方III族氮 體層的目的之底層。 晶面接合 承在該六 且能具有 其表面的 彼上形成 磷化硼爲 原子排列 1.0.-1.0. 具有充當 晶面之六 .1.)晶面 0·0.0·1.) I 硼(B ) 6素硼(P ;1 . 1 .-2.0. 底的半導 13 的 III 地規則排 或(1 · 0 -當作,舉 化物半導 -39- (37) 1310247 在具有充當其表面的(1.1_-2·0.)晶面之六方 爲底的半導體層上,可形成經由其(1.1.-2.0.)晶 到該表面且具有充當其表面的非極性(1 · 1 _ -2.0 ·) 六方ΙΠ族氮化物半導體層。在此使用的措辭「非 面」表示隨附於該III族原子平面上的電荷與及隨 V族原子平面上的電荷由於III族原子平面與V族 面暴露等量所以表面及極性相抵消而中和之表面。 在以接合到具有充當其表面的(1·1.-2·0·)晶 有充當其表面的非極性(1 . 1 . - 2.0 .)晶面之六方磷 底的半導體層的方式配置的六方化合物半導體層內 該(0.0.0.1.)晶面係依垂直於該表面的方向規則 。再者,彼等係平行於該六方磷化硼爲底的半導體 的(0.0·0· 1.)晶面。此接合的方法,因此,能以 方式形成含極小量反相邊界且含僅小量的攣晶及堆 且優於結晶性之優異品質的六方化合物半導體層。 接著,在具有充當其表面的(]_·〇·_ ί·0.)晶面 磷化硼爲底的半導體層上,可形成經由其(1.0.-1 面接合到該表面且具有充當其表面的非極性(1.0. 晶面的六方III族氮化物半導體層。 在以接合到具有充當其表面的(1.0.-1.0.)晶 有充當其表面的非極性(1 . 0 . - 1.0 .)晶面之六方磷 底的半導體層的方式配置的六方化合物半導體層內 該(0.0.0.1·)晶面係依垂直於該表面的方向規則 。再者,彼等係平行於該六方磷化硼爲底的半導體 磷化硼 面接合 晶面的 極性表 附於該 原子平 面且具 化硼爲 部中, 地排列 層內部 接合的 疊缺陷 之六方 • 0 ·)晶 -1.0.) 面且具 化硼爲 部中, 地排列 層內部 一- «S. -40 - (38) 1310247 的(0.0.0.1.)晶面。此接合的模式,因此,能以接合的 方式形成含極小量反相邊界且含僅小量堆疊缺陷且優於結 晶性之優異品質的六方化合物半導體層。 特別是,該六方磷化硼爲底的半導體層有益的是利用 • 單體磷化硼(BP)層形成。這是因爲在此情況中所需的 _ 組成元素數目與形成上述磷化硼爲底的多重混合晶體的情 _ 況相比係少的,且因此可便利地實行該形成作用而不會帶 -φ來控制組成元素的組成比例時遇到的複雜度。再者,選擇 利用氮化鋁—鎵(組成式:AlxGai_xN ( 0SXS1 )形成該 六方化合物半導體層,因此形成的AlxGai.xN層由於磷化 硼與氮化鋁一鎵之間良好晶格常數配對而含僅小量的結晶 性缺陷。 舉例來說,經由其(1.1.-2.0.)晶面接合到具有充當 其表面的(1.1.-2.0.)晶面之BP層且具有充當其表面的 (1.1.-2.0.)晶面之GaN層幾乎沒有可察覺的攣晶跡象。 ®所製成的層具有優異的品質且沒有反相邊界。即使是經由 其(1.0.-1.0.)晶面接合到具有充當其表面的(1·〇·-1.0. )晶面之BP層且具有充當其表面的(1.0.-1.0.)晶面之 A1N層顯示幾乎沒有可察覺的攣晶跡象並向外作爲沒有反 相邊界的優異品質層也是一樣。 該六方磷化硼爲底的半導體層及六方化合物半導體層 內存在反相邊界,舉例來說,可藉由目視觀察斷面的 TME影像而分辨。在本發明中使用的措辭「沒有反相邊 界」,舉例來說,表示事實上邊界的密度爲5個邊界/平 -41 - (39) 1310247 方公分或更小’包括沒有反相邊界的情況。藉由利用 TEM的電子繞射法’可硏究該六方磷化硼爲底的半導體 層及八方化合物半導體層內存在反相邊界內的攣晶及堆疊 缺陷的存在。當電子繞射影像顯示沒有攣晶造成的額外點 或堆疊缺陷造成的擴散發散的可察覺跡象時,本發明將採 行聲稱沒有攣晶或堆疊缺陷的法則。 例如’舉例來說’具有例如上述非極性晶面的六方 • ΠΙ族氮化物半導體層等的六方化合物半導體層可有效地 作爲用於形成能引發高強度的可見光帶或紫外光帶發光的 氮化物半導體發光裝置的發光部分。也可有效地作爲用於 製造場效電晶體(FET)的電子傳輸層(通道層)或電子 供應層或作爲用於形成例如源或汲極等的歐姆電極的接觸 層。 本發明’在上述的發明結構中,能使以上的磷化硼爲 底的半導體層內部形成而使該(〇.〇.〇」.)晶面可實質上 鲁平行於該層的厚度方向排列且η個連續性(0.0.0.2 .)晶 面(η表示2或更大的正整數)的距離實質上等於上述單 晶的 c -軸長度。附帶地,在上述的發明結構中,該( 0.0.0·2·)晶面的數目η較佳爲6或更少。 在上述的發明結構中,當所用的六方單晶係呈塊狀單 晶或單晶層時,特佳爲使用具有依實質上平行於增加其層 厚度的方向(生長方向)的方向排列之(0.0 · 0 · 1 ·)晶面 的六方單晶。此單晶的表面,因此,舉例來說,係由( 1.0.-1.0·)晶面或(1.1.-2.0.)晶面形成。在此使用的措 -42- (40) 1310247 辭「增加層厚度的方向」表示個別層堆疊的方向。在下列 說明中,有時候可表示成「垂直方向」。該(0·0·0.1.) 晶面係實質上平行於增加該單晶的層厚度的方向排列。該 措辭「實質上平行」表示較佳地相對於該垂直方向落在 - ±10度的範圍內的方向。若此方向偏離此範圍,該偏離將 引發堆疊在彼上的層中產生很多攣晶及結晶性缺陷。 _ 在上述的發明結構中,該單晶附有,在(1.0 . -1. 0.) 晶面或(1.1.-2.0.)晶面形成的表面上,六方鱗化硼爲底 的半導體層。舉例來說,在由2H -型、4H -型或6H -型六方 碳化矽單晶的(1.0.-1.0.)晶面或(1.1.-2.0.)晶面形成 的表面上配置該六方磷化硼爲底的半導體層。接著,在纖 維鋅礦型氮化鋁(A1N )製成或類似纖維鋅礦型GaN製成 的(1_0·-1.0.)晶面或(1.1 .-2.0.)晶面形成的表面上, 配置骸六方磷化硼爲底的半導體層。該六方磷化硼爲底的 半導體層較佳爲設置在藍寶石(α -ai2o3單晶)製成的單 Φ晶之(1.0.-1.0.)晶面(通稱「M平面或m平面」)或( 1.1.-2.0.)晶面(通稱「A平面或a平面」)形成的表面 上。 接著,該磷化硼爲底的半導體,如以下本文中詳細說 明的,使其(0.0·0.2.)晶面實質上垂直於該單晶的表面 排列並亦使η個連續性(〇·〇.〇.2.)晶面(η表示2或更大 的正整數)的間隔實質上等於該單晶的c-軸長度(( 0.0.0.1 .)晶面的間距)。該磷化硼爲底的半導體層η個 連續性(〇.〇.0.2.)晶面的間隔及該單晶的c-軸長度就長 -43- (41) 1310247 期而言相匹配。附帶地,該六方磷化硼爲底的半 (0.0.0.2.)晶面實質上垂直於上述單晶的表面 措辭「實質上垂直」表示較佳地相對於該垂直方 的範圍。若此方向偏離此範圍,該偏離將引發堆 的層中產生很多攀晶及結晶性缺陷。 該六方磷化硼爲底的半導體層可藉由上述的 方法形成在由例如上述晶面形成的的表面上。此 φ由例如氣體來源MBE法或化學束磊晶(CBE) 空環境下形成層的生長手段來實行。 舉例來說,在該六方單晶的較佳晶面形成的 藉由常壓(實質上大氣壓力)或減壓MOCVD法 磷化硼爲底的半導體層時,具有依平行於增加層 的方向(垂直於上述單晶表面的方向)間隔開的 排列的(0.0.0.2)晶面的六方磷化硼爲底的半導 由下列形成:(a)使生長溫度爲750 °C或更高 鲁更低,(b)使供至該生長反應系統的磷(P)來 B)來源的濃度比例(所謂的V/III比例)落在 高及5 00或更低的範圍內,及(c)使該磷化硼 導體層的生長速率爲每分鐘20奈米或更大及每j 米或更小。 該六方磷化硼爲底的半導體層的生長速率, 時間供至該生長反應系統的例如硼(B )等III 素的濃度提高時,係實質上正比於上述生長溫度 濃度提高。接著,當每單位時間供至該生長反應 導體層的 而排列, 向±10度 疊在彼上 氣相生長 形成可藉 法等在真 表面上, 形成六方 厚度方向 方式規則 體層可藉 .8 50。。或 源對硼( 400或更 爲底的半 +鐘30奈 當每單位 族組成元 範圍內的 系統的例 -44 - (42) 1310247 如硼等111族組成元素的濃度固定時,生長速率 溫度增高而提高。在落到7 5 0。(:以下的低溫時, (B)來源及該磷(P)來源並未充分地進行熱 以生長速率突然掉落且將無法達到上述的較佳生 . 同時,超過850 °C的溫度提高的缺點爲突然引發 . 組成式B6P的聚合磷化硼晶體的形成。 在使用膦(PH3 )作爲磷來源及三乙基硼( -擊)作爲硼來源的MOCVD法形成形成該六方BP 中’舉例來說’此形成係藉由將生長溫度固定在 而實行,供至該生長反應系統的原料濃度比例, 該PH3/(C2H5)3B比例在45〇下,且生長速率在; 奈米下。 爲了達到在該六方單晶的較佳晶面形成的表 地形成具有依垂直六方磷化硼爲底的半導體層表 平行配置的(0·0.0.2.)晶面之六方磷化硼爲底 鲁層的目的,該磷化硼爲底的半導體層的生長較佳 在該表面的不需要物質已經脫附之後開始。該磷 的半導體層較佳地,舉例來說,在該六方單晶被 過就該六方磷化硼爲底的半導體層生長而言較佳 度之後生長,換言之加熱到超過850°C的溫度以 吸附在該六方單晶表面上的分子的脫附。該六方 底的半導體層,接在吸附分子的脫附之後,較佳 六方單晶表面上,同時由於脫附而獲得清潔的表 不動地保持清潔。有關生長該六方磷化硼爲底的 將隨生長 因爲該硼 分解,所 長速率。 例如具有 (c2h5)3b 層的情況 8 00。。下 換言之, 每分鐘25 面上穩定 面的方向 的半導體 地在吸附 化硼爲底 加熱至超 溫度的溫 便引發被 磷化硼爲 爲長在該 面仍完整 半導體層 -45 - (43) 1310247 的手段,在減壓環境下進行生長之高真空或減壓化學氣相 沈積(CVD)法的環境下進行生長的MBE法或CBE法證 明都適合。 在例如上述較佳晶面形成的六方單晶的清潔表面上, 可穩定地形成相對於如上述六方單晶的c-軸長度顯露長期 相配的六方磷化砸爲底的半導體層。第1 8圖槪略地舉例 說明由六方磷化硼爲底的半導體層顯示及本發明設計的長 ©期相配的外觀。此圖舉例說明六方單晶6 1爲具有充當其 表面61A的(1.0.-1.0.)晶面之藍寶石且以接合到該表面 61A的方式配置的六方磷化硼爲底的半導體層 62爲 B〇.98AlQ.Q2P層時產生的長期相配的外觀。如該圖所示, (0·0.0·1·)晶面61B係依垂直於該表面61A的方向幾乎 平行狀態規則地排列。在經由接合表面62 Α接合到該六 方單晶的表面61A之六方磷化硼爲底的半導體層62內部 、,總共 6個(0.0.0.2.)晶面 62B平行於藍寶石的( φ 0·0.0.1.)晶面61B排列。明確地說,在該單晶61與六方 磷化硼爲底的半導體層62之間的接合系統60中,清潔藍 寶石的表面61A具有總共6個依相等於第18圖所示之藍 寶石c-軸長度(1.30奈米)(第18圖所示的c-軸長度) 的間距排列的(〇 . 0.0.2 .)晶面6 2 B。 換句話說,在該六方單晶6 1上,可依下列情況形成 六方磷化硼爲底的半導體層:其c-軸長度及(0.0.〇.2.) 晶面62B的總長度( = (n-l) xd) (n表示2或更大的正 整數,例如2、3、4、5或6,且d表示相鄰(0.0.0.2.) -46- (44) 1310247 平面之間的間隔)可相等,換言之處於長期相配的狀態。 (0·0.0.2.)晶面的數目等於至少2,因爲d的値由二相鄰 (0.0 _0_2.)晶面之間的間隔提供。也就是說’ η的値爲2 或更大。 . 在依接合到該藍寶石的(1 · 〇 · -1 · 〇 ·)晶面形成的表面 上的方式配置的BQ.98Al〇.Q2P混合晶體層或BQ.99GaG.01P 混合晶體層中,如上所述,構成長期相配結構的( • φ 0·0.0.2.)晶面的數目爲6,換言之η爲6。然而,在依接 合到GaN的(1.0.-1.0.)晶面形成的表面上的方式配置的 BP層中η爲2。另外在依接合到A1N的(1.0.-1 ·0·)晶面 形成的表面上的方式配置的BP層中η爲2。接著,在依 接合到GaN或Α1Ν製成的單晶的(1.1.-2.〇·)晶面上的方 式配置的BP層中η爲2。 若上面要配置磷化硼爲底的半導體層的六方單晶表面' 未得到充分的清潔,具有依第18圖舉例說明的方式依序 •排列的(〇·〇·〇.2.)晶面的六方磷化硼爲底的半導體層, 舉例來說,由於留在表面上的吸附分子氧(〇)或水( η2ο )的負面反應,所以在以適當的穩定度製得時將遇到 阻礙。同樣地,若不屬於用於該六方磷化硼爲底的半導體 層生長的來源材料分子之例如一氧化碳(C 〇 )、二氧化 碳(co2)及氮(Ν2)等的不需要分子依吸附狀態留在該 六方單晶表面上時,缺點爲無法以適當的穩定度製得具有 前述長期相配結構的六方磷化硼爲底的半導體層。 在穩定地獲得能實現前述長期相配的六方磷化硼爲底S-36-(34) 1310247, on the surface formed by the (1.丨_2 〇) crystal plane of the aluminum nitride (AIN) single crystal substrate or the single crystal layer' or by (1.0.-1.0 .) The surface on which the crystal faces are formed. For example, a hexagonal GaN single crystal layer having a (ι.ι·-2·ο.) crystal plane as its surface or a Ν1 Ν single crystal layer can be obtained by, for example, using a solid source or a gas source such as VIB E method. The phase growth mode is formed on, for example, a bottom layer formed of sapphire having a (2) crystal plane as its surface. # The hexagonal single crystal layer has a surface formed by a (1.1.-2.0.) crystal plane or a (1.0.-1.0.) crystal plane having a (0.0.0.1.) crystal plane regularly arranged in a direction perpendicular to the surface. This fact will be explained below with reference to the crystal structure of the hexagonal material segment exemplarily illustrated in Fig. 13. Figure 13 is a schematic diagram illustrating the arrangement of atoms in the joint region. Referring to Fig. 13, a hexagonal compound semiconductor material 10 and a hexagonal phosphide-based semiconductor material 12 are formed in a mutually bonded manner and the wurtzite-type hexagonal compound semiconductor material 10 has a perpendicular to it (1.〇.-Φ 1 · 0 .) The (0.0.0 _ 1 ·) crystal plane 1 1 formed by the surface formed by the crystal face 10 a. In the (〇.〇.0.1 _) crystal face 11, a group II atomic plane 11a having a regularly arranged lanthanum element and a group V atomic plane lib having a regularly arranged group V element are alternately formed. On the surface 10a having atomic planes 11a and lib formed of almost different elements alternately regularly exposed to form the hexagonal compound single crystal 10, also in order to achieve a group III atom containing, for example, boron (B) or the like. The atomic plane and the atomic plane containing a group V atom such as phosphorus (P) are alternately arranged alternately, and the boron nitride-based semiconductor layer 12 having no reverse phase boundary can be effectively formed. -37- (35) 1310247 Incidentally, the phrase "without inverse boundary" or "without reverse boundary" as used in the present invention means that there are actually five boundaries/square centimeters or less of density at the boundary, including There is no inversion boundary. The hexagonal phosphide-based semiconductor layer having no reverse boundary can be formed by a vapor phase growth means of the above-described hexagonal phosphide-based semiconductor layer. In the case where this formation is carried out by the MOCVD method, for example, the growth temperature is preferably 75 ° C or higher and 1 200 ° C or lower. If the temperature falls below 750 φ °C, since it will hinder the boron source and the phosphorus source from being sufficiently thermally decomposed, it proves to be disadvantageous for promoting the growth of the hexagonal phosphide-based semiconductor layer without the reverse boundary. Growth at temperatures in excess of 12 00 ° C proves to be unsuitable because of the lack of crystal faces of the semiconductor layer forming the hexagonal phosphide boring to cause a hindrance in obtaining a single crystal layer having no reverse boundary. In particular, it has been difficult to stably form a hexagonal phosphide-based semiconductor layer having no reverse boundary because it will cause an lack of an atomic plane formed by phosphorus (P) constituting a hexagonal phosphide-based semiconductor layer. # Next, when a hexagonal phosphide-based semiconductor layer having no inversion boundary is formed by MOCVD, the phosphorus (P) source to the growth system is boron (for the purpose of forming a P-type conductive layer). B) The ratio of sources (so-called V/III ratio) is preferably 120 or less. Furthermore, the V/III ratio is preferably between 20 or higher and 50 or lower. Next, in order to form a semiconductor layer having a hexagonal phosphide-based bottom which exhibits η-type conductivity without a non-phase boundary, the above V/III ratio is preferably 150 or more. Further, the V/III ratio is preferably 400 or more and 1 400 or less. When a hexagonal single crystal-38-(36) 1310247 layer having a (1.1.-2.0.) crystal plane serving as its surface is used, the surface energy can form a hexagonal hexagonal via the (1.1.-2.0.) to the surface thereon. A boron nitride-based semiconductor layer is grown in an epitaxial manner by atomic arrangement on the surface of a single crystal, acting as a (1.1__2.0.) crystal plane on its surface. When a hexagonal single crystal layer having a (1.0 -1 _ 0 _) crystal plane is used, the surface can be bonded to the hexagonal semiconductor layer of the surface via its (1·〇.-1.0·) crystal plane. It inherits on the surface of the hexagonal single crystal and grows in an epitaxial manner, and can have a ( ) crystal plane serving as its surface. For the sake of further explanation with reference to the schematic diagram of Fig. 13, the (1.1.-2.0.) crystal plane of the surface 12a or the inner side of the (1.0.-1.0.) square boron phosphide-based semiconductor material 12, (〇. 〇.〇1 3 is regularly arranged perpendicular to its surface 12a. This (I crystal face 13 is alternately formed in a steroid atomic plane 13a having a regularly arranged group III | and a regularly arranged V group 5 The inside of the group V atom plane 13b of Lu). That is, in the surface 12a of the body layer 12 formed by the hexagonal phosphide formed by the ( ) crystal plane or the (1.0.-1.0.) crystal plane, the 构成·〇 .〇.1.) The crystal plane atomic plane 13a and the group V atomic plane 13b are alternately repeated. As a result, the hexagonal group III nitride having a (1.1.-2.0.) crystal plane 1.0.) crystal plane serving as its surface is formed. The semiconductor layer is effectively, for example, an underlayer for the purpose of forming a hexagonal group III nitrogen layer having no reverse phase boundary. The crystal plane is bonded to the six and can have a surface on which the boron phosphide is formed as an atomic arrangement of 1.0.-1.0. Having a hexagonal plane serving as a crystal plane 0.0.0·1.) I boron (B 6-boron boron (P; 1.1.-2.0. bottom semi-conducting 13 of the III ground regular row or (1 · 0 - treated, lifted semi-conducting -39- (37) 1310247 in the presence of its surface (1.1_-2·0.) On the hexagonal semiconductor layer of the crystal plane, crystals can be formed via this (1.1.-2.0.) to the surface and have a non-polarity (1 · 1 _ -2.0) ·) Hexagonal nitride semiconductor layer. The phrase "non-face" as used herein means the charge attached to the plane of the group III atom and the charge on the plane of the group V atom due to the plane of the group III atom and the plane V. Exposure to the same amount so that the surface and polarity cancel out and neutralize the surface. In order to join to have a (1·1.-2·0·) crystal that acts as its surface, there is a non-polar (1.11 - 2.0) that acts as its surface. The (0.0.0.1.) crystal plane in the hexagonal compound semiconductor layer disposed in the manner of the hexagonal phosphorus-based semiconductor layer of the crystal face is ruled perpendicular to the direction of the surface. a (0.0·0· 1.) crystal plane parallel to the hexagonal phosphide-based semiconductor. The method of bonding, therefore, can form a very small amount of inversion boundary and contain only a small amount of twins and A hexagonal compound semiconductor layer which is superior in crystallinity and superior in quality. Next, on a semiconductor layer having a crystal plane of phosphide as a surface of (]_·〇·_ ί·0.) serving as a surface thereof, formation can be formed via Its (1.0.-1 surface is bonded to the surface and has a non-polar (1.0. crystal plane hexagonal group III nitride semiconductor layer serving as its surface. In order to bond to have a (1.0.-1.0.) crystal serving as its surface The (0.0.0.1·) crystal plane is perpendicular to the surface in a hexagonal compound semiconductor layer having a hexagonal phosphorus-based semiconductor layer serving as a nonpolar (1.0 to 1.0.) crystal plane of its surface Directional rules. Further, the polar surface of the semiconductor phosphide surface of the semiconductor phosphide bonded to the hexagonal phosphide boring is attached to the atomic plane and has boron in the portion, and the inner layer of the alignment layer is bonded. The hexagon of the defect • 0 ·) crystal - 1.0.) and the boron is in the middle, Arranging the inner layer of the layer - «S. -40 - (38) 1310247 (0.0.0.1.) crystal plane. This bonding mode, therefore, can be formed in a bonded manner with a very small amount of inverted boundary and contains only a small amount of stacking A hexagonal compound semiconductor layer which is defective and superior in crystallinity. In particular, the hexagonal phosphide-based semiconductor layer is advantageously formed using a monomeric boron phosphide (BP) layer. This is because the number of constituent elements required in this case is small as compared with the case of forming the above-described multiple mixed crystals based on boron phosphide, and thus the formation can be conveniently carried out without carrying - φ to control the complexity encountered when forming the composition ratio of the elements. Furthermore, it is selected to form the hexagonal compound semiconductor layer using aluminum nitride-gallium (composition formula: AlxGai_xN (0SXS1), and thus the AlxGai.xN layer formed is formed by a good lattice constant matching between boron phosphide and aluminum nitride-gallium. Containing only a small amount of crystalline defects. For example, via its (1.1.-2.0.) crystal plane bonding to a BP layer having a (1.1.-2.0.) crystal plane serving as its surface and having its surface ( 1.1.-2.0.) The GaN layer of the crystal face has almost no appreciable signs of twinning. The layer made of ® has excellent quality and has no reverse phase boundary, even through its (1.0.-1.0.) crystal plane bonding. The A1N layer having a BP layer serving as a (1·〇·-1.0.) crystal plane as its surface and having a (1.0.-1.0.) crystal plane serving as its surface shows almost no appreciable twinning and outward The same is true for the excellent quality layer having no reverse phase boundary. The hexagonal phosphide-based semiconductor layer and the hexagonal compound semiconductor layer have inverted boundaries, which can be distinguished, for example, by visually observing the TME image of the cross section. The phrase "no inversion boundary" is used in the present invention, for example , indicating that the density of the boundary is actually 5 boundaries / flat -41 - (39) 1310247 centimeters or less 'including the case without the inversion boundary. The hexagonal phosphorus can be studied by the electron diffraction method using TEM Boron-based semiconductor layers and the presence of twinning and stacking defects in the anti-phase boundary of the octagonal compound semiconductor layer. When the electron diffraction image shows the spread of divergence caused by additional dots or stack defects caused by twinning In the case of an indication, the present invention adopts a rule claiming that there is no twinning or stacking defects. For example, 'for example, a hexagonal compound semiconductor layer having a hexagonal • lanthanum nitride semiconductor layer such as the above nonpolar crystal face can be effectively used as A light-emitting portion for forming a nitride semiconductor light-emitting device capable of inducing high-intensity visible light band or ultraviolet light band light emission. It can also be effectively used as an electron transport layer (channel layer) or electron for manufacturing a field effect transistor (FET). a supply layer or a contact layer for forming an ohmic electrode such as a source or a drain or the like. The present invention 'in the above-described inventive structure enables the above phosphorus The boron-based semiconductor layer is formed inside such that the crystal plane can be substantially parallel to the thickness direction of the layer and η continuity (0.0.0.2 .) crystal plane (η indicates The distance of 2 or more positive integers is substantially equal to the c-axis length of the above single crystal. Incidentally, in the above-described inventive structure, the number η of the (0.0.0·2·) crystal faces is preferably 6 Or less. In the above-described inventive structure, when the hexagonal single crystal used is a bulk single crystal or a single crystal layer, it is particularly preferable to use a direction (growth direction) which is substantially parallel to the thickness of the layer (the growth direction). A hexagonal single crystal of a (0.0 · 0 · 1 ·) crystal plane aligned in the direction. The surface of this single crystal, therefore, for example, is formed by a (1.0.-1.0·) crystal plane or a (1.1.-2.0.) crystal plane. The measure used here -42- (40) 1310247 The phrase "increasing the direction of the layer thickness" indicates the direction in which the individual layers are stacked. In the following descriptions, sometimes it can be expressed as "vertical direction". The (0·0·0.1.) crystal plane is substantially parallel to the direction in which the layer thickness of the single crystal is increased. The phrase "substantially parallel" means a direction that preferably falls within a range of - ± 10 degrees with respect to the vertical direction. If this direction deviates from this range, the deviation will cause many twins and crystalline defects to be generated in the layers stacked on top of it. In the above-described inventive structure, the single crystal is provided with a semiconductor layer having a hexagonal squamous boron as a base on a surface formed by a (1.0.-1.0.) crystal plane or a (1.1.-2.0.) crystal plane. . For example, the hexagonal phosphorus is disposed on a surface formed by a (1.0.-1.0.) crystal plane or a (1.1.-2.0.) crystal plane of a 2H-type, 4H-type or 6H-type hexagonal tantalum carbide single crystal. A boron-based semiconductor layer. Next, on a surface formed of wurtzite-type aluminum nitride (A1N) or a (1_0·-1.0.) crystal plane or a (1.1.-2.0.) crystal plane made of wurtzite-type GaN, A hexagonal phosphide boron-based semiconductor layer. The hexagonal phosphide-based semiconductor layer is preferably provided on a single Φ crystal (1.0.-1.0.) crystal plane (generally referred to as "M plane or m plane") made of sapphire (α-ai2o3 single crystal) or (1.1.-2.0.) The surface formed by the crystal face (commonly referred to as "A plane or a plane"). Next, the boron phosphide is a bottom semiconductor, as described in detail herein below, such that the (0.0.0.2.) crystal plane is substantially perpendicular to the surface of the single crystal and also makes n continuity (〇·〇 The spacing of the 〇.2.) crystal faces (η represents a positive integer of 2 or more) is substantially equal to the c-axis length of the single crystal (the pitch of the (0.0.0.1) plane). The interval of the n-th continuity (〇.〇.0.2.) crystal plane of the phosphide-based semiconductor layer and the c-axis length of the single crystal are matched in the period of -43-(41) 1310247. Incidentally, the hexagonal (0.0.0.2.) crystal plane of the hexagonal phosphide is substantially perpendicular to the surface of the single crystal. The phrase "substantially perpendicular" means a range preferably relative to the vertical. If this direction deviates from this range, the deviation will cause a lot of crystal growth and crystal defects in the layer of the stack. The hexagonal boron phosphide-based semiconductor layer can be formed on the surface formed of, for example, the above crystal face by the above method. This φ is carried out by, for example, a growth means for forming a layer in a gas source MBE method or a chemical beam epitaxy (CBE) atmosphere. For example, when a boron nitride-based semiconductor layer is formed by a normal pressure (substantial atmospheric pressure) or a reduced pressure MOCVD method in a preferred crystal plane of the hexagonal single crystal, it has a direction parallel to the added layer ( The hexagonal phosphide-based semi-conducting of the (0.0.0.2) crystal planes arranged perpendicularly to the direction of the surface of the single crystal is formed by: (a) making the growth temperature 750 ° C or higher Low, (b) causing the concentration ratio of phosphorus (P) to B) supplied to the growth reaction system (so-called V/III ratio) to fall within a range of high and 500 or lower, and (c) The growth rate of the boron phosphide conductor layer is 20 nm or more per minute and every j m or less. The growth rate of the hexagonal phosphide-based semiconductor layer is substantially increased in proportion to the above-mentioned growth temperature concentration when the concentration of the III element such as boron (B) is increased in the growth reaction system. Then, when it is supplied to the growth reaction conductor layer per unit time, it is arranged to be vapor-phase grown on the surface of ±10 degrees, and can be formed on the true surface by a method of forming a hexagonal thickness direction. . . Or source-to-boron (400 or more bottom half + 30 奈 当 例 每 每 每 每 每 每 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Increase and increase. When it falls to 750. (: The following low temperature, (B) source and the source of phosphorus (P) are not sufficiently heat to suddenly drop the growth rate and will not reach the above preferred life. At the same time, the disadvantage of temperature increase above 850 °C is sudden initiation. Formation of polymerized boron phosphide crystals of composition B6P. MOCVD using phosphine (PH3) as a phosphorus source and triethylboron (-batter) as a boron source Forming the formation of the hexagonal BP 'for example', the formation is carried out by fixing the growth temperature, the ratio of the raw material concentration to the growth reaction system, the ratio of the PH3/(C2H5)3B is 45 ,, and The growth rate is under the nanometer. In order to achieve the surface formed on the preferred crystal plane of the hexagonal single crystal, a (0·0.0.2.) crystal plane having a parallel arrangement of a semiconductor layer with a vertical hexagonal phosphide as a base is formed. The hexagonal phosphide is the purpose of the ruthenium layer, the phosphating The growth of the bottom semiconductor layer preferably begins after the unwanted material of the surface has been desorbed. Preferably, the phosphorous semiconductor layer is, for example, the hexagonal single crystal is passed over the hexagonal boron phosphide. The growth of the semiconductor layer is preferably followed by growth, in other words, heating to a temperature exceeding 850 ° C to adsorb the desorption of molecules on the surface of the hexagonal single crystal. The hexagonal semiconductor layer is attached to the adsorption molecule. Thereafter, the surface of the hexagonal single crystal is preferably cleaned while being cleaned by desorption, and the growth of the hexagonal phosphide is related to the growth of the boron due to the decomposition, for example, having (c2h5). In the case of the 3b layer, 8 00. In other words, the semiconductor ground in the direction of the stabilizing surface on the 25th surface per minute is heated to the temperature of the superheated temperature of the adsorbed boron, and the phosphide is long in the semiconductor. Layer-45 - (43) 1310247 means that the MBE or CBE method for growth under high vacuum or reduced pressure chemical vapor deposition (CVD) in a reduced pressure environment is suitable. On the clean surface of the hexagonal single crystal formed by, for example, the above-described preferred crystal plane, a semiconductor layer which is long-matched with hexagonal phosphide as a base of the c-axis length of the hexagonal single crystal described above can be stably formed. The figure exemplifies a semiconductor layer display composed of hexagonal phosphide boring and a long-term matching appearance of the design of the present invention. This figure illustrates that the hexagonal single crystal 61 has a surface (61.-1.0) serving as its surface 61A. .) The sapphire of the crystal face and the hexagonal phosphide-based semiconductor layer 62 disposed to be bonded to the surface 61A is a long-term matching appearance produced when the B 〇 98 AQ.Q2P layer is formed. As shown in the figure, the (0·0.0·1·) crystal planes 61B are regularly arranged in a state of being substantially parallel to the direction perpendicular to the surface 61A. Inside the hexagonal phosphide-based semiconductor layer 62 bonded to the surface 61A of the hexagonal single crystal via the bonding surface 62, a total of six (0.0.0.2.) crystal faces 62B are parallel to the sapphire (φ 0·0.0) .1.) The crystal faces 61B are arranged. Specifically, in the bonding system 60 between the single crystal 61 and the hexagonal phosphide-based semiconductor layer 62, the cleaned sapphire surface 61A has a total of six sapphire c-axis equivalent to that shown in FIG. The (#.30. In other words, on the hexagonal single crystal 61, a hexagonal phosphide-based semiconductor layer can be formed under the following conditions: its c-axis length and (0.0.〇.2.) the total length of the crystal face 62B (= (nl) xd) (n represents a positive integer of 2 or more, such as 2, 3, 4, 5 or 6, and d represents the interval between adjacent (0.0.0.2.) -46- (44) 1310247 planes ) can be equal, in other words in a long-term match. The number of (0·0.0.2.) crystal faces is equal to at least 2 because the 値 of d is provided by the interval between two adjacent (0.0 _0_2.) crystal faces. That is to say, the 値 of η is 2 or more. In the BQ.98Al〇.Q2P mixed crystal layer or the BQ.99GaG.01P mixed crystal layer which is disposed on the surface formed by the (1 · 〇· -1 · 〇·) crystal plane of the sapphire, as described above The number of (• φ 0·0.0.2.) crystal faces constituting the long-term matching structure is 6, in other words, η is 6. However, η is 2 in the BP layer disposed in such a manner as to be bonded to the surface formed by the (1.0.-1.0.) crystal plane of GaN. Further, η is 2 in the BP layer disposed so as to be bonded to the surface formed by the (1.0.-1 · 0·) crystal plane of A1N. Next, η is 2 in the BP layer disposed in a manner of being bonded to the (1.1.-2.〇·) crystal plane of the single crystal of GaN or Α1Ν. If the surface of the hexagonal single crystal on which the boron nitride-based semiconductor layer is to be disposed is not sufficiently cleaned, the (面·〇·〇.2.) crystal plane arranged in the order illustrated in Fig. 18 is sequentially arranged. a hexagonal phosphide-based semiconductor layer, for example, due to the negative reaction of adsorbed molecular oxygen (〇) or water (η2ο) remaining on the surface, it will be hindered when it is produced with appropriate stability. . Similarly, if it is not a source material molecule for the growth of the hexagonal phosphide-based semiconductor layer, an unnecessary molecule such as carbon monoxide (C 〇), carbon dioxide (co 2 ), and nitrogen (Ν 2 ) remains in the adsorption state. On the surface of the hexagonal single crystal, there is a disadvantage in that a hexagonal phosphide-based semiconductor layer having the aforementioned long-term compatibility structure cannot be obtained with appropriate stability. Stablely obtaining the hexagonal phosphide boron which can achieve the aforementioned long-term compatibility

S -47- (45) 1310247 的半導體層時帶來的缺點係由於事實上 干擾構成該六方磷化硼爲底的半導體只 面的依序排列而造成。該缺點的另一個 附的分子終究可能源於平面指數與該 同的晶面形成。有關該缺點又另一個成 該六方磷化硼爲底的半導體晶體不會長 區域。使具有長期相配結構的六方磷化 φ以接合狀態配置時,因此,重要的是爲 潔處理。 在真空環境下形成層的MBE法或 該六方單晶表面上的吸附分子存在可, 式高能電子繞射(RHEED )圖案察覺。 表面上,該RHEED影像假設環(環狀 主要源於該六方單晶表面的點或條痕狀 單晶表面上的分子物種可,舉例來說, ®收光譜法或紫外線吸收光譜法等的分析 再者,使該六方磷化硼爲底的半導 配置在該六方單晶表面上的時候,若生 分鐘20奈米或超過每分30奈米,任-礙能實現長期相配的六方磷化硼爲底的 定製造。這是因爲落至不到每分鐘20 將引起構成該(〇 · 〇 . 〇 · 2 .)晶面該磷(] 起足用於製造長期相配結構的(〇.〇·〇 損失。這也是因爲若生長速率高到超逋The disadvantage of the semiconductor layer of S-47-(45) 1310247 is due to the fact that it interferes with the sequential arrangement of the semiconductor-only planes constituting the hexagonal phosphide. Another attached molecule of this disadvantage may ultimately result from the formation of a plane index with the same crystal plane. Another semiconductor component in which the hexagonal phosphide is based on this disadvantage does not have a long region. When the hexagonal phosphating φ having a long-term matching structure is disposed in a joined state, it is important to clean it. The MBE method of forming a layer in a vacuum environment or the adsorbed molecules on the surface of the hexagonal single crystal may be detected by a high energy electron diffraction (RHEED) pattern. On the surface, the RHEED image assumes a ring (the ring is mainly derived from the point on the surface of the hexagonal single crystal or the molecular species on the surface of the streaked single crystal, for example, analysis by spectroscopy or ultraviolet absorption spectroscopy) Furthermore, when the hexagonal phosphide-based semiconducting layer is disposed on the surface of the hexagonal single crystal, if the lifetime is 20 nm or more than 30 nm per minute, the long-term compatibility of the hexagonal phosphide boron can be achieved. This is because the falling to less than 20 per minute will cause the formation of this (〇· 〇. 〇· 2 .) crystal face. The phosphorus (] is used to make long-term compatible structures (〇.〇· 〇 loss. This is also because if the growth rate is high enough

吸附不需要的分子 I 的(0.0 · 0 · 2 ·)晶 成因在於事實上吸 (0_0·0.2.)晶面不 因,可引例事實上 在吸附分子留存的 硼爲底的半導體層 該六方單晶提供清 CBE法的例子中, 舉例來說,由反射 若吸附的分子留在 )或後光圖案而非 態。吸附在該六方 藉由例如紅外線吸 手段來分辨。 體層依接合的方式 長速率落至不到每 -種偏離都將造成阻 '半導體層的充分穩 奈米的低生長速率 ,)原子的擴散並引 .2 .)晶面中的數目 [每分鐘3 0奈米, (S -48- (46) 1310247 該(0.0.0.2.)晶面必然會形成超過足用於製造該長期相 配結構的(0.0·0·2.)晶面數目的量(換言之,本發明中 的η)。 依等同於該六方單晶表面的c-軸的距離排列以實現該 . 長期相配的六方磷化硼爲底的半導體層的(〇.〇.0.2.)晶 面數目,換言之本發明的η,舉例’來說,可由電子繞射分 '析或運用穿透式電子顯微鏡(ΤΕΜ)的斷面ΤΕΜ技術獲 • ϋ得的晶格影像來硏究。符合本發明的長期相配結構形成時 ,由該電子繞射影像上的六方單晶的(0·0.0.1.)晶面發 出的繞射點出現相當於由該六方磷化硼爲底的半導體層的 (0.0.0.2.)晶面發出的繞射點(η-1 )倍的間距。 特別是,藉由形成η爲8或更小,較佳地6或更小, 的長期相配結構,可獲得含僅小量不合適位錯且優於結晶 性的六方磷化硼爲底的半導體層。該六方磷化硼爲底的半 導體層中依垂直於鄰近該磷化硼爲底的半導體層與該六方 鲁單晶之間的界面的區域中之六方單晶的c-軸的方向產生的 不合適密度將正正比上述的η値而提高。發明人根據其硏 究的結果確認η爲6的長期相配結構將得到優異品質的六 方磷化硼爲底的半導體層,使其降至不到引起局部劣等擊 穿電壓並顯露僅小密度的不合適位錯。 η爲2或更大及6或更小的長期相配結構的六方磷化 硼爲底的半導體層可有效地作爲用於形成優於結晶性的優 異品質生長層的底層,因爲其含有僅小密度的不合適位錯 。適合配置在該長期相配結構的磷化硼爲底的半導體層上 "49 - (47) 1310247 的層爲例如,舉例來說,SiC、ZnO、GaN、AIN、InN及 彼等的混合晶體 AlxGaYInzN(〇SX,Y,ZSl 及 X + Y + Z=l) 等的III族氮化物半導體形成的生長層。接著,有關該III 族氮化物半導體層的具體例,可引例含氮(N )及氮以外 的例如磷(P)及砷(As)等的V族元素之GaN丨-YPY( °^γ < 1 )及GaNnAsYCOSYCl)形成的生長層。 藉由利用此III族氮化物半導體層,其係形成於具有 #長期相配結構且含僅小量不合適位錯且當作底層的六方磷 化硼爲底的半導體層上,可建構能產生高強度發光的p-n 接面異質結構。舉例來說,可製造雙異質(DH)接合發 光零件以供用於具有充當包覆層的AlxGaYN ( 0SX,Y51 ’ X + Y=l)層及充當發光層的GaxIr^-xNCtXXSl)層之 例如LED等的發光裝置。 不用化合物半導體發光裝置,蕭特基能障ME SFET可 藉著運用含僅小密度的結晶性缺陷且優於結晶性的111族 鲁氮化物半導體層當作電子傳輸層(通道層)而形成。該通 道層可’舉例來說,由避開雜質的刻意添加的未摻雜的 η-型GaN層形成。含僅小密度的結晶性缺陷的ηι族氮化 物半導體層有益於獲得優於高頻性質的Μ E S F E T的目的, 因爲該半導體層顯露出高電子移動性。 本發明,在上述發明的結構中,使上述磷化硼爲底的 半導體層能由六方單體磷化硼形成並能建構該磷化硼爲底 的半導體層以便以電極供到其表面。 用於上述發明結構中的六方磷化硼爲底的半導體層係 -50- (48) 1310247 藉著使用六方單晶層或單晶基材充當其底層而形成。特別 是,在缺乏極性或沒有極性的晶面形成的六方單晶層或單 晶基材的表面上,可有效地形成該六方磷化硼爲底的半導 體層。這是因爲缺乏或沒有極性的六方單晶層或單晶基材 . 的晶面形成的表面具有能經排列以方便地產生六方磷化硼 爲底的半導體層。 ~ 在元素A與元素B的組合製成的六方化合物材料的 -φ單晶中的措辭「適用於六方磷化硼爲底的半導體層的非極 性晶面」,舉例來說,表示暴露相同表面密度的元素 A 與元素B之表面。此說明的晶面爲,舉例來說,2H-型 SiC、纖維鋅礦型GaN或A1N的(1_1·-2.0·)晶面。藍寶 石的(1.1.-2.0.)晶面也合乎此說明。 針對形成在缺乏或沒有極性的六方單晶層或單晶基材 的晶面上的磷化硼爲底的半導體層的製造而選擇具有小離 子性的材料時,可穩定地形成六方磷化硼爲底的半導體層 鲁。該磷化硼爲底的半導體層具有小離子性時,因爲其與缺 乏或沒有極性的六方單晶層或單晶基材具有小離子性差異 ’所以能穩定形成含僅小量的例如攣晶等的結晶性缺陷的 優異品質磷化硼爲底的半導體層。該磷化硼爲底的半導體 當中’僅該單體磷化硼(ΒΡ)作爲用於穩定地製造六方 磷化硼爲底的半導體層的理想材料,因爲離子性(fi )小 到0.006 (參照,舉例來說’ 「半導體的能帶與鍵結」 ’ (Physics Series 38 ),由 J · C P h i 11 i p s 編寫且由The (0.0 · 0 · 2 ·) crystal origin of the undesired molecule I is caused by the fact that the (0_0·0.2.) crystal plane is not caused by the fact that the boron-based semiconductor layer retained in the adsorbed molecule is actually a hexagonal single layer. The crystal provides an example of a clear CBE method, for example, by reflection if the adsorbed molecules remain) or after the light pattern is not. The adsorption is resolved in the hexagon by means of, for example, infrared absorption. The length of the bulk layer in the manner of bonding to less than each deviation will result in a low growth rate of the semiconductor layer's sufficient stable nanometer, and the atomic diffusion and the number of crystal planes. 30 nm, (S -48-(46) 1310247 The (0.0.0.2.) crystal plane must form an amount exceeding the number of (0.0·0·2.) crystal faces sufficient for the fabrication of the long-term mating structure ( In other words, η) in the present invention is arranged in a distance equivalent to the c-axis of the surface of the hexagonal single crystal to realize the long-term matching of the hexagonal phosphide-based semiconductor layer (〇.〇.0.2.) crystal. The number of faces, in other words, the η of the present invention, for example, can be obtained by electron diffraction or by using a cross-sectional ΤΕΜ technique of a transmission electron microscope (ΤΕΜ) to obtain a lattice image obtained. When the long-term matching structure of the invention is formed, a diffraction point emanating from a (0·0.0.1.) crystal plane of a hexagonal single crystal on the electron diffraction image appears to correspond to a semiconductor layer based on the hexagonal phosphide boron. (0.0.0.2.) The pitch of the diffraction point (η-1) times the crystal plane emits. In particular, by forming η to be 8 or less, Preferably, a long-term matching structure of 6 or less can obtain a semiconductor layer containing only a small amount of unsuitable dislocations and superior to crystallinity of hexagonal phosphide boron. The hexagonal phosphide is a bottom semiconductor layer. The unsuitable density generated in the direction of the c-axis of the hexagonal single crystal in a region perpendicular to the interface between the semiconductor layer adjacent to the phosphide boron and the hexagonal single crystal will be improved proportionally to the above η値According to the results of the study, the inventors confirmed that the long-term matching structure with η of 6 will obtain a hexagonal phosphide-based semiconductor layer of excellent quality, which will be reduced to less than a local inferior breakdown voltage and reveal only a small density. Inappropriate dislocations. A hexagonal phosphide-based semiconductor layer having a long-term matching structure of η of 2 or more and 6 or less can be effectively used as a bottom layer for forming an excellent quality growth layer superior to crystallinity because It contains a small density of inappropriate dislocations. The layer suitable for the boron phosphide-based semiconductor layer of the long-term matching structure is "49 - (47) 1310247, for example, for example, SiC, ZnO, GaN , AIN, InN and their mix a growth layer formed of a group III nitride semiconductor such as a crystal of AlxGaYInzN (〇SX, Y, ZS1 and X + Y + Z = 1). Next, a specific example of the group III nitride semiconductor layer may be cited as nitrogen-containing (N) And a growth layer formed of GaN丨-YPY (°^γ < 1 ) and GaNnAsYCOSYCl of a group V element such as phosphorus (P) or arsenic (As) other than nitrogen. By using the group III nitride semiconductor layer, which is formed on a semiconductor layer having a #long-term matching structure and containing only a small amount of inappropriate dislocations and serving as a bottom layer of hexagonal phosphide boron, the structure can be produced high. Intensity-emitting pn junction heterostructure. For example, a double heterojunction (DH) bonded luminescent part can be fabricated for use with, for example, an LED having a layer of AlxGaYN (0SX, Y51 'X + Y=l) acting as a cladding layer and a layer of GaxIr^-xNCtXXSl) acting as a luminescent layer. Light-emitting devices. Without the compound semiconductor light-emitting device, the Schottky barrier ME SFET can be formed by using a group 111 luminide semiconductor layer containing only a small density of crystalline defects and superior in crystallinity as an electron transport layer (channel layer). The channel layer can be formed, for example, by an intentionally added undoped n-type GaN layer that avoids impurities. The ηι group nitride semiconductor layer containing only a small density of crystalline defects is advantageous for obtaining Μ E S F E T superior to high frequency properties because the semiconductor layer exhibits high electron mobility. According to the invention, in the structure of the above invention, the phosphide-boron-based semiconductor layer can be formed of hexagonal monomer phosphide and the phosphide-borated semiconductor layer can be constructed to be supplied to the surface by electrodes. The hexagonal phosphide-based semiconductor layer-50-(48) 1310247 used in the above structure of the invention is formed by using a hexagonal single crystal layer or a single crystal substrate as its underlayer. In particular, the hexagonal phosphide-based semiconductor layer can be efficiently formed on the surface of a hexagonal single crystal layer or a single crystal substrate formed by a crystal plane lacking polarity or polarity. This is because the surface of the hexagonal single crystal layer or the single crystal substrate lacking or having no polarity has a semiconductor layer which can be arranged to conveniently produce hexagonal phosphide boron as a base. ~ The wording "in the non-polar crystal plane of the hexagonal phosphide-based semiconductor layer" in the -φ single crystal of the hexagonal compound material prepared by the combination of the element A and the element B, for example, means that the same surface is exposed The surface of element A and element B of density. The crystal face of this description is, for example, a (1_1·-2.0·) crystal plane of 2H-type SiC, wurtzite type GaN or A1N. The crystal surface of the sapphire stone (1.1.-2.0.) also conforms to this description. When a material having a small ionic property is selected for the production of a phosphide-based semiconductor layer formed on a crystal face of a hexagonal single crystal layer or a single crystal substrate lacking or having no polarity, hexagonal boron phosphide can be stably formed. The bottom of the semiconductor layer is Lu. When the phosphide-based semiconductor layer has a small ionic property, since it has a small ionic difference with a hexagonal single crystal layer or a single crystal substrate having no or no polarity, it can stably form a small amount such as twin crystal. An excellent quality of crystalline defects such as phosphide boron as a base semiconductor layer. Among the phosphide-based semiconductors, 'only the monomer phosphide phosphide is an ideal material for stably producing a hexagonal phosphide-based semiconductor layer because the ionicity (fi) is as small as 0.006 (refer to For example, '"Singapore Series Bands" (Physics Series 38), written by J · CP hi 11 ips and by

Yoshioka Shoten K.K.出版,1 985 年,7 月 25 日,第 3 版Published by Yoshioka Shoten K.K., 1 985, July 25, 3rd edition

-51 - < S (49) 1310247 ,第5 1頁)。因爲砷化硼(B A s )具有0.0 0 2那麼小的f i (參照,舉例來說,上述「半導體的能帶與鍵結」’第 51頁),所以六方磷化硼爲底的半導體層也可由屬於含 BP的混合晶體之砷化硼(BASl-YPY其中〇 < Y^l )穩定地 形成。 特別是,具有小離子性並生長以獲得充當其表面的( 1.1.-2.0.)晶面的磷化硼爲底的半導體層由於含僅小量的 •攣晶及堆疊缺陷,所以可適當地作爲能達到沈積順應本發 明的電極的目的之半導體層。 無論所形成的磷化硼爲底的半導體層係六方晶體層與 否都可藉由例如電子繞射或X-射線繞射等的分析手段來 硏究。根據普通電子繞射分析,舉例來說,可看出接合到 該六方GaN單晶層的非極性晶面(1 .1.-2.0.)晶面上之單 體BP爲六方纖維鋅礦型晶體層。也可看出該六方BP晶 體層的表面構成非極性(1.1.-2.0.)晶面。 ® 該纖維鋅礦型六方單體BP的a-軸測量約0.319奈米 且,因此,與III族氮化物半導體層的六方AlxGai.x:N ( )的a-軸相同。針對六方磷化硼爲底的半導體層的 形成而選擇單體BP時,由於有良好的晶格配對,因此, 可在該層上形成優於結晶性的III族氮化物半導體層。形 成在缺乏或沒有極性的六方晶體上的磷化硼爲底的半導體 層可充當上層而成爲製造優於結晶性的III族氮化物半導 體層的助因,因爲該層優於結晶性。 ^ 配置在該六方磷化硼爲底的半導體層的歐姆電極可由 -52- (50) 1310247 各種不同的金屬材料或導電性氧化物材料形成。有關顯示 η-型傳導的磷化硼爲底的半導體層,舉例來說,n_型歐姆 電極可由任何合金形成,例如金(Au) —鍺(Ge)合金 或金-錫(Sn)合金。該η-型歐姆電極可由含稀土元素 的合金形成,例如鑭(La)-銘(Α1)合金。此外,該 η-型歐姆電極可由氧化物材料,例如ZnO,形成。 有關該P -型磷化硼爲底的半導體層,p -型歐姆電極可 φ由金(Au)—鋅(Zn)合金或金(Au)-鈹(Be)合金 形成。該P-型歐姆電極也可由銦(In)錫(Sn)氧化物( IΤ Ο)複合材料層形成。接觸電阻不足的歐姆電極較佳地 由具有約1 X 1 0 18 cm_3或更大的載子濃度的低阻抗層形成。 彼上面配置歐姆電極的層較佳爲低阻抗層,無論如何彼都 可爲具有刻意添加的雜質的摻雜層或避開雜質的刻意添加 的未摻雜層。在單體BP層的情況中,便於形成電極的n-型及P-型低阻抗層都可依未摻雜的形態輕易地獲得。 ® 該η-型及p-型歐姆電極常常都適當地配置在含僅小 量結晶性缺陷且優於結晶性的六方磷化硼爲底的半導體層 上。在優於結晶性的六方磷化硼爲底的半導體層上配置其 中之一歐姆電極,並鄰接地在形成於充當底層且優於結晶 性的上述層上的III族氮化物半導體層上配置其他歐姆電 極的規劃可助於產生優異品質的半導體裝置。 形成在六方磷化硼爲底的半導體層上的蕭特基接點可 由,舉例來說,例如鈦(Ti)等過渡金屬形成。也可由, 舉例來說,鉑(Pt )形成。優於結晶性且順應本發明的六 -53- (51) 1310247 方磷化硼爲底的半導體層之運用能形成僅伴有微不足道洩 漏電流的閘極。特別是,具有配置在高阻抗磷化硼爲底的 半導體層上的蕭特基接點的結構能形成僅伴有微不足道洩 漏電流且優於擊穿電壓的閘極。因此,此構造可助於製造 僅伴有微不足道洩漏電流且優於跨導性的高頻蕭特基能障 FET。高阻抗的磷化硼爲底的半導體層可利用藉由未摻雜 或摻雜η-型及p-型雜質中之一或二者而補償電力的高阻 φ抗六方單體ΒΡ層方便地形成。 有關六方磷化硼爲底的半導體層,用於引起歐姆接觸 或蕭特基接觸的金屬電極可由普通真空沈積法、電子束沈 積法、濺鍍法等等形成。氧化物材料,例如IT Ο及ΖηΟ, 可由普通物理成膜手段,例如濺鍍法及溼式成膜法,例如 凝膠法,形成。 本發明的實施例所涵蓋的化合物半導體裝置將參照圖 形作說明。在各自實施例中,相似的組成元素由相似的參 鲁考編號表示。底下將解釋第一個實施例。 實施例1 本發明將引用利用依接合到藍寶石塊狀晶體的(1 .1.-2.0 )晶面形成的表面上的方式配置的六方單體ΒΡ層而建 構化合物半導體LED的情況爲例子作明確地解釋。 第1圖槪略地舉例說明有關實施例1的LED平面結 構。然後,第2圖爲舉例說明該化合物半導體裝置LED 1 沿第1圖虛線II-II取得的槪略橫斷面。-51 - < S (49) 1310247, p. 5 1). Since boron arsenide (BA s ) has a small fi of 0.00 2 (refer to, for example, the above-mentioned "energy band and bonding of a semiconductor" - page 51), a hexagonal phosphide-based semiconductor layer is also used. Boron arsenide (BAS1-YPY, 〇<Y^l) belonging to a mixed crystal containing BP can be stably formed. In particular, a phosphide-based semiconductor layer having a small ionicity and grown to obtain a (1.1.-2.0.) crystal plane serving as a surface thereof may be appropriately formed because it contains only a small amount of twinning and stacking defects. As a semiconductor layer capable of achieving the purpose of depositing an electrode conforming to the present invention. The hexagonal crystal layer of the semiconductor layer which is formed of the boron phosphide as the base can be inspected by an analysis means such as electron diffraction or X-ray diffraction. According to ordinary electron diffraction analysis, for example, it can be seen that the monomer BP bonded to the non-polar crystal face (1.1.-2.0.) crystal plane of the hexagonal GaN single crystal layer is a hexagonal wurtzite crystal. Floor. It can also be seen that the surface of the hexagonal BP crystal layer constitutes a non-polar (1.1.-2.0.) crystal plane. The a-axis of the wurtzite type hexagonal monomer BP is about 0.319 nm and, therefore, is the same as the a-axis of the hexagonal AlxGai.x:N ( ) of the group III nitride semiconductor layer. When the monomer BP is selected for the formation of the hexagonal phosphide-based semiconductor layer, a good lattice pairing is formed, so that a group III nitride semiconductor layer superior in crystallinity can be formed on the layer. A boron nitride-based semiconductor layer formed on a hexagonal crystal lacking or having no polarity can serve as an upper layer to contribute to the fabrication of a group III nitride semiconductor layer superior to crystallinity because the layer is superior to crystallinity. The ohmic electrode disposed in the hexagonal phosphide-based semiconductor layer may be formed of -52-(50) 1310247 various metal materials or conductive oxide materials. Regarding the phosphide-based semiconductor layer showing η-type conduction, for example, the n-type ohmic electrode may be formed of any alloy such as gold (Au)-germanium (Ge) alloy or gold-tin (Sn) alloy. The η-type ohmic electrode may be formed of an alloy containing a rare earth element, such as a lanthanum (La)-Ming (Α1) alloy. Further, the η-type ohmic electrode may be formed of an oxide material such as ZnO. Regarding the P-type boron phosphide-based semiconductor layer, the p-type ohmic electrode can be formed of a gold (Au)-zinc (Zn) alloy or a gold (Au)-tellurium (Be) alloy. The P-type ohmic electrode may also be formed of an indium (In) tin (Sn) oxide (I Τ 复合) composite material layer. The ohmic electrode having insufficient contact resistance is preferably formed of a low-resistance layer having a carrier concentration of about 1 × 10 18 cm 3 or more. The layer on which the ohmic electrode is disposed is preferably a low-resistance layer, and in any case, it may be a doped layer having intentionally added impurities or a deliberately added undoped layer avoiding impurities. In the case of a monomeric BP layer, both the n-type and P-type low-resistance layers which facilitate electrode formation can be easily obtained in an undoped form. The η-type and p-type ohmic electrodes are often suitably disposed on a semiconductor layer containing only a small amount of crystalline defects and superior to crystalline hexagonal phosphide. One of the ohmic electrodes is disposed on the semiconductor layer superior to the crystalline hexagonal phosphide-based substrate, and is disposed adjacently on the group III nitride semiconductor layer formed on the above layer serving as the underlayer and superior to the crystallinity The planning of ohmic electrodes can help produce semiconductor devices of superior quality. The Schottky junction formed on the hexagonal phosphide-based semiconductor layer can be formed, for example, of a transition metal such as titanium (Ti). It is also possible, for example, to form platinum (Pt). The use of a semiconductor layer superior to crystallinity and compliant with the six-53-(51) 1310247 square boron phosphide of the present invention can form a gate with only a negligible leakage current. In particular, a structure having a Schottky junction disposed on a high-impedance boron phosphide-based semiconductor layer can form a gate with only a negligible leakage current and superior to a breakdown voltage. Therefore, this configuration can contribute to the fabrication of high frequency Schottky FETs that are only accompanied by negligible leakage current and are superior to transconductivity. The high-impedance boron phosphide-based semiconductor layer can utilize a high-resistance φ-resistant hexagonal monomer layer that compensates for power by undoping or doping one or both of η-type and p-type impurities. form. Regarding the hexagonal phosphide-based semiconductor layer, the metal electrode for causing ohmic contact or Schottky contact can be formed by ordinary vacuum deposition, electron beam deposition, sputtering, or the like. Oxide materials such as IT Ο and Ζ Ο can be formed by ordinary physical film formation means such as sputtering and wet film formation, for example, gel method. The compound semiconductor device covered by the embodiment of the present invention will be described with reference to the drawings. In the respective embodiments, similar constituent elements are represented by similar reference numbers. The first embodiment will be explained below. [Embodiment 1] The present invention will exemplify the case of constructing a compound semiconductor LED by using a hexagonal monomer layer which is bonded to the surface formed by the (1.1.-2.0) crystal plane of the sapphire block crystal. Explain. Fig. 1 schematically illustrates the planar structure of the LED relating to Embodiment 1. Next, Fig. 2 is a schematic cross-sectional view showing the compound semiconductor device LED 1 taken along the broken line II-II of Fig. 1.

-54- (52) 1310247 製造該LED 1所欲的堆疊結構100係使用具有充當 其表面的(1·1·-2·0·)晶面(通稱「A -平面」)之藍寶石 (α-氧化鋁單晶)基材作爲基材1 0 1而形成。在該基材 101的(1.1.-2.0.)晶面的表面上,藉由使用普通的 MOCVD法而以六方磷化硼爲底的半導體層102的形態形 成厚度約290奈米的未摻雜η-型六方單體ΒΡ層。 藉由普通ΤΕΜ分析,顯示構成該六方磷化硼爲底的 •半導體層102的六方單體ΒΡ層的表面爲(1.1.-2.0.)晶 面。接著,藉由該電子繞射圖,顯示該藍寶石基材101的 <1.-1.0.0>方向及該六方單體ΒΡ層102的<1.-1.0.0> 方向相互平行取向。再者,藉由斷面ΤΕΜ技術觀察發現 該六方單體ΒΡ層102中幾乎沒有攣晶存在的可分辨跡象 。在該六方單體ΒΡ層內部離與藍寶石基材101的界面上 方約5 0奈米距離的區域中,發現晶格排列幾乎沒有可分 辨的混淆。 ® 在構成該六方磷化硼爲底的半導體層102的六方單體 ΒΡ層的(1.1.-2.0.)晶面形成的表面上,生長纖維鋅礦型 六方η-型GaN層103(層厚度=21〇〇奈米)。利用普通 TEM的分析,在與構成該六方磷化硼爲底的半導體層102 的六方單體BP層的界面附近的六方GaN層103內部區域 中幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層103的(1.1.-2.0.)表面上,依 下述順序堆疊由六方η-型AlQ.15Ga().85N形成的下包覆層 104 (層厚度=150奈米)、由分別地Ga〇.85In〇.15N井層-54- (52) 1310247 Manufacture of the LED 1 The desired stack structure 100 is a sapphire (α-) having a (1·1·-2·0·) crystal plane (commonly referred to as "A-plane") serving as its surface. The aluminum oxide single crystal substrate is formed as the substrate 101. On the surface of the (1.1.-2.0.) crystal plane of the substrate 101, an undoped layer having a thickness of about 290 nm was formed in the form of a hexagonal phosphide-based semiconductor layer 102 by a conventional MOCVD method. Η-type hexagonal monomer layer. The surface of the hexagonal monomer layer constituting the semiconductor layer 102 constituting the hexagonal phosphide boron was shown as a (1.1.-2.0.) crystal plane by ordinary enthalpy analysis. Next, the <1.-1.0.0> direction of the sapphire substrate 101 and the <1.-1.0.0> direction of the hexagonal monomer layer 102 are oriented parallel to each other by the electron diffraction pattern. Further, it is found by the section ΤΕΜ technique that there is almost no distinguishable sign of the presence of twins in the hexagonal unit ruthenium layer 102. In the region of the inside of the hexagonal monomer layer which was separated by about 50 nm from the interface with the sapphire substrate 101, it was found that there was almost no discernible confusion in the lattice arrangement. ® grows a wurtzite-type hexagonal η-type GaN layer 103 on the surface formed by the (1.1.-2.0.) crystal plane of the hexagonal monolayer of the hexagonal phosphide-based semiconductor layer 102 (layer thickness) = 21〇〇 nanometer). By the analysis by the ordinary TEM, twinning and stacking defects are hardly observed in the inner region of the hexagonal GaN layer 103 in the vicinity of the interface with the hexagonal monomer BP layer constituting the hexagonal phosphide-based semiconductor layer 102. On the (1.1.-2.0.) surface of the hexagonal η-type GaN layer 103, a lower cladding layer 104 formed of hexagonal η-type AlQ.15Ga().85N is stacked in the following order (layer thickness = 150 nm) m), by Ga〇.85In〇.15N well layer

L -55- (53) 1310247 /AU.G1GaQ.99N能障層5個循環組成之多量子井結構的 光層1 0 5,及由層厚度5 0奈米之由p -型A 1〇. i。G a 〇. 9 〇 N 成的上包覆層106而完成p-n接面DH結構的發光部分 在前述上包覆層106表面上,再堆疊P-型GaN層(層 度=80奈米)充當接觸層107而完成該堆疊結構1〇〇的 成。 在部分前述P-型接觸層1 07的區域中,利用金( φ ).氧化鎳(NiO)合金形成p-型歐姆電極108。在經由 式蝕刻手段移除存在於指定用於該電極1 09配置之區域 的層,例如下包覆層104及發光層105,而暴露出來的 型GaN層103表面上形成η-型歐姆電極109。結果, 成該LED 1 。 藉由使20毫安培的裝置操作電流依p-型與η-型歐 電極108與109之間的前進方向流過而試驗此LED 1 發光性質。由LED 1發出的光的主要波長爲約460奈 鲁。晶片在此狀態下的放射亮度爲約1.6燭光。因爲優於 晶性的III族氮化物半導體層可藉由在該六方BP層上 置構成該p-η接面DH結構發光部分的III族氮化物半 體層104至106及附有η-型歐姆電極109的η-型GaN 103而形成,當反向電流固定在10微安培時,反向電 呈現超過1 5伏特的高量級。再者,由於III族氮化物 導體層的結晶性優良,幾乎看不出局部擊穿。 實施例2 -56- 發 形 〇 厚 形 Au 乾 中 η - 完 姆 的 米 結 配 導 層 壓 半 (s ) (54) 1310247 本發明將引用藉由採用藍寶石塊狀晶體充當六方單晶 並利用配置在彼上的六方單體BP層建構化合物半導體 LED的情況爲例子作明確地解釋。 第8圖槪略地舉例說明適合實施例2的LED平面結 構。然後,第9圖爲舉例說明該LED 1沿虛線IX-IX取得 的槪略橫斷面。 製造該LED 1所欲的堆疊結構1 〇〇係使用具有充當 %其袠面的(1.1.-2.0.)晶面之藍寶石基材作爲基材1〇1而L-55- (53) 1310247 / AU.G1GaQ.99N energy barrier layer 5 cycles of multiple quantum well structure optical layer 1 0 5, and layer thickness 50 nm by p - type A 1 〇. i. G a 〇. 9 〇N into the upper cladding layer 106 to complete the pn junction DH structure of the light-emitting portion on the surface of the aforementioned upper cladding layer 106, and then stack P-type GaN layer (layer degree = 80 nm) to act as The formation of the stacked structure 1 is completed by the contact layer 107. In a portion of the aforementioned P-type contact layer 107, a p-type ohmic electrode 108 is formed using a gold (φ). nickel oxide (NiO) alloy. The layer existing in the region designated for the electrode 109 configuration, such as the lower cladding layer 104 and the light-emitting layer 105, is removed by a via etching means, and the n-type ohmic electrode 109 is formed on the surface of the exposed type GaN layer 103. . As a result, the LED 1 is formed. The LED 1 luminescent properties were tested by flowing a 20 mA device operating current through the forward direction between the p-type and the η-type ohmic electrodes 108 and 109. The main wavelength of light emitted by LED 1 is about 460 Naru. The radiance of the wafer in this state was about 1.6 candelas. Since the group III nitride semiconductor layer superior to the crystalline layer can be provided with the group III nitride half layers 104 to 106 constituting the light-emitting portion of the p-n junction DH structure and the η-type ohmic layer on the hexagonal BP layer. The n-type GaN 103 of the electrode 109 is formed, and when the reverse current is fixed at 10 microamperes, the reverse electric current exhibits a high order of more than 15 volts. Further, since the group III nitride conductor layer is excellent in crystallinity, local breakdown is hardly observed. Example 2 -56- Hair-shaped 〇-shaped Au-shaped η - 完 的 结 配 配 层压 ( ( 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 The case of constructing a compound semiconductor LED with a hexagonal monomer BP layer disposed on the other is explicitly explained as an example. Fig. 8 schematically illustrates an LED planar structure suitable for the second embodiment. Then, Fig. 9 is a schematic cross-sectional view taken along the dotted line IX-IX of the LED 1. The stack structure 1 for manufacturing the LED 1 is used as a substrate 1〇1 using a sapphire substrate having a (1.1.-2.0.) crystal plane serving as its facet.

形成。在該基材101的表面上,藉由使用普通的MOCVD 法而形成厚度約290奈米的未摻雜η-型六方單體BP層 1 02 ° 藉由普通ΤΕΜ分析,顯示構成該六方單體ΒΡ層102 的(〇.〇.0.1.)晶面依垂直於該藍寶石基材101表面的幾 ¥平行狀態排列。明確的說,從依垂直於該六方單元晶格 的C-軸方向的幾乎平行方式排列的(〇.0.0.:[.)晶面的晶 ®格平面間隔來看,發現該六方單體ΒΡ層102的c-軸長度 爲0.5 24奈米。再者,藉由斷面的ΤΕΜ技術觀察,該六 方單體ΒΡ層102中幾乎分辨不出攣晶的存在。在該六方 單體ΒΡ層內部離與藍寶石基材1〇1的界面上方約50奈 米距離的區域中,確認該(〇.〇. 0.1.)晶面依幾乎平行的 方式規則排列,同時發現該晶格排列幾乎沒有可分辨的混 滑。 在具有平行於增加層厚度的方向排列的(0.0.〇·1.) 晶面之六方單體ΒΡ層102的表面上,生長摻雜鍺(Ge) -57- (55) 1310247 的纖維鋅礦型六方GaN層103(層厚度=丨9〇〇奈米)。根 據利用普通TEM的分析,發現長在作爲底層之六方單體 BP層102上的η-型GaN層103爲具有平行於該六方單體 B P層1 0 2的(0.0.0.1 .)晶面排列的(〇 · 〇 . 〇 . 1 .)晶面之單 • 晶層。在該六方GaN層103內部區域中幾乎看不出攣晶 _ 及結晶性缺陷。 在該六方η-型GaN層103的(1.1.-2.0.)表面上,依 -鲁下述順序堆疊由六方η-型AlQ.15Ga〇.85N形成的下包覆層 1〇4(層厚度=250奈米)、由分別地Ga〇.85In〇.15N井層及 AU.fnGao.^N能障層7個循環組成之多量子井結構的發光 層105,及具有25奈米層厚度且由p-型AluoGao.goN形 成的上包覆層106而完成p-n接面DH結構的發光部分。 此發光部分整體皆爲具有平行於該六方單體BP層102的 (〇.〇. 0.1.)晶面排列的(〇·〇.〇· 1.)晶面之單晶層。在整 個發光部分的內部區域中幾乎看不出攣晶及堆疊缺陷。在 @該上包覆層106表面上進一步配置p-型GaN層(層厚度 =75奈米)而完成該堆疊結構100。 在部分前述P-型接觸層107的區域中,利用金-鎳 -氧化物合金形成P-型歐姆電極I 08。在經由乾式蝕刻手 段移除存在於指定用於該電極1 〇9配置之區域中的層,例 如下包覆層104及發光層1〇5,而暴露出來的η-型GaN 層103表面上形成η-型歐姆電極109。結果,完成該LED 1 ° 藉由使20毫安培的裝置操作電流依P-型與η-型歐姆 -58 - ^ (56) 1310247 電極108與109之間的前進方向流過而試驗此LED 1的 發光性質。由LED 1發出的光的主要波長爲約45 5奈米 。晶片在此狀態下的放射亮度爲約1.5燭光。因爲該歐姆 電極108及109係依橫越發光部分的堆疊結構100的垂直 方向配置以便使裝置操作電流可平行於構成該P-η接面 DH結構發光部分的ΠΙ族氮化物半導體層1〇4至106的 (0·0.0.1.)晶面流動,正向(在20毫安培時)的電壓呈 φ現例如3.2伏特的低量級。 同時,因爲該發光部分可由配置在該六方BP層上而 註定優於結晶性的ΠΙ族氮化物半導體層形成,所以反向 電流固定在1 〇微安培時獲得的反向電壓呈現超過1 5伏特 的高量級。由於構成發光部分的III族氮化物半導體層的 結晶性優良,所以幾乎看不出局部擊穿。 實施例3 本發明將引用利用具有充當其表面的(1 · 1 · - 2.0 ·)晶 面之GaN層及依接合到該表面且具有充當其表面的( 1.1.-2.0.)晶面之六方單體Bp層所提供的堆疊結構建構 化合物半導體LED的情況爲例子作明確地解釋。 第1 〇圖槪略地舉例說明適合實施例3的LED 1的平 面結構。第1 1圖爲舉例說明該LED 1沿第10圖虛線XI-XI取得的槪略橫斷面。 製造該LED 1所欲的堆疊結構! 〇〇係使用具有充當 其表面的0.2.)晶面(通稱R-平面)之藍寶石( -59- (57) 1310247 α -氧化鋁單晶)作爲基材1 〇〗而形成。在該基材1 0 1的 (1.-1.0.2.)晶面的表面上,藉由使用普通的ΜΒΕ法而 形成具有充當其表面的(1.1.-2.0.)晶面之未摻雜的η -型 GaN層103。藉由普通斷面ΤΕΜ測定該GaN層103(層 厚度=1200奈米)中的位錯密度爲約2xl09cm·2。 在該GaN層103的(1 .1 .-2.0.)晶面形成的表面上, 生長未摻雜的η -型單體BP層102A(厚度約280奈米) •。結果,該GaN層103及該BP層102A形成根據本發明 設計的第一堆疊結構部分102A。根據利用TEM的普通電 子繞射分析,發現該BP層102A爲具有充當其表面的( 1.1.-2.0.)晶面之纖維鋅礦型單晶層。在該BP層102A的 電子繞射影像中,無法看出攣晶或堆疊缺陷造成的額外繞 射或擴散散射。再者,藉由斷面TEM分析,確認該GaN 層103中含的位錯受到該BP層102A的界面,換言之該 第一堆疊結構部分1 2 Ο A的界面抑制而不會向上擴散(向 鲁該BP層102A)。 在該六方單體BP層102的(1.1.-2.0.)晶面上,進 —步配置六方η-型GaN層102B (層厚度= 600奈米)。因 此,該六方BP層102A及六方GaN層102B形成根據本 發明設計的第二堆疊結構部分120B。因爲該六方GaN層 102B係依接合到該六方單體BP層102A的方式配置’所 以由普通斷面TEM技術測定的位錯密度呈現lxl〇4cnT2或 更小的低量級。 在構成第二堆疊結構部分(120B)的六方GaN層 (58) 1310247 102B的(1 ·1 _-2.0·)表面上’依下述順序堆疊各層:由組 成與GaN不同的六方η-型AlQ.l5GaQ 85n形成的下包覆層 1〇4(層厚度=300奈米)' 分別地由GaQ 88lnQ.12N井層( 層厚度=3奈米)/AU.〇iGa〇.99N能障層(層厚度=1〇奈米 )5個循環組成之多量子井結構的發光層105,及具有90 奈米層厚度且由P-型AU.i〇GaQ.9()N形成的上包覆層106 而完成P-n接面DH結構的發光部分。 根據普通TEM分析,構成該p-n接面DH結構的發光 部分之下包覆層104至上包覆層106分別地爲纖維鋅礦型 六方單晶層。再者,該發光部分可由特別優於結晶性的 III族氮化物半導體層形成,因爲彼係配置在僅含小量的 位錯且結晶性優異的GaN層102B上。 在上述的上包覆層1〇6表面上,進一步配置p-型 GaN層(層厚度=90奈米)以作爲接觸層107而完成該堆 疊結構1〇〇的形成。 在部分上述P-型接觸層1〇7的區域中,形成由金-氧 化鎳合金形成P-型歐姆電極。在經由移除存在於指定 用於該η-型歐姆電極1〇9配置之區域中的層,例如在下 包覆層104上的發光層1〇5’而暴露出來的下包覆層104 表面上形成η-型歐姆電極1〇9。結果,完成該LED 1。 藉由使20毫安培的裝置操作電流依P-型與η-型歐姆 電極108與109之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約450奈米 。晶片在此狀態下的放射亮度爲約1 · 7燭光。由於形成該form. On the surface of the substrate 101, an undoped η-type hexagonal monomer BP layer having a thickness of about 290 nm was formed by ordinary MOCVD method, and the composition of the hexagonal monomer was shown by ordinary enthalpy analysis. The (〇.〇.0.1.) crystal plane of the ruthenium layer 102 is arranged in a state of several ¥ parallel to the surface of the sapphire substrate 101. Specifically, the hexagonal monomer is found from the lattice plane spacing of the (〇.0.0.:[.) crystal plane arranged in an almost parallel manner perpendicular to the C-axis direction of the hexagonal unit lattice. Layer 102 has a c-axis length of 0.524 nm. Furthermore, the presence of twins is almost unresolved in the hexagonal unitary germanium layer 102 as observed by the cross-section technique. In the region of the hexagonal monomer layer which is about 50 nm above the interface with the sapphire substrate 1〇1, it is confirmed that the (〇.〇.0.1.) crystal planes are regularly arranged in an almost parallel manner, and it is found at the same time This lattice arrangement has almost no distinguishable slip. Growth of bismuth (Ge)-57-(55) 1310247 bauxite on the surface of a hexagonal monomer layer 102 having a (0.0.〇·1.) crystal plane aligned parallel to the thickness of the layer. Type hexagonal GaN layer 103 (layer thickness = 丨 9 〇〇 nanometer). According to analysis by ordinary TEM, it was found that the η-type GaN layer 103 grown on the hexagonal monomer BP layer 102 as the underlayer is arranged in a (0.0.0.1 .) crystal plane parallel to the hexagonal monomer BP layer 102. (〇· 〇. 〇. 1 .) Single crystal face • Crystal layer. There are almost no twins and crystal defects in the inner region of the hexagonal GaN layer 103. On the (1.1.-2.0.) surface of the hexagonal η-type GaN layer 103, the lower cladding layer 1〇4 (layer thickness) formed of hexagonal η-type AlQ.15Ga〇.85N is stacked in the following order. =250 nm), a light-emitting layer 105 of a multi-quantum well structure consisting of 7 cycles of Ga〇.85In〇.15N well layer and AU.fnGao.^N barrier layer, respectively, and having a thickness of 25 nm and The light-emitting portion of the pn junction DH structure is completed by the upper cladding layer 106 formed of p-type AluoGao.goN. The entire light-emitting portion is a single crystal layer having a (〇·〇.〇· 1.) crystal plane arranged parallel to the (〇.〇.0.1.) crystal plane of the hexagonal monomer BP layer 102. Twinning and stacking defects are hardly visible in the inner region of the entire light-emitting portion. The stacked structure 100 is completed by further arranging a p-type GaN layer (layer thickness = 75 nm) on the surface of the upper cladding layer 106. In a portion of the aforementioned P-type contact layer 107, a P-type ohmic electrode I 08 is formed using a gold-nickel-oxide alloy. The layer existing in the region designated for the electrode 1 〇9 configuration, such as the lower cladding layer 104 and the light-emitting layer 1〇5, is removed by dry etching, and the exposed η-type GaN layer 103 is formed on the surface. N-type ohmic electrode 109. As a result, the completion of the LED 1 ° was tested by flowing a 20 mA device operating current according to the forward direction between the P-type and the η-type ohm-58 - ^ (56) 1310247 electrodes 108 and 109. Luminous nature. The main wavelength of the light emitted by the LED 1 is about 45 5 nm. The radiance of the wafer in this state was about 1.5 candelas. Since the ohmic electrodes 108 and 109 are arranged in the vertical direction of the stacked structure 100 traversing the light-emitting portion so that the device operating current can be parallel to the bismuth nitride semiconductor layer 1 〇 4 constituting the light-emitting portion of the P-n junction DH structure. The (0·0.0.1.) crystal plane flow to 106, and the forward (at 20 mA) voltage is φ, which is, for example, a low level of 3.2 volts. Meanwhile, since the light-emitting portion can be formed of a bismuth nitride semiconductor layer destined to be superior to crystallinity disposed on the hexagonal BP layer, the reverse voltage obtained when the reverse current is fixed at 1 〇 microamperes exhibits more than 15 volts. High quality. Since the group III nitride semiconductor layer constituting the light-emitting portion is excellent in crystallinity, local breakdown is hardly observed. Embodiment 3 The present invention will cite a GaN layer having a (1 · 1 · - 2.0 ·) crystal plane serving as a surface thereof and a hexagonal surface bonded to the surface and having a (1.1.-2.0.) crystal plane serving as a surface thereof The case where the compound semiconductor LED is constructed by the stacked structure provided by the monomer Bp layer is explicitly explained as an example. The first plan schematically illustrates the planar structure of the LED 1 suitable for the third embodiment. Fig. 1 is a schematic cross-sectional view showing the LED 1 taken along the dotted line XI-XI of Fig. 10. Make the stack structure of the LED 1! The lanthanum is formed using a sapphire (-59-(57) 1310247 α-alumina single crystal) having a 0.2.) crystal plane (commonly referred to as an R-plane) serving as a surface thereof as a substrate. On the surface of the (1.-1.0.2.) crystal plane of the substrate 101, an undoped layer having a (1.1.-2.0.) crystal plane serving as a surface thereof is formed by using a conventional hydrazine method. The η-type GaN layer 103. The dislocation density in the GaN layer 103 (layer thickness = 1200 nm) was measured by ordinary section ΤΕΜ to be about 2 x 10 9 cm·2. On the surface formed by the (1.1.-2.0.) crystal plane of the GaN layer 103, an undoped n-type monomer BP layer 102A (thickness of about 280 nm) was grown. As a result, the GaN layer 103 and the BP layer 102A form the first stacked structural portion 102A designed in accordance with the present invention. According to ordinary electron diffraction analysis by TEM, the BP layer 102A was found to have a wurtzite-type single crystal layer having a (1.1.-2.0.) crystal plane serving as its surface. In the electron diffraction image of the BP layer 102A, additional diffraction or diffusion scattering caused by twinning or stacking defects cannot be seen. Further, by cross-sectional TEM analysis, it is confirmed that the dislocations contained in the GaN layer 103 are affected by the interface of the BP layer 102A, in other words, the interface of the first stacked structure portion 1 2 Ο A is suppressed and does not spread upward (toward Lu The BP layer 102A). On the (1.1.-2.0.) crystal plane of the hexagonal monomer BP layer 102, a hexagonal n-type GaN layer 102B (layer thickness = 600 nm) was further disposed. Therefore, the hexagonal BP layer 102A and the hexagonal GaN layer 102B form the second stacked structure portion 120B designed in accordance with the present invention. Since the hexagonal GaN layer 102B is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 102A, the dislocation density measured by the ordinary cross-sectional TEM technique exhibits a low order of lxl 〇 4cnT2 or less. On the (1·1 _-2.0·) surface of the hexagonal GaN layer (58) 1310247 102B constituting the second stacked structure portion (120B), the layers are stacked in the following order: hexagonal n-type AlQ different in composition from GaN The lower cladding layer 1〇4 (layer thickness=300 nm) formed by .l5GaQ 85n is respectively composed of GaQ 88lnQ.12N well layer (layer thickness=3 nm)/AU.〇iGa〇.99N barrier layer ( Layer thickness = 1 nanometer) The light-emitting layer 105 of a multi-quantum well structure composed of 5 cycles, and the upper cladding layer having a thickness of 90 nm and formed of P-type AU.i〇GaQ.9()N 106 completes the light-emitting portion of the Pn junction DH structure. According to the ordinary TEM analysis, the cladding layer 104 to the upper cladding layer 106 which constitute the light-emitting portion of the p-n junction DH structure are respectively wurtzite-type hexagonal single crystal layers. Further, the light-emitting portion can be formed of a group III nitride semiconductor layer which is particularly superior to crystallinity because it is disposed on the GaN layer 102B which contains only a small amount of dislocations and is excellent in crystallinity. On the surface of the upper cladding layer 1〇6 described above, a p-type GaN layer (layer thickness = 90 nm) was further disposed as the contact layer 107 to complete the formation of the stacked structure 1?. In a portion of the above-mentioned P-type contact layer 1?7, a P-type ohmic electrode is formed by a gold-nickel oxide alloy. On the surface of the lower cladding layer 104 exposed by removing the layer existing in the region designated for the n-type ohmic electrode 1〇9, for example, the light-emitting layer 1〇5' on the lower cladding layer 104 An n-type ohmic electrode 1〇9 is formed. As a result, the LED 1 is completed. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the forward direction between the P-type and the η-type ohmic electrodes 108 and 109. The main wavelength of light emitted by LED 1 is about 450 nm. The radiance of the wafer in this state is about 1.7 candle. Due to the formation of the

-61 - ( S (59) 1310247 下包覆層104、發光層105及構成ρ-η接面 部分的上包覆層106之III族氮化物半導體 的影響,反向電壓(當反向電流固定在10 現超過15伏特的高量級。接著,由於構成i 1〇2Β及配置在彼上的p-n接面DH結構發3 氮化物半導體層的結晶性優良,所以幾乎看 實施例4 本發明將引用利用具有充當其表面的! 面之.GaN層及依接合到該表面且具有充 1.1.-2.〇.)晶面之六方單體BP層所提供的 化合物半導體FET的情況爲例子作明確地解 第12圖槪略地舉例說明適合實施例4 高頻FET 3的槪略斷面圖。製造該FEt 3所 鲁3〇〇係使用具有充當其表面的(1.-1.0.2.) 平面)之藍寶石(α -氧化鋁單晶)作爲基; 。在該基材301的(1.-1.〇.2.)晶面的表面 普通的ΜΒΕ法而形成具有充當其表面的 面之高阻抗的未摻雜的η-型GaN層302。 TEM測定該GaN層302 (層厚度=1〇〇〇奈 密度爲約3xl09cirT2。 在該GaN層3 02的(1 . 1 .-2.0.)晶面形 生長高阻抗的未摻雜p -型單體BP層303 ( DH結構發光 層結晶性優良 微安培時)呈 | η-型GaN層 部分之III族 不出局部擊穿 〔l_l.-2.0_)晶 當其表面的( 堆疊結構建構 ?釋。 的GaN爲底的 :欲的堆疊結構 晶面(通稱R-讨3 01而形成 丨上,藉由使用 (1 · 1 · - 2.0 ·)晶 藉由普通斷面 ^米)中的位錯 丨成的表面上, 厚度約200奈 -62 - (60) 1310247 米)。結果,該GaN層3〇2及該BP層303形成根據本發 明設計的第一堆疊結構部分320A。藉由利用TEM的普通 電子繞射分析,發現該BP層3 03爲具有充當其表面的( 1.1.-2.0.)晶面之纖維鋅礦型單晶層。在該BP層3 03的 - 電子繞射影像中,無法看出攣晶或堆疊缺陷造成的額外繞 射或擴散散射。再者’藉由斷面TEM分析’確認該GaN _ 層302中含的位錯受到該BP層3 03的界面,換言之該第 -φ —堆疊結構部分320A的界面抑制而不會向上擴散(向該 BP 層 3 03 )。 在該六方單體BP層303的(1.1.-2.0.)晶面上,進 —步配置充當電子傳輸層3 04的未摻雜六方η-型GaN層 (層厚度=110奈米)。結果,該六方BP層103及構成電 子傳輸層3〇4的六方GaN層形成根據本發明設計的第二 堆疊結構部分32〇B。因爲該電子傳輸層3 04係依接合到 該六方單體BP層303的方式配置,所以該電子傳輸層 鲁3〇4可由具有lxl04cm_2位錯密度的優異品質的晶體層形 成。 在由六方η-型GaN層形成且構成第二堆疊結構部分 320B的電子傳輸層304,的(1.1.-2.0.)表面上,以接合 的方式配置由組成與GaN不同的六方n —型AlQ.25GaQ.75N (層厚度=25奈米)形成的電子供應層3〇5。進一步利用 由η-型GaN層形成的接觸層3 06提供該電子供應層305 而完成用於該FET的堆疊結構3 00的形成。 該電子傳輸層3〇4可由優於結晶性的nI族氮化物半 -63- (61) 1310247 導體層形成,因爲彼係配置在含僅小密度的攣晶及堆疊缺 陷且優於結晶性的六.方BP層3 03上。因爲該電子供應層 3〇5係依接合到結晶性優異的電子傳輸層304的方式配置 ,所以由普通TEM分析發現該電子供應層3 05爲同樣地 具有優異結晶性的單晶層。 在經由普通乾式蝕刻技術移除部分接觸層3 06而暴露 出來的電子供應層3 05表面上形成蕭特基閘極3 07。殘存 •在該閘極3 07相對側的GaN 3 06接觸層的表面上形成由稀 土元素-鋁合金形成的歐姆源極3 08及歐姆汲極3 09而完 成 FET 3。 本發明的FET可具體化爲電力性質優異且能使用高 頻電力的GaN爲底的FET,因爲彼以使用六方單體BP層 作爲底層而形成且得以僅含小密度的位錯又具有優異結晶 性的GaN層作爲電子傳輸層,再者因爲彼顯露出大的跨 導性且經由位錯抑制電流的洩漏。再者,因爲該FET係 鲁利用結晶性優異的六方單體BP層、GaN電子傳輸層及 GaN電子供應層形成,所以顯示幾乎沒有可分辨的局部擊 穿跡象。 實施例5 本發明的內容將引用藉由採用藍寶石塊狀晶體充當六 方單晶並利用配置在彼上的六方單體BP層建構化合物半 導體LED的情況爲例子作明確地解釋。 第1 4圖槪略地舉例說明適合此實施例5的LED平面 -64- (62) 1310247 結構。然後’第15圖爲舉例說明該LED 1沿第14圖虛 線XV-XV取得的槪略橫斷面。製造該LED 1所欲的堆疊 結構1〇〇係使用,充當基材1〇1,具有充當其表面的(1._ 1.0_-2.)晶面(通稱R_平面)之藍寶石(氧化鋁單晶 )基材而形成。在該基材 101的表面上,藉由普通 MOCVD法形成用於底層的單晶形態之層厚度約32〇〇奈米 的η-型六方GaN層103 Α。藉由普通電子繞射分析,該六 φ方GaN層1〇3八的表面經分辨爲(ΐ·ΐ._2.〇·)晶面。再者 ’藉由普通片段ΤΕΜ技術觀察顯示構成該六方GaN層 103A的(〇·〇·〇_ι_ )晶面係垂直於(ino )晶面形成 的表面排列。 在該六方GaN層103A的 (1 · 1 _ - 2.0 .)晶面形成的 表面上,生長未摻雜的η-型六方單體BP層102。該六方 ΒΡ層102藉由普通大氣壓力MOCVD法在78(TC下生長。 藉由普通斷面TEM技術觀察,顯示該六方BP層1〇2係經 _由(1·1·-2·0.)晶面接合至該六方GaN層103A且具有充 當其表面的(1.1.-2·0.)晶面,且構成該六方BP層102 內部的(0.0.0.1.)晶面與該(1.1.-2.0.)晶面呈幾乎平行 的關係垂直地排列。 接著,藉由根據片段ΤΕΜ技術的暗場影像觀察,幾 乎分辨不出具有充當其表面的(1.1.-2.0.)晶面之六方ΒΡ 層102中有反相邊界。再者,在該六方ΒΡ層102的的電 子繞射圖中,無法看出指示攣晶及條痕存在的額外繞射點 ’該攣晶及條痕暗示堆疊缺陷的存在。 -65- (63) 1310247 在具有平行於增加層厚度的方向排列的(0 · 0.0 · 1 ·) 晶面之六方單體BP層102的表面上,生長摻雜鍺(Ge) 的纖維鋅礦型六方η -型GaN層1〇3Β(層厚度=160奈米) 。藉由利用普通TEM的分析,分辨出長在作爲底層之六 方單體BP層102上的η-型GaN層103B爲具有平行於該 六方單體BP層102的(0.0.0.1·)晶面排列的(0.0_0_1_ )晶面之單晶層。 φ 據顯示該η-型GaN層103B係經由該(1_1.-2.0.)晶 面接合到六方單體BP層102且具有充當其表面的 2.0.)晶面,且構成該η -型GaN層103B內部的(〇_〇_〇·1· )晶面與該(1.1 .-2.0.)晶面呈幾乎平行的關係垂直地排 列。再者,藉由普通TEM分析,幾乎不能分辨出該六方 GaN層103B中有反相邊界、攣晶及堆疊缺陷。 在該六方η-型GaN層1 03B的(1 · 1 .-2.0.)表面上, 依下述順序堆疊由六方η-型Al^sGamN形成的下包覆 ®層104 (層厚度=250奈米)、由分別地Ga〇.85ln〇.15N井層 及Al〇.G1GaG.9 9N能障層5個循環組成之多量子井結構的 發光層105,及具有50奈米層厚度且由P-型 Alo.ioGao.9oN形成的上包覆層丨〇6而製成ρ-η接面DH結 構的發光部分。在上述上包覆層106的表面上’進一步配 置充當接觸層1〇7的Ρ-型GaN層(層厚度=8〇奈米)而 完成該堆疊結構100。 在部分上述P -型接觸層107的區域中,形成由金( Au ) -氧化鎳(NiO )合金形成P-型歐姆電極108。在經 -66- (64) 1310247 由乾式触刻技術移除存在於指定用於該電極109配置之區 域中的層,例如下包覆層i〇4及發光層105,而暴露出來 的η -型GaN層103B表面上形成η -型歐姆電極1〇9。結果 ,完成該LED 1。 藉由使20毫安培的裝置操作電流依p-型與n-型歐姆 電極1 08與109之間的前進方向流過而試驗該LED 1的 發光性質。由LED 1發出的光的主要波長爲約460奈米 鲁。晶片在此狀態下的放射亮度爲約1.6燭光。因爲在幾乎 沒發覺可分辨的反相邊界、攣晶及堆疊缺陷的六方BP層 102及η-型GaN層103上形成下包覆層104至上包覆層 106及構成p-n接面DH結構發光部分的n-型歐姆電極 1 09,所以彼等能形成優於結晶性的III族氮化物半導體 層。因此,該發光層105放射無不均勻的均勻強度光。 實施例6 本發明的內容將引用藉由利用配置在具有充當其表面 的(1.0.-1 .0.)晶面之GaN層上的六方ΒΡ層作爲六方單 晶而建構LED的情況爲例子作明確地解釋。 第16圖槪略地舉例說明適合此實施例6的LED 1平 面結構。然後,第17圖爲舉例說明該LED沿第16圖虛 線XVII-XVII取得的槪略橫斷面。 具有充當其表面的(1·0·_1·0·)晶面之GaN層103A 係在LiA1 02塊狀單晶基材1 0 1的(〇〇 1 )晶面形成的表面 上藉由普通MBE法形成。藉由普通斷面TEM分析’顯示 -67- (65) 1310247 該(〇·〇·0·1·)晶面係垂直於具有480奈米層厚度的η·型 六方G aN層1 0 3 Α內部的(1 . 〇 . _ ;[ . 〇 .)晶面形成的表面排 列。 在以單晶底層的方式形成之六方GaN層103A的( i·0·-1.0.)晶面的表面上,生長未摻雜的η -型六方單體磷 • 化硼(ΒΡ)層1〇2。該六方ΒΡ層1〇2係藉由普通大氣壓 力MOCVD法在800°C下生長。藉由普通斷面ΤΕΜ技術觀 -鲁察,顯示該六方BP層102係經由(1.0._1.〇.)晶面接合 至該六方GaN層103A且具有充當其表面的(1.0.-1.0.) 晶面,且構成該六方BP層102內部的(0.0.0.1.)晶面與 該(1 · 0 · -1 · 0 ·)晶面呈幾乎平行的關係垂直地排列。 藉由根據斷面TEM技術的暗場影像觀察,幾乎分辨 不出具有充當其表面的(1.0.-1.0.)晶面之六方BP層102 中有反相邊界。再者,在該六方BP層102的的電子繞射 圖中,無法看出指示攣晶及條痕存在的額外點,該攣晶及 φ條痕暗示堆疊缺陷的存在。 在具有平行於增加層厚度的方向排列的(0.0 · 0 · 1 .) 晶面之六方單體BP層102的表面上,生長摻雜矽(Si) 的纖維鋅礦型六方η-型GaN層103 B(層厚度=17〇奈米) 。藉由利用普通TEM的分析,發現長在作爲底層之六方 單體BP層102上的η-型GaN層103B爲具有平行於該六 方單體BP層102的(0.0.0.1·)晶面排列的(0.0.0.1·) 晶面之單晶層。 據顯示該η-型G aN層1 0 3 B係經由該(1 . 〇 . - 1 · 〇 .)晶 -68- (66) 1310247 面接合到六方單體BP層102且具有充當其表面的(i.o._ LO.)晶面,且構成該η -型GaN層103B內部的(o.o.o.i. )晶面與該(1 · 0 . -1 _ 0 ·)晶面呈幾乎平行的關係垂直地排 列。 再者’藉由普通TEM分析,幾乎不能分辨出該六方 GaN層103B中有反相邊界、攣晶及堆疊缺陷。 在該六方GaN層103B的(1.0.-1.0.)晶面形成的表 鲁面上,其中幾乎不能分辨出反相邊界、攣晶及堆疊缺陷, 依下述順序堆疊如實施例5所述相同結構中形成的下包覆 層104、發光層105及上包覆層106而形成p-n接面DH 結構的發光部分。接著,在構成該發光部分最上層的上包 覆層1 0 6上,以接合的方式配置如實施例5說明的相同接 觸層107而完成製造該LED 1所欲的堆疊結構1〇〇的形 成。 藉由前述實施例5中說明的相同手段於堆疊結構100 鲁之上形成P-型及η-型歐姆電極108及109而製成LED 1 。藉由使20毫安培的裝置操作電流依p-型與n-型歐姆電 極1 08與1 09之間的前進方向流過而試驗該LED 1的發 光性質。由LED 1發出的光的主要波長爲約460奈米。 晶片在此狀態下的放射亮度爲約1.6燭光。因爲在幾乎沒 發覺可分辨的反相邊界、攣晶及堆疊缺陷的六方BP層 102及η-型GaN層103上形成下包覆層1〇4至上包覆層 106及構成p-n接面DH結構發光部分的n-型歐姆電極 1 09,所以彼等能形成優於結晶性的ΠΙ族氮化物半導體 -69 - (67) (67)-61 - (S (59) 1310247 Effect of the lower cladding layer 104, the light-emitting layer 105, and the group III nitride semiconductor constituting the upper cladding layer 106 of the p-n junction portion, reverse voltage (when the reverse current is fixed At 10, it is now in the high order of more than 15 volts. Next, since the crystal structure of the Zn junction surface DH structure constituting i 1 〇 2 配置 and the other is excellent in crystallinity, it is almost seen that the present invention will be The case of using a compound semiconductor FET provided by a .GaN layer having a surface serving as a surface thereof and a hexagonal monomer BP layer bonded to the surface and having a surface of 1.1.-2.〇.) is exemplified as an example. Fig. 12 schematically illustrates a schematic cross-sectional view of a high frequency FET 3 suitable for the embodiment 4. The fabrication of the FEt 3 is used to have a surface (1.-1.0.2.). Plane) sapphire (α-alumina single crystal) as a base; An undoped n-type GaN layer 302 having a high impedance of a surface serving as a surface thereof is formed on the surface of the (1.-1.〇.2.) crystal plane of the substrate 301 by a conventional method. The GaN layer 302 was measured by TEM (layer thickness = 1 〇〇〇 density was about 3xl09cirT2. The high-impedance undoped p-type single was grown in the (1. 1 .-2.0.) crystal plane of the GaN layer 302 The bulk BP layer 303 (when the DH structure light-emitting layer has excellent crystallinity), the group III of the η-type GaN layer does not have a partial breakdown [l_l.-2.0_) crystal as its surface (stack structure construction) GaN-based: the dislocation of the desired crystal face (commonly known as R- 3 3 01 and formed on the ,, by using (1 · 1 · - 2.0 ·) crystal by ordinary cross section ^ m) On the surface of the crucible, the thickness is about 200 Na-62 - (60) 1310247 m). As a result, the GaN layer 3〇2 and the BP layer 303 form the first stacked structure portion 320A designed in accordance with the present invention. The BP layer 303 was found to have a wurtzite-type single crystal layer having a (1.1.-2.0.) crystal plane serving as a surface thereof by ordinary electron diffraction analysis using TEM. In the electron diffraction image of the BP layer 303, no additional diffraction or diffusion scattering due to twinning or stacking defects can be seen. Furthermore, it is confirmed by the cross-sectional TEM analysis that the dislocations contained in the GaN layer 302 are subjected to the interface of the BP layer 303, in other words, the interface of the φ-stack structure portion 320A is suppressed without being spread upward (to The BP layer 3 03 ). On the (1.1.-2.0.) crystal plane of the hexagonal monomer BP layer 303, an undoped hexagonal n-type GaN layer (layer thickness = 110 nm) serving as the electron transport layer 304 was further disposed. As a result, the hexagonal BP layer 103 and the hexagonal GaN layer constituting the electron transport layer 3〇4 form the second stacked structure portion 32B designed in accordance with the present invention. Since the electron transport layer 304 is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 303, the electron transport layer 430 can be formed of a crystal layer of excellent quality having a dislocation density of lx10 4 cm 2 . On the (1.1.-2.0.) surface of the electron transport layer 304 formed of the hexagonal n-type GaN layer and constituting the second stacked structure portion 320B, a hexagonal n-type AlQ different in composition from GaN is disposed in a bonding manner .25GaQ.75N (layer thickness = 25 nm) formed by the electron supply layer 3〇5. The electron supply layer 305 is further provided by a contact layer 306 formed of an n-type GaN layer to complete the formation of the stacked structure 300 for the FET. The electron transport layer 3〇4 can be formed of a n-type nitride semi-63-(61) 1310247 conductor layer superior to crystallinity because it is disposed in a crystal containing a small density and a stacking defect and is superior to crystallinity. Six. Square BP layer 3 03. Since the electron supply layer 3〇5 is disposed so as to be bonded to the electron transport layer 304 having excellent crystallinity, it is found by ordinary TEM analysis that the electron supply layer 305 is a single crystal layer having excellent crystallinity. A Schottky gate 3 07 is formed on the surface of the electron supply layer 305 exposed by removing a portion of the contact layer 306 via a conventional dry etching technique. Remaining • An ohmic source 3 08 and an ohmic drain 3 09 formed of a rare earth element-aluminum alloy are formed on the surface of the GaN 3 06 contact layer on the opposite side of the gate 3 07 to complete the FET 3. The FET of the present invention can be embodied as a GaN-based FET excellent in power properties and capable of using high-frequency power because it is formed by using a hexagonal monomer BP layer as a bottom layer and has excellent crystallinity with only a small density of dislocations. The GaN layer acts as an electron transport layer, and because it exhibits large transconductivity and suppresses leakage of current via dislocations. Further, since the FET system is formed using a hexagonal monomer BP layer having excellent crystallinity, a GaN electron transport layer, and a GaN electron supply layer, there is almost no sign of localized breakdown that is distinguishable. [Embodiment 5] The content of the present invention will be explicitly explained by taking the case where a sapphire block crystal is used as a hexagonal single crystal and a compound semiconductor LED is constructed using a hexagonal monomer BP layer disposed thereon. Figure 14 is a schematic illustration of the LED plane -64-(62) 1310247 structure suitable for this embodiment 5. Then, Fig. 15 is a schematic cross-sectional view taken along the dotted line XV-XV of Fig. 14 for exemplifying the LED 1. The stack structure 1 used for the manufacture of the LED 1 is used as a substrate 1〇1, having a sapphire (aluminum surface (referred to as R_plane) serving as a surface of the surface (1._1.0_-2.)). A single crystal) substrate is formed. On the surface of the substrate 101, an η-type hexagonal GaN layer 103 层 having a layer thickness of about 32 Å for a single crystal form of the underlayer is formed by a conventional MOCVD method. The surface of the hexagonal GaN layer 1〇3-8 is resolved into a (ΐ·ΐ._2.〇·) crystal plane by ordinary electron diffraction analysis. Further, the surface alignment of the (〇·〇·〇_ι_) crystal plane constituting the hexagonal GaN layer 103A perpendicular to the (ino) crystal plane was observed by ordinary fragment ΤΕΜ technique. On the surface formed by the (1 · 1 _ - 2.0 . ) crystal plane of the hexagonal GaN layer 103A, an undoped n-type hexagonal monomer BP layer 102 is grown. The hexagonal germanium layer 102 is grown at 78 (TC) by ordinary atmospheric pressure MOCVD method. It is shown by ordinary cross-sectional TEM technology that the hexagonal BP layer is _2 _ by (1·1·-2·0. The crystal plane is bonded to the hexagonal GaN layer 103A and has a (1.1.-2·0.) crystal plane serving as a surface thereof, and constitutes a (0.0.0.1.) crystal plane inside the hexagonal BP layer 102 and the (1.1. -2.0.) The crystal faces are arranged vertically in an almost parallel relationship. Next, by observing the dark field image according to the segment ΤΕΜ technique, almost no hexagonal 具有 having a (1.1.-2.0.) crystal plane serving as its surface can be distinguished. There is an inversion boundary in layer 102. Furthermore, in the electron diffraction pattern of the hexagonal germanium layer 102, no additional diffraction points indicating the presence of twins and streaks are visible. -65- (63) 1310247 Growth of doped germanium (Ge) on the surface of a hexagonal monomer BP layer 102 having (0 · 0.0 · 1 ·) crystal planes aligned in a direction parallel to the thickness of the added layer Wurtzite-type hexagonal η-type GaN layer 1〇3Β (layer thickness = 160 nm). By using ordinary TEM analysis, the length is determined as the bottom layer The n-type GaN layer 103B on the monomer BP layer 102 is a single crystal layer having a (0.0_0_1_) crystal plane aligned parallel to the (0.0.0.1·) crystal plane of the hexagonal monomer BP layer 102. φ The n-type GaN layer 103B is bonded to the hexagonal monomer BP layer 102 via the (1_1.-2.0.) crystal plane and has a 2.0.) crystal plane serving as its surface, and constitutes the inside of the η-type GaN layer 103B (晶_〇_〇·1·) The crystal faces are arranged vertically in a nearly parallel relationship with the (1.1.-2.0.) crystal faces. Furthermore, by ordinary TEM analysis, it is almost impossible to distinguish that the hexagonal GaN layer 103B has reversed phase boundaries, twinning, and stacking defects. On the (1 · 1 .-2.0.) surface of the hexagonal n-type GaN layer 1300B, a lower cladding layer 104 formed of hexagonal η-type Al^sGamN is stacked in the following order (layer thickness = 250 nm) m), a light-emitting layer 105 of a multi-quantum well structure consisting of 5 cycles of Ga〇.85ln〇.15N well layer and Al〇.G1GaG.9 9N barrier layer, respectively, and having a thickness of 50 nm and consisting of P The upper cladding layer 6 formed of -type Alo.ioGao.9oN is formed into a light-emitting portion of the p-η junction DH structure. The stacked structure 100 is completed by further arranging a Ρ-type GaN layer (layer thickness = 8 Å nm) serving as the contact layer 1 〇 7 on the surface of the above upper cladding layer 106. In a portion of the above-described P - -type contact layer 107, a P-type ohmic electrode 108 is formed of a gold ( Au ) - nickel oxide (NiO ) alloy. The layer present in the region designated for the electrode 109 configuration, such as the lower cladding layer i〇4 and the light-emitting layer 105, is removed by a dry lithography technique via -66-(64) 1310247, and the exposed η- An n-type ohmic electrode 1〇9 is formed on the surface of the type GaN layer 103B. As a result, the LED 1 is completed. The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the direction of advancement between the p-type and n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by LED 1 is about 460 nm. The radiance of the wafer in this state was about 1.6 candelas. The lower cladding layer 104 to the upper cladding layer 106 and the light-emitting portion constituting the pn junction surface DH are formed on the hexagonal BP layer 102 and the n-type GaN layer 103 which are hardly aware of the distinguishable inversion boundary, twinning and stacking defects. The n-type ohmic electrode is 09, so they can form a group III nitride semiconductor layer superior to the crystallinity. Therefore, the light-emitting layer 105 emits light having no uniform uniform intensity. Embodiment 6 The content of the present invention will be exemplified by the case of constructing an LED by using a hexagonal germanium layer disposed on a GaN layer having a (1.0.-1.0.) crystal plane serving as a surface thereof as a hexagonal single crystal. Explain clearly. Fig. 16 schematically illustrates the LED 1 planar structure suitable for this embodiment 6. Then, Fig. 17 is a schematic cross-sectional view showing the LED taken along the dotted line XVII-XVII of Fig. 16. The GaN layer 103A having a (1·0·_1·0·) crystal plane serving as a surface thereof is formed on the surface formed by the (〇〇1) crystal plane of the LiA1 02 bulk single crystal substrate 110 by ordinary MBE The law is formed. By ordinary cross-sectional TEM analysis 'display-67-(65) 1310247 The (〇·〇·0·1·) crystal plane is perpendicular to the n-type hexagonal G aN layer with a thickness of 480 nm. 1 0 3 Α The surface arrangement of the inner (1. 〇. _ ; [ . 〇.) crystal faces. On the surface of the (i·0·-1.0.) crystal plane of the hexagonal GaN layer 103A formed by the single crystal underlayer, an undoped η-type hexagonal monomer phosphorus boride (germanium) layer is grown. 2. The hexagonal layer 1〇2 was grown at 800 ° C by a normal atmospheric pressure MOCVD method. By means of the ordinary section ΤΕΜ technical view - Rucha, it is shown that the hexagonal BP layer 102 is bonded to the hexagonal GaN layer 103A via a (1.0._1.〇.) crystal plane and has a surface (1.0.-1.0.) serving as its surface. The crystal plane, and the (0.0.0.1.) crystal plane constituting the inside of the hexagonal BP layer 102 is vertically arranged in a nearly parallel relationship with the (1·0 · -1 · 0 ·) crystal plane. By observing the dark field image according to the cross-sectional TEM technique, it is almost impossible to distinguish that there is an inversion boundary in the hexagonal BP layer 102 having a (1.0.-1.0.) crystal plane serving as its surface. Furthermore, in the electron diffraction pattern of the hexagonal BP layer 102, additional dots indicating the presence of twins and streaks are not visible, and the twins and φ stripes indicate the presence of stacking defects. Growth of a yttrium-doped (zinc-doped) wurtzite-type hexagonal η-type GaN layer on the surface of a hexagonal monomer BP layer 102 having a (0.0 · 0 · 1 .) crystal plane aligned in a direction parallel to the thickness of the layer to be increased 103 B (layer thickness = 17 〇 nanometer). By using ordinary TEM analysis, it was found that the η-type GaN layer 103B grown on the hexagonal monomer BP layer 102 as the underlayer is arranged to have a (0.0.0.1·) crystal plane parallel to the hexagonal monomer BP layer 102. (0.0.0.1·) A single crystal layer of crystal faces. It is shown that the η-type GaN layer 1 0 3 B is bonded to the hexagonal monomer BP layer 102 via the (1. 1. - 1 · 〇.) crystal-68-(66) 1310247 surface and has a surface serving as its surface. (io_LO.) crystal plane, and the (oooi) crystal plane constituting the inside of the η-type GaN layer 103B is vertically arranged in a nearly parallel relationship with the (1·0 . -1 _ 0 ·) crystal plane. Furthermore, by ordinary TEM analysis, it is almost impossible to distinguish that the hexagonal GaN layer 103B has reversed phase boundaries, twinning, and stacking defects. On the surface of the surface formed by the (1.0.-1.0.) crystal plane of the hexagonal GaN layer 103B, the inversion boundary, twinning, and stacking defects are hardly discernible, and are stacked in the following order as described in Embodiment 5. The lower cladding layer 104, the light-emitting layer 105, and the upper cladding layer 106 formed in the structure form a light-emitting portion of the pn junction surface DH structure. Next, on the upper cladding layer 106 constituting the uppermost layer of the light-emitting portion, the same contact layer 107 as described in Embodiment 5 is disposed in a bonding manner to complete the formation of the desired stacked structure 1 of the LED 1. . The P-type and n-type ohmic electrodes 108 and 109 are formed on the stacked structure 100 by the same means as described in the foregoing embodiment 5 to form the LED 1 . The luminescent properties of the LED 1 were tested by flowing a 20 mA device operating current in the forward direction between the p-type and the n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state was about 1.6 candelas. The lower cladding layer 〇4 to the upper cladding layer 106 and the pn junction surface DH structure are formed on the hexagonal BP layer 102 and the η-type GaN layer 103, which have almost no distinguishable resolvable inversion boundary, twinning and stacking defects. The n-type ohmic electrode of the light-emitting portion is 09, so they can form a bismuth nitride semiconductor superior to crystallinity-69 - (67) (67)

1310247 層。因此,該發光層105放射無不均勻的均勻強度光 實施例7 本發明內容將引用使用藍寶石塊狀晶體充當六方 並利用形成在彼表面上的六方單晶單體BP層而建構 的情況爲例子作明確地解釋。 第1 9圖槪略地舉例說明有關實施例7的LED 1 結構。然後,第20圖爲舉例說明該化合物半導體 LED 1沿第19圖虛線XX-XX取得的槪略橫斷面。 製造該LED 1所欲的堆疊結構100係形成在具 當其表面的(1.1.-2.0.)晶面(通稱A-平面)且作爲 101之藍寶石(α-氧化鋁單晶)上。在該六方磷化 底的半導體層102形成在該基材101的表面上之前, 脫附吸附在該基材101表面上的物質並清潔該表面的 ,在普通減壓MOCVD裝置中在約0.01大氣壓的真 下將藍寶石基材101加熱至1200°C。 接著,在該藍寶石基材101的清潔表面上,藉由 減壓MOCVD法形成充當六方磷化硼爲底的半導體層 有約490奈米的層厚度之未摻雜n-型六方單體BP層 。藉由普通ΤΕΜ分析,證明該六方單體ΒΡ層102 0·0.0.2.)晶面與該藍寶石基材1〇1的清潔表面呈幾 互平行的關係垂直地排列。在該藍寶石基材1 〇 i的表 ’依相等於藍寶石c-軸長度的間距排列的六方BP 的(0.0.0·2.)晶面數目爲6,亦即發明中所示的r 單晶 LED 平面 裝置 有充 基材 硼爲 爲達 目的 空度 普通 之具 ^ 102 的( 乎相 面上 L 1021310247 layers. Therefore, the light-emitting layer 105 emits uniform uneven intensity light without light unevenness. Embodiment 7 The present invention will be exemplified by a case where a sapphire bulk crystal is used as a hexagonal square and is constructed using a hexagonal single crystal monomer BP layer formed on the surface. Explain clearly. Fig. 19 is a schematic diagram showing the structure of the LED 1 relating to Embodiment 7. Then, Fig. 20 is a schematic cross-sectional view showing the compound semiconductor LED 1 taken along the broken line XX-XX of Fig. 19. The desired stacked structure 100 for fabricating the LED 1 is formed on a (1.1.-2.0.) crystal plane (commonly referred to as an A-plane) having a surface thereof and as a sapphire (α-alumina single crystal) of 101. Before the hexagonal phosphating base semiconductor layer 102 is formed on the surface of the substrate 101, the substance adsorbed on the surface of the substrate 101 is desorbed and the surface is cleaned at about 0.01 atm in a conventional decompression MOCVD apparatus. The sapphire substrate 101 is heated to 1200 ° C. Next, on the cleaned surface of the sapphire substrate 101, an undoped n-type hexagonal monomer BP layer having a layer thickness of about 490 nm as a hexagonal phosphide-based semiconductor layer is formed by a reduced pressure MOCVD method. . It was confirmed by ordinary enthalpy analysis that the crystal plane of the hexagonal monomer layer 102 0·0.0.2.) was vertically aligned with the clean surface of the sapphire substrate 1〇1 in parallel relationship. The number of (0.0.0·2.) crystal faces of the hexagonal BP arranged at a pitch equal to the length of the c-axis of the sapphire substrate 1 〇i is 6, which is the r single crystal shown in the invention. The LED planar device has a substrate-filled boron for the purpose of the general purpose of the space ^ 102 (on the surface of the L 102

S -70 - ^6° (68) 1310247 &外’藉由斷面TEM技術及電子繞射手段的觀察,幾乎 無法分辨該六方單體BP層102中的攣晶存在。再者,在 該六方單體BP層102內部離與藍寶石基材101的界面上 方約30奈米距離的區域中,發現(mi )晶面的排列 幾乎沒有可分辨的混淆。確認該(〇.〇. 0·2.)晶面依幾乎 平行的關係規則地排列。 在具有平行於增加層厚度的方向排列的(〇.〇·〇.2.) 馨晶面之六方單體BP層102的表面上,生長摻雜鍺(Ge) 的纖維鋅礦型六方η-型GaN層103(層厚度=1900奈米) 作爲六方III族氮化物半導體層。利用普通TEM的分析, 發現用充當底層的六方單體BP層102生長的η-型GaN層 103爲具有平行於六方單體BP層102的(0.0.0.2.)晶面 排列的(0.0.0 _ 1 ·)晶面之單晶層。接著,在六方G aN層 1 03的內部區域中,幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層103的(1·1·-2.0.)表面上,依 鲁下述順序堆疊由六方η-型Alo.^GamN形成的下包覆層 104 (層厚度=150奈米)、由分別地Gamlno.uN井層及 Alo.fnGao.99N能障層5個循環組成之多量子井結構的發光 層105,及由層厚度50奈米之由ρ-型AU.MGao.9oN形成 的上包覆層1〇6而製成ρ-η接面DH結構的發光部分。在 上述上包覆層1〇6表面上進一步堆疊ρ-型GaN層(層厚 度=80奈米)充當接觸層107而完成該堆疊結構100的形 成。 在部分上述P-型接觸層107的區域中,利用金(AuS -70 - ^6° (68) 1310247 & externally, the presence of twins in the hexagonal monomer BP layer 102 can hardly be resolved by observation of the cross-sectional TEM technique and electron diffraction means. Further, in the region of the inside of the hexagonal monomer BP layer 102 which is about 30 nm from the interface with the sapphire substrate 101, it was found that the arrangement of the (mi) crystal faces was hardly discernible. It is confirmed that the (〇.〇. 0·2.) crystal faces are regularly arranged in an almost parallel relationship. On the surface of the hexagonal monomer BP layer 102 having a sinusoidal plane arranged in a direction parallel to the thickness of the layer to be grown, a yttrium-doped (Ge)-doped bauxite-type hexagonal η- The GaN layer 103 (layer thickness = 1900 nm) is a hexagonal group III nitride semiconductor layer. Using the analysis of ordinary TEM, it was found that the n-type GaN layer 103 grown with the hexagonal monomer BP layer 102 serving as the underlayer was arranged to have a (0.0.0.2.) crystal plane parallel to the hexagonal monomer BP layer 102 (0.0.0). _ 1 ·) Single crystal layer of crystal face. Next, in the inner region of the hexagonal GaN layer 103, twinning and stacking defects are hardly seen. On the (1·1·-2.0.) surface of the hexagonal η-type GaN layer 103, the lower cladding layer 104 formed of hexagonal η-type Alo.^GamN is stacked in the following order (layer thickness=150 nm) m), the luminescent layer 105 of a multi-quantum well structure consisting of 5 cycles of Gamlno.uN well layer and Alo.fnGao.99N barrier layer, respectively, and ρ-type AU.MGao. The upper cladding layer 1〇6 formed by 9oN is formed into a light-emitting portion of the p-η junction DH structure. The formation of the stacked structure 100 is completed by further stacking a p-type GaN layer (layer thickness = 80 nm) on the surface of the upper cladding layer 1 充当 6 as the contact layer 107. In the region of some of the above P-type contact layers 107, gold is used (Au

(S -71 - (69) 1310247 ).氧化鎳(NiO )合金形成P-型歐姆電極108。在經由乾 式蝕刻手段移除存在於指定用於該電極109配置之區域中 的層,例如下包覆層104及發光層105,而暴露出來的n-型GaN層103表面上形成η-型歐姆電極109。結果,完 成該LED 1。 藉由使20毫安培的裝置操作電流依p-型與η-型歐姆 電極1 08與1 09之間的前進方向流過而試驗該LED 1的 魯發光性質。由LED 1發出的光的主要波長爲約460奈米 。晶片在此狀態下的放射亮度爲約1 . 8燭光。因爲優於結 晶性的ΠΙ族氮化物半導體層可藉由在該六方BP層1〇2 上配置構成該p-n接面DH結構發光部分的下包覆層104 至上包覆層106及附有η-型歐姆電極109的η-型GaN層 103而形成,當反向電流固定在10微安培時,反向電壓 呈現超過15伏特的高量級。再者,由於III族氮化物半 導體層的結晶性優良,在由此製成的LED 1中幾乎看不 ♦出局部擊穿。 實施例8 本發明將引用在依接合到藍寶石塊狀的(1·1.-2·0) 晶面的方式配置的六方單體BP層上提供歐姆電極而建構 化合物半導體裝置LED的情況爲例子作明確地解釋。 第21圖槪略地舉例說明有關實施例8的LED 1平面 結構。然後,第22圖爲舉例說明該化合物半導體裝置 LED 1沿第21圖虛線XXII-XXII取得的槪略橫斷面。 -72- (70) 1310247 製造該LED 1所欲的堆疊結構100係使用具有充當 其表面的(1.1.-2·〇·)晶面(通稱A-平面)之藍寶石( α-氧化鋁單晶)充當基材101而形成。在該基材101的 (1·1.-2·0·)晶面的表面上,利用普通MOCVD法在750 °C下形成具有充當其表面的(1.1.-2.0.)晶面之未摻雜的 η-型六方單體BP層(層厚度二2000奈米)。該η-型BP層 102的載子濃度經測定爲2xl019cnT3。 • 在該六方η-型GaN層1〇3的(1·1.·2·0·)晶面形成的 表面上,生長未摻雜的 η-型六方 GaN層 103(層厚度 = 1200奈米)。利用普通TEM的分析,發現該六方單體 BP層102中含有小於lxl04cirT2的小密度的攣晶及堆疊缺 陷。因爲該六方G aN層1 0 3係依接合到優於結晶性的六 方單體BP層102的方式配置,所以該六方GaN層103中 幾乎看不出攣晶及堆疊缺陷。 在該六方η-型GaN層1〇3的(1.1·-2·0·)表面上,依 ®下述順序堆疊由六方η-型Α1〇.150&().85Ν形成的下包覆層 1〇4(層厚度=280奈米)、由分別地GaQ.85InQ.15N井層( 層厚度=3奈米)/Alo.tnGao.^N能障層(層厚度=8奈米) 5個循環組成之多量子井結構的發光層1〇5,及由層厚度 85奈米且由p-型Alo.MGao.9oN形成的上包覆層1〇6而製 成p-n接面DH結構的發光部分。在上述上包覆層106表 面上進一步堆疊P-型GaN層(層厚度=80奈米)充當接 觸層107,完成該堆疊結構1〇〇的形成。 在部分上述P-型接觸層107的區域中,形成由金( -73- (71) 1310247(S-71 - (69) 1310247). A nickel oxide (NiO) alloy forms a P-type ohmic electrode 108. The layer present in the region designated for the electrode 109 configuration, such as the lower cladding layer 104 and the light-emitting layer 105, is removed by dry etching, and the exposed n-type GaN layer 103 is formed with n-type ohms on the surface. Electrode 109. As a result, the LED 1 is completed. The Lu light-emitting property of the LED 1 was tested by flowing a 20 mA device operating current in the forward direction between the p-type and the n-type ohmic electrodes 108 and 109. The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state is about 1.8 candles. Since the bismuth nitride semiconductor layer superior to the crystalline layer can be disposed on the hexagonal BP layer 1〇2, the lower cladding layer 104 to the upper cladding layer 106 and the η- constituting the light emitting portion of the pn junction DH structure can be disposed. The n-type GaN layer 103 of the type ohmic electrode 109 is formed, and when the reverse current is fixed at 10 microamperes, the reverse voltage exhibits a high order of more than 15 volts. Further, since the crystallinity of the group III nitride semiconductor layer is excellent, partial breakdown is hardly observed in the LED 1 thus produced. [Embodiment 8] The present invention will exemplify a case where an ohmic electrode is provided on a hexagonal monomer BP layer which is bonded to a (1·1.-2·0) crystal plane of a sapphire block to construct a compound semiconductor device LED. Explain clearly. Fig. 21 schematically illustrates the planar structure of the LED 1 relating to Embodiment 8. Then, Fig. 22 is a schematic cross-sectional view showing the compound semiconductor device LED 1 taken along the broken line XXII-XXII of Fig. 21. -72- (70) 1310247 Manufacture of the LED 1 The desired stack structure 100 uses sapphire (α-alumina single crystal) having a (1.1.-2·〇·) crystal plane (commonly called A-plane) serving as its surface. ) formed as the substrate 101. On the surface of the (1·1.-2·0·) crystal plane of the substrate 101, an undoped layer having a (1.1.-2.0.) crystal plane serving as a surface thereof was formed at 750 ° C by a conventional MOCVD method. A heterogeneous η-type hexagonal monomer BP layer (layer thickness of 2000 nm). The carrier concentration of the η-type BP layer 102 was determined to be 2xl019cnT3. • On the surface formed by the (1·1··2·0·) crystal plane of the hexagonal η-type GaN layer 1〇3, an undoped n-type hexagonal GaN layer 103 is grown (layer thickness = 1200 nm) ). Using the analysis of ordinary TEM, it was found that the hexagonal monomer BP layer 102 contained a small density of twin crystals and stacked defects of less than lxl04cirT2. Since the hexagonal G aN layer 103 is disposed in such a manner as to be bonded to the hexagonal monomer BP layer 102 superior in crystallinity, twinning and stacking defects are hardly observed in the hexagonal GaN layer 103. On the (1.1·-2·0·) surface of the hexagonal η-type GaN layer 1〇3, a lower cladding layer formed of hexagonal η-type Α1〇.150&().85Ν is stacked in the following order. 1〇4 (layer thickness = 280 nm), respectively, by GaQ.85InQ.15N well layer (layer thickness = 3 nm) / Alo.tnGao.^N barrier layer (layer thickness = 8 nm) 5 The luminescent layer 1〇5 of the quantum well structure composed of cycles and the luminescence of the pn junction DH structure is formed by the upper cladding layer 1〇6 formed by the p-type Alo.MGao.9oN layer thickness of 85 nm. section. Further, a P-type GaN layer (layer thickness = 80 nm) is further stacked on the surface of the upper cladding layer 106 to serve as the contact layer 107, and the formation of the stacked structure 1 is completed. In the region of some of the above P-type contact layers 107, formed by gold (-73-(71) 1310247

Au) ·氧化錬(NiO)合金形成的ρ -型歐姆電極108。 在經由乾式蝕刻手段移除存在於指定用於該η-型歐 姆電極109配置之區域中六方η-型ΒΡ層102上方的層 103至107而暴露出來的六方η-型ΒΡ層102表面上形成 η-型歐姆電極1〇9。該η-型歐姆電極109係由普通真空沈 積法獲得的金(Au)-鍺(Ge)合金層(90重量%金及 10重量%鍺的合金)形成。 藉由使20毫安培的裝置操作電流依ρ -型與η -型歐姆 電極1 0 8與1 0 9之間的前進方向流過而試驗該L E D 1的 發光性質。由LED 1發出的光的主要波長爲約460奈米 。晶片在此狀態下的放射亮度爲約1 . 6燭光。因爲在優於 結晶性的六方BP層102上配置構成該p-n接面DH結構 發光部分的ΠΙ族氮化物半導體層104至106及η-型歐姆 電極109,反向電壓(當反向電流固定在10微安培時) 呈現超過15伏特的高量級。再者,幾乎看不出局部擊穿 實施例9 本發明將引用在η-型及ρ-型六方單體BP層上配置n-型及P-型歐姆電極而建構化合物半導體裝置LED的情況 爲例子作明確地解釋。 第23圖槪略地舉例說明有關實施例9的LED 2平面 結構。然後,第24圖爲舉例說明該LED 2沿第23圖虛 線XXIV-XXIV取得的槪略橫斷面。 -74- (72) 1310247 製造該L E D 2所欲的堆疊結構2 0 0係’如前述實施 例8中說明的,形成於具有充當其表面的(1.1.-2.0)晶 面(通稱Α-平面)之藍寶石(α -氧化鋁單晶)且作爲基 材201而形成。在該基材201的(1 · 1 .-2.0.)晶面的表面 上,以前述實施例8中說明的相同方法利用普通MOCVD 法在750 t下形成具有充當其表面的(1.1.-2.0.)晶面之 未摻雜的η-型六方單體BP層202 (層厚度=2〇〇〇奈米) H。該η-型ΒΡ層202的載子濃度經測定爲2xl〇19cnT3。利 用普通TEM的分析,發現該六方單體BP層202中含有小 於lxl 04cnT2的小密度的攣晶及堆疊缺陷。 在該六方BP層202的(1.1.-2.0.)晶面形成的表面 上,依下述順序堆疊未摻雜的η-型GaN層203 (層厚度 = 1200奈米)、由具有充當其表面的(1.L-2.0.)晶面之 六方η -型Al〇..15GaG.85N形成的下包覆層204 (層厚度=280 奈米)、由分別地Ga〇.85ln〇.15N井層(層厚度=3奈米) • /Al〇.Q1Ga().99N能障層(層厚度=8奈米)5個循環組成之 多量子井結構的發光層205,及具有層厚度85奈米且由 P-型AlmGao.MN形成的上包覆層206而製成p-n接面 DH結構的發光部分。 在具有充當其表面的(1.1.-2.0.)晶面之六方η-型上 包覆層2 06的表面上,沈積ρ-型六方未摻雜的單體bp層 (層厚度=2〇〇奈米)充當接觸層207。藉由普通斷面 ΤΕΜ觀察,構成該接觸層207的六方未摻雜的單體ΒΡ層 中幾乎分辨不出例如攣晶及堆疊缺陷等的平面缺陷及位錯Au) - ρ-type ohmic electrode 108 formed of yttrium oxide (NiO) alloy. Formed on the surface of the hexagonal n-type germanium layer 102 exposed by the dry etching means to remove the layers 103 to 107 present above the hexagonal n-type germanium layer 102 in the region designated for the configuration of the n-type ohmic electrode 109 The η-type ohmic electrode is 1〇9. The η-type ohmic electrode 109 is formed of a gold (Au)-germanium (Ge) alloy layer (90% by weight of gold and 10% by weight of bismuth alloy) obtained by a conventional vacuum deposition method. The luminescent properties of the L E D 1 were tested by flowing a 20 mA device operating current in the forward direction between the ρ-type and the η-type ohmic electrodes 1 0 8 and 1 0 9 . The main wavelength of light emitted by the LED 1 is about 460 nm. The radiance of the wafer in this state is about 1.6 light. Since the NMOS-based nitride semiconductor layers 104 to 106 and the η-type ohmic electrode 109 constituting the light-emitting portion of the pn junction DH structure are disposed on the hexagonal BP layer 102 superior to the crystallinity, the reverse voltage (when the reverse current is fixed at At 10 microamperes, it exhibits a high level of more than 15 volts. Further, the partial breakdown is hardly observed. In the present invention, the case where the compound semiconductor device LED is constructed by arranging the n-type and P-type ohmic electrodes on the η-type and ρ-type hexagonal monomer BP layers is The examples are clearly explained. Fig. 23 schematically illustrates the planar structure of the LED 2 relating to Embodiment 9. Then, Fig. 24 is a schematic cross-sectional view showing the LED 2 taken along the dashed line XXIV-XXIV of Fig. 23. -74- (72) 1310247 The desired stacked structure of the LED 2 is formed as described in the foregoing embodiment 8, and is formed on a (1.1.-2.0) crystal plane serving as its surface (commonly referred to as a Α-plane) The sapphire (α-alumina single crystal) is formed as the substrate 201. On the surface of the (1·1 .-2.0.) crystal plane of the substrate 201, the same method as described in the foregoing Example 8 was used to form a surface having a surface serving as a surface at 750 t by ordinary MOCVD method (1.1.-2.0). .) The undoped n-type hexagonal monomer BP layer 202 (layer thickness = 2 〇〇〇 nanometer) H of the crystal face. The carrier concentration of the η-type ruthenium layer 202 was determined to be 2xl 〇 19cnT3. Using ordinary TEM analysis, it was found that the hexagonal monomer BP layer 202 contained a small density of twins and stack defects smaller than lxl 04cnT2. On the surface formed by the (1.1.-2.0.) crystal plane of the hexagonal BP layer 202, an undoped n-type GaN layer 203 (layer thickness = 1200 nm) is stacked in the following order, having a surface serving as its surface The lower cladding layer 204 (layer thickness = 280 nm) formed by the hexagonal η-type Al 〇..15GaG.85N of the (1.L-2.0.) crystal plane, respectively, is from Ga〇.85ln〇.15N well Layer (layer thickness = 3 nm) • /Al〇.Q1Ga().99N barrier layer (layer thickness = 8 nm) 5 layers of multi-quantum well structure luminescent layer 205, and layer thickness 85 奈The upper cladding layer 206 formed of P-type AlmGao.MN is used to form a light-emitting portion of the pn junction DH structure. On the surface of the hexagonal n-type upper cladding layer 206 having a (1.1.-2.0.) crystal plane serving as a surface thereof, a p-type hexagonal undoped monomer bp layer is deposited (layer thickness = 2 〇〇) Nano) acts as a contact layer 207. By observing the ordinary cross-section, the hexagonal undoped monomer layer constituting the contact layer 207 can hardly distinguish planar defects and dislocations such as twins and stack defects.

-75- (73) 1310247 在上述p -型接觸層207的中心部分中,形成由金( Au).鋅(Zn)合金(95重量%金及5重量%鋅的合金) 形成的P-型歐姆電極208並呈現形成圓形平面形狀。 在經由乾式蝕刻手段移除存在於指定用於該η-型歐 姆電極209配置之區域中六方η-型ΒΡ層202上方的個別 層203至20 7而暴露出來的六方η-型ΒΡ層202表面上形 馨成平面視圖呈圓形的η-型歐姆電極209。該η-型歐姆電極 2〇9係由普通真空沈積法獲得的金(Au )—鍺(Ge )合金 層(90重量%金及10重量%鍺的合金)形成。 藉由使20毫安培的裝置操作電流依分別地配置在該 六方單體BP層207及202上的p-型與η-型歐姆電極208 與209之間的前進方向流過而試驗該六方單體BP層207 及2 〇2。由LED 2發出的光的主要波長爲約460奈米。晶 片在此狀態下的放射亮度爲約1.6燭光。因爲在優於結晶 鲁性的六方BP層202及207上配置構成該p-n接面DH結 構發光部分的ΙΠ族氮化物半導體層2〇4至206及歐姆電 極208及209’反向電壓(當反向電流固定在10微安培 時)呈現超過18伏特的高量級。再者,幾乎看不出局部 擊穿。 實施例1 0 本發明將引用藉由配置在高阻抗η-型六方單體BP層 上的蕭特基閘極及歐姆接觸電極和汲極而建構GaN爲底 -76- (74) 1310247 的FET的情況爲例子作明確地解釋。. 第25圖槪略地舉例說明適合此實施例1 〇的GaN爲 底的FET 3的槪略斷面結構。 製造該FET 3所欲的堆疊結構3 00係,如前述實施例 8中說明的,形成於具有充當其表面的(1.1.-2.0.)晶面 (通稱A-平面)且作爲基材3〇1之藍寶石(α -氧化鋁單 晶)上。在該基材301的(1.1.-2.0.)晶面的表面上,藉 鲁由使用普通的MOCVD法在l〇5〇°C下形成高阻抗的未摻雜 六方單體BP層303 (層厚度= 720奈米)。高阻抗的未 摻雜BP層303的載子濃度爲lxl〇17cm·3。根據利用普通 TEM的分析,該BP層3 03中含有小於ixi〇4cm-2的小量 攣晶及堆疊缺陷。 在高阻抗BP層303的表面上,依下述順序堆疊由未 摻雜的六方GaN層(層厚度=4 8奈米)形成的電子傳輸層 3 04及具有充當其表面的(1.1·-2·〇·)晶面且由六方n-型 ® AU.25GaG.75:N形成的電子供應層3 05 (層厚度=28奈米) 。該電子傳輸層304及電子供應層 305二者都藉由 MOCVD法形成。 在具有充當其表面的(1·1·_2.〇·)晶面的六方η-型電 子供應層3 0 5上,依接合的方式配置使閘極3 0 7能沈積所 欲的蕭特基接觸形成層310。該蕭特基接觸形成層310係 由具有12奈米的層厚度及小於5x1016cm·3的載子濃度的 高阻抗六方單體BP形成。等蕭特基接觸形成層310形成 之後’使該蕭特基接觸形成層3 1 0持續完全地留在平面視-75- (73) 1310247 In the central portion of the p-type contact layer 207, a P-type formed of a gold ( Au). zinc (Zn) alloy (an alloy of 95% by weight of gold and 5% by weight of zinc) is formed. The ohmic electrode 208 appears to form a circular planar shape. The surface of the hexagonal n-type germanium layer 202 exposed by removing the individual layers 203 to 20 7 existing above the hexagonal n-type germanium layer 202 in the region designated for the n-type ohmic electrode 209 by dry etching means The upper shape is a circular n-type ohmic electrode 209 in plan view. The η-type ohmic electrode 2〇9 is formed of a gold (Au)-germanium (Ge) alloy layer (90% by weight of gold and 10% by weight of bismuth alloy) obtained by a conventional vacuum deposition method. The hexagonal single is tested by flowing a 20 mA device operating current in a forward direction between the p-type and n-type ohmic electrodes 208 and 209 disposed on the hexagonal monomer BP layers 207 and 202, respectively. Body BP layers 207 and 2 〇2. The main wavelength of light emitted by the LED 2 is about 460 nm. The radiance of the wafer in this state was about 1.6 candelas. Since the NMOS nitride semiconductor layers 2〇4 to 206 and the ohmic electrodes 208 and 209' constituting the light-emitting portion of the pn junction DH structure are disposed on the hexagonal BP layers 202 and 207 superior to the crystallization, the reverse voltage is applied. When the current is fixed at 10 microamperes, it exhibits a high level of more than 18 volts. Again, there is almost no local breakdown. Embodiment 1 0 The present invention will construct an FET having a GaN bottom-76-(74) 1310247 by a Schottky gate and an ohmic contact electrode and a drain electrode disposed on a high-impedance η-type hexagonal monomer BP layer. The case is clearly explained as an example. Fig. 25 is a schematic view showing a schematic sectional structure of a GaN 3 which is suitable for the GaN of this embodiment. The stack structure 300 of the FET 3 is fabricated, as described in the foregoing Embodiment 8, formed on a (1.1.-2.0.) crystal plane (commonly referred to as an A-plane) serving as a surface thereof and serves as a substrate 3〇. 1 on sapphire (α-alumina single crystal). On the surface of the (1.1.-2.0.) crystal plane of the substrate 301, a high-impedance undoped hexagonal monomer BP layer 303 is formed by using a conventional MOCVD method at 10 ° C ° C. Thickness = 720 nm). The high-impedance undoped BP layer 303 has a carrier concentration of lxl 〇 17 cm·3. According to analysis by ordinary TEM, the BP layer 303 contains a small amount of twins and stack defects of less than ixi 〇 4 cm -2 . On the surface of the high-impedance BP layer 303, an electron transport layer 304 formed of an undoped hexagonal GaN layer (layer thickness = 48 nm) and having a surface serving as its surface (1.1·-2) are stacked in the following order. · 〇 ·) crystal face and electron supply layer 3 05 formed by hexagonal n-type ® AU.25GaG.75:N (layer thickness = 28 nm). Both the electron transport layer 304 and the electron supply layer 305 are formed by the MOCVD method. On the hexagonal η-type electron supply layer 305 having a (1·1·_2.〇·) crystal plane serving as a surface thereof, the Schottky is configured to deposit the gate 3 0 7 in a bonding manner. The contact forms the layer 310. The Schottky contact formation layer 310 is formed of a high-impedance hexagonal monomer BP having a layer thickness of 12 nm and a carrier concentration of less than 5 x 1016 cm·3. After the Schottky contact formation layer 310 is formed, the Schottky contact formation layer 3 10 is continuously left in the plane view.

(S -77- (75) 1310247 圖的中心區域中,爲的是使該蕭特基閘極3 07能形成,並 經由普通乾式鈾刻手段移除存在於該區域其餘部分的蕭特 基接觸電極形成層。 接著,堆疊充當接觸層306的η-型六方單體BP層( 層厚度=100奈米且載子濃度=2xl〇19cnT3)以覆蓋持續保 留的蕭特基接觸形成電極310及暴露於其周圍的電子供應 層305二者的整個表面。藉由普通斷面TEM觀察,構成 鲁該接觸層306的六方單體BP層中幾乎分辨不出例如攣晶 及堆疊缺陷等的平面缺陷及位錯。 之後,爲達沈積閘極307的目的,藉由普通乾式蝕刻 手段移除由六方η-型BP層形成且覆蓋該蕭特基接觸形成 電極310的接觸層306。在藉由移除接觸層306而暴露出 來的凹部部分330的蕭特基接觸形成電極310表面上,藉 由普通電子束沈積手段配置由鈦(Ti )形成的蕭特基閘極 3 07。 ® 接著,在共同地構成該接觸層3 0 6且分別地存在橫跨 該閘極3〇7相反側上的六方BP層兩個獨立部分之一的表 面上,形成歐姆接觸電極3 0 8。然後,在存在橫跨該閘極 307相反側上的六方BP層另一個獨立部分形成的接觸層 306表面上,配置汲極309而完成該GaN-爲底的FET 3 之製造。構成源極308及汲極309的歐姆電極係由普通真 空沈積法獲得的金(Au) -鍺(Ge)合金層(95重量% 金及5重量%鍺的合金)形成。 因爲該等歐姆電極,即,源極3 08及汲極3 09,二者 -78- (76) 1310247 都配置在六方單體BP形成的接觸層3 06上且含僅小量的 攣晶及堆疊缺陷,所以可以解決遇到汲極電流流入短路圖 案’且如過去經驗在含高密度結晶性缺陷的區域中配置的 源極部分區域與相對的汲極區域之間呈集中狀態的缺點。 因此’可製成具有例如使裝置操作電流能在均勻電流密度 下流至電子傳輸層304等的獨特效能特徵之FET 3。 再者,因爲該蕭特基閘極307係鄰接在幾乎不含攣晶 肇及堆疊缺陷且由高阻抗六方單體BP形成的蕭特基接點形 成層3 1 0上,所以可製成附有僅顯示微不足道的洩漏電流 且顯露出高擊穿電壓的閘極307之GaN-爲底的FET 3。 實施例1 1 本發明內容將引用建構附有充當下包覆層的六方單體 B P層之化合物半導體L E D的情況爲例子作明確地解釋。 第26圖爲舉例說明實施例〗丨中說明的化合物半導體 鲁LED 1的槪略平面結構。然後,第27圖爲舉例說明該 LED 1沿第26圖虛線XXVII-XX VII取得的槪略橫斷面。 用於該LED 1所欲的堆疊結構1 〇 〇係藉由使用藍寶 石(ff-AhCh單晶)充當基材101而形成。在該基材ι〇1 的(1·-1·0_2_)晶面(通稱R-平面)形成的表面上,藉由 普通減壓MOCVD法形成具有約8微米的層厚度且具有充 當其表面的(1.1.-2.0.)晶面之η-型GaN層103。 在該η-型GaN層1〇3的(1.1.-2.0.)晶面形成的表面 上’由六方未摻雜的單體BP形成的磷化硼爲底的半導體(S-77-(75) 1310247 In the central region of the figure, in order to enable the Schottky gate 3 07 to be formed and to remove the Schottky contact present in the rest of the area via ordinary dry uranium engraving means The electrode is formed into a layer. Next, an n-type hexagonal monomer BP layer serving as the contact layer 306 (layer thickness = 100 nm and carrier concentration = 2 x 10 〇 19 cnT3) is stacked to cover the continuously remaining Schottky contact forming electrode 310 and exposed. The entire surface of the electron supply layer 305 around it. By ordinary cross-sectional TEM observation, the hexagonal monomer BP layer constituting the contact layer 306 can hardly distinguish planar defects such as twins and stack defects. Dislocation. Thereafter, for the purpose of depositing the gate 307, the contact layer 306 formed of the hexagonal n-type BP layer and covering the Schottky contact forming electrode 310 is removed by ordinary dry etching. The Schottky contact of the recess portion 330 exposed by the contact layer 306 is formed on the surface of the electrode 310, and the Schottky gate formed of titanium (Ti) is disposed by ordinary electron beam deposition means. Forming the contact layer 3 0 6 and dividing On the surface of one of the two independent portions of the hexagonal BP layer on the opposite side of the gate 3〇7, an ohmic contact electrode 3 0 8 is formed. Then, there are six sides on the opposite side of the gate 307. On the surface of the contact layer 306 formed by another independent portion of the BP layer, a drain 309 is disposed to complete the fabrication of the GaN-based FET 3. The ohmic electrode constituting the source 308 and the drain 309 is obtained by a conventional vacuum deposition method. A gold (Au)-germanium (Ge) alloy layer (95% by weight of gold and 5% by weight of an alloy of yttrium) is formed. Because of the ohmic electrodes, that is, the source 3 08 and the drain 3 09, both -78- ( 76) 1310247 is disposed on the contact layer 306 formed by the hexagonal monomer BP and contains only a small amount of twins and stacking defects, so it can solve the problem of encountering the drain current flowing into the short-circuit pattern' and as in the past experience in high-density crystallization. The source portion region and the opposite drain region disposed in the region of the defect are in a concentrated state. Therefore, it can be made to have a unique characteristic such that the device operating current can flow to the electron transport layer 304 at a uniform current density. Performance characteristics of FET 3. Furthermore, The Schottky gate 307 is adjacent to the Schottky contact layer formed by the high-impedance hexagonal monomer BP, which is almost free of twins and stacking defects, so that it can be made to show only insignificant Leakage current and GaN-based FET 3 of gate 307 exhibiting high breakdown voltage. Embodiment 1 1 The present invention will be directed to the construction of a compound semiconductor LED with a hexagonal monomer BP layer serving as a lower cladding layer. The case is explicitly explained as an example. Fig. 26 is a schematic plan view showing the schematic structure of the compound semiconductor LED 1 described in the embodiment. Then, Fig. 27 is a schematic cross-sectional view showing the LED 1 taken along the broken line XXVII-XX VII of Fig. 26. The stack structure 1 for the LED 1 is formed by using sapphire (ff-AhCh single crystal) as the substrate 101. On the surface formed by the (1·-1·0_2_) crystal plane of the substrate ι〇1 (commonly referred to as the R-plane), a layer thickness of about 8 μm is formed by ordinary decompression MOCVD method and has a surface serving as a surface thereof. (1.1.-2.0.) η-type GaN layer 103 of crystal face. On the surface formed by the (1.1.-2.0.) crystal plane of the η-type GaN layer 1〇3, a boron phosphide-based semiconductor formed of hexagonal undoped monomer BP

-79- (77) 1310247 層係充當下包覆層104,藉由普通大氣壓力( )MOCVD法在750°C下形成。構成下包層的 的半導體層具有約29 0奈米的層厚度且具有充 (1.1.-2· 0.)晶面。接著,此層的傳導型式爲 普通電解質C-V法發現其載子濃度爲約2X101 ,藉由普通TEM分析,顯示該下GaN層103 係藉由與充當下包覆層104的磷化硼爲底的半 暑面來抑制增殖。 在構成該下包覆層的BP層的(1.1, 形成的表面上,配置由堆疊分別地由二層,即 的η-型GaQ.88InQ.12N層及充當緩衝層的η-型 成的5個循環得到之多量子井結構形成的發光 呈現多量子井結構的GaQ.88In〇.12N井層中,因 方BP層的下包覆層104之Ga〇.88In〇.12N井層 有充當其表面的(1.1. -2 · 〇 .)晶面,所以此井 ®優於結晶性的六方單晶層。藉由普通TEM分 下包覆層104的表面之井層中幾乎分辨不出攣 由於經由(1.1.-2.0.)晶面接合到下包覆, 面之井層的結晶性優良,所以構成又更高層纪 層及GaQ.88InQ.12N井層二者都能轉變成幾乎不 於結晶性的六方單晶層。再者,構成多量子井 層105之井層與能障層二者都轉變成具有平f 包覆層1 04的(1 · 1 .-2.0·)晶面堆疊的(1 · 1 之六方單晶層。 約大氣壓力 磷化硼爲底 當其表面的 η-型且藉由 9cm_3。再者 含有的位錯 導體層的界 .-2.0.)晶面 ,充當井層 GaN層,組 i層105。在 爲接合到六 係形成而具 層將轉變成 析,接合到 晶。 層 1 0 4的表 ]GaN阻障 含攣晶且優 結構的發光 於構成該下 .-2.0 .)晶面 -80- (78) 1310247 在構成多量子井結構,該多量子井結構可藉由配置充 當底層的六方BP層而由含僅小量的結晶性缺陷之六方III 族氮化物半導體層形成,的發光層最外表面層的η-型 GaN層的(1.1-2.0.)晶面上,藉由普通減壓MOCVD法 在1080°C下配置充當上包覆層1〇6的p-型AU.15GaQ.85N 層。該上包覆層106係由具有約4xl017cnT3的載子濃度及 約90奈米的層厚度之六方Al〇.15Ga〇.85N層形成。因此, 鲁該p-n接面DH結構的發光部分係由構成上述下包覆層 1〇4的BP層、發光層1〇5及上包覆層106構成。 在構成上包覆層106之(1.1.-2.0.)晶面形成的 Al〇.15Ga〇.85N表面上,藉由普通減壓MOCVD法在1050°C 下配置充當接觸層107的p-型GaN層。該接觸層107係 由具有約lX1018cm_3的載子濃度及約80奈米的層厚度之 六方GaN層形成。 在由p-型GaN層形成的接觸層1〇7充當最上層配置 隹而完成該堆疊結構1〇〇的形成之後,在該接觸層107表面 之一邊緣形成P-型歐姆電極108。p-型歐姆電極108係由 金及氧化鎳構成。η-型歐姆電極1 09係形成在構成利用乾 式蝕刻方法暴露出來的六方磷化硼爲底的半導體層之下包 覆層104上。該η-型歐姆電極109係由金一鍺合金構成 〇 藉由使2〇毫安培的裝置操作電流依Ρ -型與η_型歐姆 電極108與109之間的前進方向流過而試驗此LED 1的 發光性質。由LED 1發出的光的主要波長爲約450奈米 -81 - (79) 1310247 。晶片在此狀態下的放射亮度爲約1.2燭光。當正向電流 固定在20毫安培時’正向電壓爲約3.5伏特。在反映構 成下包覆層1〇4的六方磷化硼爲底的半導體層、構成ρ-η 接面DH結構的發光部分之發光層105及構成上包覆層 1 0 6的III族氮化物半導體層的優良結晶性時,當反向電 流固定在10微安培時’反向電壓呈現超過10伏特的高量 級。再者,因爲構成下包覆層1 〇4的六方磷化硼爲底的半 鲁導體層抑制位錯從η-型GaN層103增殖到ρ-η接面DH結 構的發光部分,因此獲得的LED 1中幾乎看不出局部擊 穿。 實施例1 2 本發明內容將引用建構附有發光部分,該發光部分具 有由上及下包覆層來著發光層形成的六方磷化硼爲底的半 導體層,之LED的情況爲例子作明確地解釋。 © 第2 8圖槪略地舉例說明實施例1 2中說明的L E D 1 的斷面結構。以類似第2 6圖及第2 7圖所示的組成元素表 示第28圖中類似的參考編號。 在藍寶石基材101表面上’依前述實施例11說明的 順序堆疊η-型六方GaN層103、由η-型六方單體BP層形 成的下包覆層104及多量子井結構的發光層1〇5。因爲發 光層105具有由充當底層之磷化硼爲底的半導體層形成的 下包覆層1 04,所以其最終由含僅小量的例如攣晶等的結 晶性缺陷之六方GalnN井層及〇aN能障層構成。The -79- (77) 1310247 layer acts as the lower cladding layer 104, which is formed at 750 ° C by ordinary atmospheric pressure ( ) MOCVD. The semiconductor layer constituting the lower cladding layer has a layer thickness of about 29 nm and has a (1.1.-2·0.) crystal plane. Next, the conduction pattern of this layer is found to be about 2×101 by the ordinary electrolyte CV method. The ordinary TEM analysis shows that the lower GaN layer 103 is based on boron phosphide as the lower cladding layer 104. Summer heat to inhibit proliferation. On the (1.1, formed surface of the BP layer constituting the lower cladding layer, 5 layers respectively formed by stacking, that is, η-type GaQ.88 InQ.12N layer and η-type serving as a buffer layer are disposed. The luminescence formed by the quantum well structure obtained by the cycle is in the GaQ.88In〇.12N well layer of the multi-quantum well structure, and the Ga〇.88In〇.12N well layer of the lower cladding layer 104 of the square BP layer acts as its The surface of the (1.1. -2 · 〇.) crystal plane, so this well® is superior to the crystalline hexagonal single crystal layer. The well layer of the surface of the cladding layer 104 is almost indistinguishable by ordinary TEM. Through the (1.1.-2.0.) crystal plane bonding to the lower cladding, the crystal layer of the well layer is excellent, so that the higher layer layer and the GaQ.88InQ.12N well layer can be transformed into almost no crystal. a hexagonal single crystal layer. Further, both the well layer and the energy barrier layer constituting the multi-quantum well layer 105 are transformed into a (1 · 1 .-2.0·) crystal plane stack having a flat f cladding layer 104. (1. 1 hexagonal single crystal layer. At about atmospheric pressure, boron phosphide is the η-type of its surface and is 9 cm_3. Further, the boundary of the dislocation conductor layer contained. - 2.0.) crystal plane, When the well GaN layer, the group i layer 105. The layer is transformed into a precipitate for bonding to the hexadectic formation, and is bonded to the crystal. The surface of the layer 1 0 4] the GaN barrier contains twin crystals and the light structure of the excellent structure is formed. The lower .-2.0.) crystal plane-80-(78) 1310247 constitutes a multi-quantum well structure which can be composed of a hexagonal BP layer serving as a bottom layer and a hexagonal crystal defect containing only a small amount The group III nitride semiconductor layer is formed on the (1.1-2.0.) crystal plane of the n-type GaN layer of the outermost surface layer of the light-emitting layer, and is disposed as an upper cladding layer at 1080 ° C by a conventional decompression MOCVD method. 1〇6 p-type AU.15GaQ.85N layer. The upper cladding layer 106 is formed of a hexagonal Al〇.15Ga〇.85N layer having a carrier concentration of about 4xl017cnT3 and a layer thickness of about 90 nm. Therefore, the light-emitting portion of the p-n junction DH structure is composed of the BP layer, the light-emitting layer 1〇5, and the upper cladding layer 106 which constitute the lower cladding layer 1〇4. On the surface of Al〇.15Ga〇.85N which is formed on the (1.1.-2.0.) crystal plane of the upper cladding layer 106, the p-type serving as the contact layer 107 is disposed at 1050 ° C by a conventional decompression MOCVD method. GaN layer. The contact layer 107 is formed of a hexagonal GaN layer having a carrier concentration of about 1×10 18 cm −3 and a layer thickness of about 80 nm. After the contact layer 1?7 formed of the p-type GaN layer serves as the uppermost layer configuration and the formation of the stacked structure 1? is completed, a P-type ohmic electrode 108 is formed on one edge of the surface of the contact layer 107. The p-type ohmic electrode 108 is composed of gold and nickel oxide. The n-type ohmic electrode 119 is formed on the underlying cladding layer 104 of the semiconductor layer constituting the hexagonal phosphide boron which is exposed by the dry etching method. The n-type ohmic electrode 109 is composed of a gold-niobium alloy, and the LED is tested by flowing a current of 2 mA amps depending on the forward direction between the Ρ-type and the η-type ohmic electrodes 108 and 109. The luminescent properties of 1. The main wavelength of light emitted by LED 1 is about 450 nm -81 - (79) 1310247. The radiance of the wafer in this state was about 1.2 candelas. When the forward current is fixed at 20 mA, the forward voltage is about 3.5 volts. a light-emitting layer 105 reflecting a hexagonal phosphide-based bottom layer constituting the lower cladding layer 1〇4, a light-emitting layer 105 constituting a light-emitting portion of the ρ-η junction DH structure, and a group III nitride constituting the upper cladding layer 106 When the semiconductor layer is excellent in crystallinity, the reverse voltage exhibits a high order of more than 10 volts when the reverse current is fixed at 10 microamperes. Further, since the hexagonal phosphide-based layer of the hexagonal phosphide constituting the lower cladding layer 1 〇4 suppresses the dislocation from the η-type GaN layer 103 to the luminescent portion of the ρ-η junction DH structure, the obtained There is almost no partial breakdown seen in LED 1. Embodiment 1 2 The present invention will be described with a light-emitting portion having a hexagonal phosphide-based semiconductor layer formed of an upper and lower cladding layer and a light-emitting layer. The case of the LED is clarified as an example. Explain. © Figure 28 is a schematic illustration of the cross-sectional structure of L E D 1 described in Example 12. Similar reference numerals in Fig. 28 are indicated by constituent elements similar to those shown in Figs. 26 and 27. On the surface of the sapphire substrate 101, the n-type hexagonal GaN layer 103, the lower cladding layer 104 formed of the n-type hexagonal monomer BP layer, and the light-emitting layer 1 of the multi-quantum well structure are stacked in the order described in the foregoing embodiment 11. 〇 5. Since the light-emitting layer 105 has the lower cladding layer 104 formed of a semiconductor layer serving as a bottom layer of phosphide boron, it is finally composed of a hexagonal GalnN well layer containing a small amount of crystal defects such as twins and germanium. The aN barrier layer is formed.

-82- i S (80) 1310247 接著’在構成該發光層最上表面層的n -型六方GaN 層形成的能障層上,藉由普通M0CVD法配置充當上包覆 層106的六方p-型磷化硼爲底的半導體層。該上包覆層 106係由未摻雜的p -型六方單體BP層構成。該上包覆層 106具有約250奈米的層厚度及約2X1019cm_3的載子濃度 。接著,該上包覆層1〇6的表面’如同構成底層且由六方 GaN層形成的能障層表面’係由(1 .1.-2.0.)晶面形成。 • 因爲構成上包覆層1〇6的p-型六方單體BP層具有超 過約+ 3.1電子伏特的禁帶寬度,所以由六方BP形成的磷 化硼爲底的半導體層係作爲上包覆層106並聯合η-型磷 化硼爲底的半導體層103及發光層105構成Ρ-η接面DH 結構的發光部分。 ' 因爲該六方磷化硼爲底的半導體層構成具有高載子濃 度的上包覆層106,所以不像前述實施例11,用於LED 1 的堆疊結構100的製造不需冒險在上包覆層106上形成使 ® P -型歐姆電極108能沈積所欲的接觸層就能完成。 該P -型歐姆電極108’如第28圖舉例說明的,係依 直接接合到六方P-型磷化硼爲底的半導體層表面的方式 配置。η-型歐姆電極109 ’如前述實施例i 1中說明的, 係配置在藉由利用普通乾式鈾刻方法而暴露出來之六方 η -型磷化硼爲底的半導體層所形成的下包覆層104表面上 ,而製造LED 1。 藉由使20毫安培的裝置操作電流依p_型與n_型歐姆 電極108與109之間的前進方向流過而試驗此LED 1的-82- i S (80) 1310247 Next, the hexagonal p-type serving as the upper cladding layer 106 is configured by an ordinary M0CVD method on the energy barrier layer formed of the n-type hexagonal GaN layer constituting the uppermost surface layer of the light-emitting layer. A boron nitride-based semiconductor layer. The upper cladding layer 106 is composed of an undoped p-type hexagonal monomer BP layer. The upper cladding layer 106 has a layer thickness of about 250 nm and a carrier concentration of about 2 x 1019 cm_3. Next, the surface ' of the upper cladding layer 1' is formed like a (1.1.-2.0.) crystal plane as the surface of the barrier layer which constitutes the underlayer and is formed of a hexagonal GaN layer. • Since the p-type hexagonal monomer BP layer constituting the upper cladding layer 1〇6 has a forbidden band width of more than about +3.1 electron volts, the boron nitride-based semiconductor layer formed of hexagonal BP is used as the over cladding layer. The layer 106 and the η-type boron phosphide-based semiconductor layer 103 and the light-emitting layer 105 constitute a light-emitting portion of the Ρ-η junction DH structure. Since the hexagonal phosphide-based semiconductor layer constitutes the upper cladding layer 106 having a high carrier concentration, unlike the foregoing embodiment 11, the fabrication of the stacked structure 100 for the LED 1 does not require an over-the-top coating. Formation of layer 106 allows the P-type ohmic electrode 108 to deposit the desired contact layer. The P-type ohmic electrode 108', as exemplified in Fig. 28, is disposed in such a manner as to be directly bonded to the surface of the hexagonal P-type boron phosphide-based semiconductor layer. The n-type ohmic electrode 109' is as described in the foregoing embodiment i1, and is disposed under the semiconductor layer formed by the hexagonal η-type phosphide-bored semiconductor layer exposed by the ordinary dry uranium engraving method. On the surface of layer 104, LED 1 is fabricated. The LED 1 was tested by flowing a 20 mA device operating current in the forward direction between the p_ type and the n_ type ohmic electrodes 108 and 109.

-83- < S (81) 1310247 發光性質。由LED 1發出的光的主要波長爲約450奈米 。當正向電流固定在20毫安培時該LED 1產生的正向電 壓爲3.3伏特,比前述實施例1 1中說明的LED 1的量級 更低,因爲該上包覆層106係由具有高載子濃度且優於結 晶性的六方磷化硼爲底的半導體層形成。晶片在此狀態下 的放射亮度呈現約1.8燭光的高量級,因爲上包覆層及下 包覆層都由六方磷化硼爲底的半導體層構成。 在反映構成下包覆層104及構成p-n接面DH結構的 發光部分之上包覆層106的六方磷化硼爲底的半導體層及 構成發光層1 05的III族氮化物半導體層的優良結晶性時 ,當反向電流固定在1 0微安培時,產生的反向電壓能達 到超過10伏特的高量級。再者,因爲作爲下包覆層104 的六方磷化硼爲底的半導體層抑制位錯從η-型GaN層 103增殖到p-n接面DH結構的發光部分,因此獲得的 LED 1中幾乎看不出局部擊穿。 產業應用性 本發明的化合物半導體裝置,如以上解釋的,爲藉著 在利用六方單晶、形成在該單晶上的磷化硼爲底的半導體 層及由形成在該磷化硼爲底的半導體層上的化合物半導體 形成的化合物半導體層提供的堆疊結構上配置電極而建構 的化合物半導體裝置,且該裝置適於具有配置在上述單晶 層的(1.1.-2.0.)晶面形成的表面上的磷化硼爲底的半導 體層。因此,本發明能形成僅含小密度的例如攣晶及堆疊-83- < S (81) 1310247 Luminescent properties. The main wavelength of light emitted by LED 1 is about 450 nm. The LED 1 generates a forward voltage of 3.3 volts when the forward current is fixed at 20 milliamps, which is lower than that of the LED 1 described in the foregoing embodiment 11, because the upper cladding layer 106 is high. A semiconductor layer having a carrier concentration and superior to crystalline hexagonal phosphide boron is formed. The radiance of the wafer in this state is about a high level of about 1.8 kW, since both the upper cladding layer and the lower cladding layer are composed of a hexagonal phosphide-based semiconductor layer. The hexagonal phosphide-based semiconductor layer covering the cladding layer 104 and the light-emitting portion constituting the lower cladding layer 104 and the pn junction DH structure, and the fine crystal of the group III nitride semiconductor layer constituting the light-emitting layer 156 are reflected. When the reverse current is fixed at 10 microamperes, the reverse voltage generated can reach a high level of more than 10 volts. Furthermore, since the hexagonal phosphide-based semiconductor layer as the lower cladding layer 104 suppresses the propagation of dislocations from the η-type GaN layer 103 to the luminescence portion of the pn junction DH structure, almost no LED 1 is obtained. Partial breakdown. INDUSTRIAL APPLICABILITY The compound semiconductor device of the present invention, as explained above, is a semiconductor layer based on boron phosphide formed on a hexagonal single crystal, formed on the single crystal, and formed on the boron phosphide-based a compound semiconductor device formed by a compound semiconductor formed on a semiconductor layer on a semiconductor layer, wherein the device is configured to have a surface formed by a (1.1.-2.0.) crystal plane disposed on the single crystal layer The boron phosphide is a bottom semiconductor layer. Therefore, the present invention is capable of forming only a small density such as twins and stacks

-84 - (82) 1310247 缺陷等的結晶性缺陷且結晶性優異的磷化硼爲底的半導體 層。 本發明,因此,使製成的磷化硼爲底的半導體層能僅 含小密度的例如攣晶及堆疊缺陷等的結晶性缺陷且具有優 異結晶性,因此能利用此磷化硼爲底的半導體層並提供具 有增進裝置的不同性質之半導體裝置。 接著,前述結構的發光能利用由僅含小量反相邊界的 鲁優異品質磷化硼爲底的半導體材及III族氮化物半導體材 料形成,且因此得以提供光學性質及電氣性質優異的化合 物半導體裝置及製造該化合物半導體裝置的方法。 再者,前述結構的發明能提供附有能降低裝置操作電 流洩漏,增高充當發光裝置的光電轉化效率,也增高反向 電壓,賦予場效電晶體的閘極高擊穿電壓並賦予汲極電流 的夾止性質的磷化硼爲底的半導體層之半導體裝置。 前述結構的發明使構成DH結構的發光部分之包覆層 ®能利用僅含小量的結晶性缺陷且品質優異之磷化硼爲底的 半導體層形成,並能提供具有實質上增進的發光性質的半 導體發光裝置。 接著,前述結構的發明預期利用ΠΙ族氮化物半導體 形成六方單晶層’並提供由具有充當其表面的(i.1.-2.0· )晶面之六方III族氮化物半導體及依接合到該111族氮 化物半導體層表面的方式配置的六方磷化硼爲底的半導體 層構成的第一堆疊結構部分,結果,防止III族氮化物半 導體所含的位錯穿過該堆疊結構部分的界面朝該鱗化硼爲 is: -85- (83) 1310247 底的半導體層增殖。進一步預期使該六方III族氮化物半 導體層接合到構成前述第一堆疊結構部分的六方磷化硼爲 底的半導體層的上側表面而提供第二堆疊結構部分。由於 第二堆疊結構部分的提供,能製成含僅小密度的例如穿透 位錯等的結晶性缺陷之III族氮化物半導體。本發明,因 此,能製造附有優於結晶性的半導體層之堆疊結構,即使 是以含大量結晶性缺陷的III族氮化物半導體層提供在基 •材上亦同,並因此提供具有增進的裝置性質之化合物半導 體裝置。 【圖式簡單說明】 第1圖係舉例說明實施例1中說明的LED之槪略平 面圖。 第2圖係舉例說明沿著虛線II-II由第1圖取得的 LED之槪略斷面圖。 ©第3圖係舉例說明由垂直於c-軸的方向觀看的六方 BP晶體層的原子排列之槪略平面圖。 第4圖係舉例說明由平行於c-軸的方向觀看的六方 BP晶體層的原子排列之槪略平面圖。 第5圖係舉例說明使電流能依平行於六方單晶層的( 〇. 〇. 〇. 1.)晶面方向流動的裝置斷面結構之槪略圖。 第6圖係舉例說明使電流能依垂直於六方單晶層的( 0.0.0.1 .)晶面方向流動的裝置斷面結構之槪略圖。 第7圖係舉例說明使電流能依垂直於六方單晶層的( -86 - (84) 1310247 Ο .0.0.1.)晶面方向流動的ME SFET斷面結構之槪略圖。 第8圖係舉例說明實施例2中說明的LED之槪略平 面圖。 第9圖係舉例說明沿著虛線IX-IX由第8圖取得的 LED之槪略斷面圖。 第1 〇圖係舉例說明實施例3中說明的LED之槪略平 面圖。 第1 1圖係舉例說明沿著虛線XI-XI由第10圖取得的 LED之槪略斷面圖。 第12圖係舉例說明實施例4中說明的FET之槪略平 面圖。 第13圖係舉例說明接合區域中的原子排列之槪略圖 〇 第14圖係舉例說明實施例5中說明的LED之槪略平 面_圖。 第15圖係舉例說明沿著虛線XV-XV由第14圖取得 的LED之槪略斷面圖。 第1 6圖係舉例說明實施例6中說明的LED之槪略平 面圖。 第17圖係舉例說明沿著虛線XVII-XVII由第16圖取 得的LED之槪略斷面圖。 第1 8圖係舉例說明長期相配接面系統之槪略圖。 第1 9圖係舉例說明實施例7中說明的LED之槪略平 面圖。-84 - (82) 1310247 A semiconductor layer having a crystalline defect such as a defect and having excellent crystallinity as a base of phosphide. According to the present invention, the phosphide-based semiconductor layer can be made to contain only a small density of crystalline defects such as twins and stack defects, and has excellent crystallinity, so that the phosphide-borated substrate can be utilized. The semiconductor layer also provides a semiconductor device with different properties of the enhancement device. Then, the luminescence energy of the above-described structure is formed by a semiconductor material and a group III nitride semiconductor material which are based on Lu excellent quality phosphating boron containing only a small amount of reversed phase boundary, and thus provide a compound semiconductor excellent in optical properties and electrical properties. Apparatus and method of manufacturing the compound semiconductor device. Furthermore, the invention of the foregoing structure can provide a photoelectric conversion efficiency which can reduce the operating current leakage of the device, increase the photoelectric conversion efficiency serving as the light-emitting device, and also increase the reverse voltage, impart a high breakdown voltage of the field effect transistor and impart a drain current. A semiconductor device in which a phosphide boron nitride-based semiconductor layer is sandwiched. According to the invention of the foregoing configuration, the cladding layer constituting the light-emitting portion of the DH structure can be formed using a semiconductor layer containing only a small amount of crystalline defects and having excellent quality of phosphide as a base, and can provide substantially improved luminescent properties. Semiconductor light emitting device. Next, the invention of the foregoing structure is intended to form a hexagonal single crystal layer ' using a lanthanum nitride semiconductor and to provide a hexagonal group III nitride semiconductor having an (i.1.-2.0·) crystal plane serving as a surface thereof and to be bonded thereto a first stacked structure portion composed of a hexagonal phosphide-based semiconductor layer disposed in a manner of a surface of the group 111 nitride semiconductor layer, and as a result, preventing dislocations contained in the group III nitride semiconductor from passing through the interface of the stacked structural portion The scalar boron is a semiconductor layer of is: -85-(83) 1310247 bottom. It is further contemplated to bond the hexagonal group III nitride semiconductor layer to the upper side surface of the hexagonal phosphide-based semiconductor layer constituting the first stacked structure portion to provide a second stacked structural portion. Due to the provision of the second stacked structure portion, a group III nitride semiconductor containing a crystal defect of only a small density such as a threading dislocation can be produced. According to the present invention, it is therefore possible to manufacture a stacked structure with a semiconductor layer superior to crystallinity, even if it is provided on a substrate by a group III nitride semiconductor layer containing a large amount of crystal defects, and thus provides an improved A compound semiconductor device of device nature. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic plan view showing an LED illustrated in the first embodiment. Fig. 2 is a schematic cross-sectional view showing the LED taken from Fig. 1 along the broken line II-II. © Fig. 3 is a schematic plan view showing the arrangement of atoms of a hexagonal BP crystal layer viewed from a direction perpendicular to the c-axis. Fig. 4 is a schematic plan view showing an arrangement of atoms of a hexagonal BP crystal layer viewed in a direction parallel to the c-axis. Fig. 5 is a schematic diagram showing a cross-sectional structure of a device which allows current to flow in a direction parallel to the plane of the hexagonal single crystal layer (〇. 〇. 〇. 1.). Fig. 6 is a schematic view showing a cross-sectional structure of a device for causing a current to flow in a direction perpendicular to a (0.0.0.1.) crystal plane of a hexagonal single crystal layer. Fig. 7 is a schematic diagram showing the cross section of the ME SFET in which the current can flow in the direction of the crystal plane perpendicular to the hexagonal single crystal layer (-86 - (84) 1310247 Ο .0.0.1.). Fig. 8 is a schematic plan view showing the LEDs explained in the second embodiment. Fig. 9 is a schematic cross-sectional view showing an LED taken from Fig. 8 along the broken line IX-IX. Fig. 1 is a schematic plan view showing the LEDs explained in the third embodiment. Fig. 1 is a schematic cross-sectional view showing an LED taken from Fig. 10 along the broken line XI-XI. Fig. 12 is a schematic plan view showing the FET explained in the fourth embodiment. Fig. 13 is a schematic diagram showing the arrangement of atoms in the joint region. Fig. 14 is a schematic view showing the outline of the LED described in the fifth embodiment. Fig. 15 is a schematic cross-sectional view showing an LED taken from Fig. 14 along a broken line XV-XV. Fig. 16 is a schematic plan view showing the LEDs explained in the sixth embodiment. Fig. 17 is a schematic cross-sectional view showing an LED taken from Fig. 16 along the broken line XVII-XVII. Figure 18 is a schematic diagram illustrating a long-term mating junction system. Fig. 19 is a schematic plan view showing the LEDs explained in the seventh embodiment.

-87- (85) 1310247 第2 0圖係舉例說明沿著虛線χ χ _ X X由第1 9圖取得 的LED之槪略斷面圖。 第21圖係舉例說明實施例8中說明的LED之槪略平 面圖。 第22圖係舉例說明沿著虛線ΧΧΠ_ΧΧΙΙ由第21圖取 得的LED之槪略斷面圖。 第2 3圖係舉例說明實施例9中說明的L E D之槪略平 籲面圖。 第24圖係舉例說明沿著虛線χχιν_χχιν由第23圖 取得的LED之槪略斷面圖。 第25圖係舉例說明實施例10中說明的LED的FET 之槪略平面圖。 第2 6圖係舉例說明實施例1 1中說明的l E D之槪略 平面圖。 第27圖係舉例說明沿著虛線XXVII-XXVII由第26 ®圖取得的LED之槪略斷面圖。 第2 8圖係舉例說明實施例1 2中說明的L E D之槪略 平面圖。 【主要元件符號說明】 1 :化合物半導體裝置發光二極體 2 :發光二極體 3 :場效電晶體 1〇:六方化合物半導體材料-87- (85) 1310247 Figure 20 shows an example of an LED taken along line χ χ _ X X from Figure 19. Fig. 21 is a schematic plan view showing the LEDs explained in the eighth embodiment. Fig. 22 is a schematic cross-sectional view showing an LED taken along the dotted line ΧΧΠ_ΧΧΙΙ from Fig. 21. Fig. 2 is a schematic plan view showing the outline of L E D explained in the ninth embodiment. Fig. 24 is a schematic cross-sectional view showing an LED taken from Fig. 23 along a broken line χχιν_χχιν. Fig. 25 is a schematic plan view showing an FET of the LED explained in Embodiment 10. Fig. 26 is a schematic plan view showing the l E D explained in the embodiment 11. Figure 27 is a schematic cross-sectional view showing the LED taken from the 26th view along the broken line XXVII-XXVII. Fig. 28 is a schematic plan view showing the L E D explained in the embodiment 12. [Explanation of main component symbols] 1 : Compound semiconductor device light-emitting diode 2 : Light-emitting diode 3 : Field effect transistor 1 〇: hexagonal compound semiconductor material

-88- (86) (86)1310247 10a: ( 1 · 0 . -1.0 ·)晶面形成的表面 11· ( 0.0·0_1·)晶面 1 1 a : 11族原子平面 1 1 b : V族原子平面 1 2 :六方磷化硼爲底的半導體材料 1 2 a :表面 13· ( 0.0.0.1·)晶面 1 3 a : 111族原子平面 13b : V族原子平面 20:六方磷化硼層 20H :間隙 3 0 :堆疊結構 3 1 :導電性六方氮化鋁基材 3 2 :六方磷化硼層 3 3 :發光部分 3 4 :極性歐姆電極 3 5 :極性歐姆電極 40 :堆疊結構 4 1 :導電性六方氮化鎵基材 42 :六方磷化硼層 43 :發光部分 4 4 :極性歐姆電極 4 5 :極性歐姆電極 50 :堆疊結構 -89 - (87) (87)1310247 5 1 :基材 52 :六方磷化硼層 53:電子傳輸層(通道層) 54 :電子供應層 5 5 :源極 5 6 :汲極 6 〇 :接合系統 61 :六方單晶 6 1 A :表面 6 1 B :藍寶石的(0 · 0 · 0.1 .)晶面 62:六方磷化硼爲底的半導體層 62A :接合表面 62B : (0·0·0_2.)晶面 1 0 〇 :堆疊結構 1 0 1 :基材 102:六方磷化硼爲底的半導體層 102Α:未摻雜的η-型單體ΒΡ層 1 02Β : η-型 GaN 層 103:纖維鋅礦型六方η -型GaN層 1 03 A :六方η-型GaN層 103B:纖維鋅礦型六方η-型GaN層 1 04 :下包覆層 105 :發光層 1 06 :上包覆層 -90 - (88) 1310247 107 :接觸層 108 : p-型歐姆電極 109: η -型歐姆電極 1 2 0 A :第一堆疊結構部分 120B :第二堆疊結構部分 2 0 0 :堆疊結構 20 1 :基材-88- (86) (86)1310247 10a: (1 · 0 . -1.0 ·) Surface formed by crystal plane 11· ( 0.0·0_1·) crystal plane 1 1 a : Group 11 atomic plane 1 1 b : V group Atomic Plane 1 2 : Hexagonal Phosphorus Boron-Based Semiconductor Material 1 2 a : Surface 13· ( 0.0.0.1·) Planar Surface 1 3 a : Group 111 Atomic Plane 13b : Group V Atomic Plane 20: Hexagonal Boron Nitride Layer 20H: gap 3 0 : stack structure 3 1 : conductive hexagonal aluminum nitride substrate 3 2 : hexagonal boron phosphide layer 3 3 : light-emitting portion 3 4 : polar ohmic electrode 3 5 : polar ohmic electrode 40 : stacked structure 4 1 : Conductive hexagonal gallium nitride substrate 42 : hexagonal boron phosphide layer 43 : light emitting portion 4 4 : polar ohmic electrode 4 5 : polar ohmic electrode 50 : stacked structure - 89 - (87) (87) 1310247 5 1 : base Material 52: hexagonal boron phosphide layer 53: electron transport layer (channel layer) 54: electron supply layer 5 5 : source 5 6 : drain 6 〇: bonding system 61: hexagonal single crystal 6 1 A : surface 6 1 B : Sapphire (0 · 0 · 0.1 .) crystal plane 62: hexagonal phosphide-based semiconductor layer 62A: bonding surface 62B: (0·0·0_2.) crystal plane 1 0 〇: stacked structure 1 0 1 : Substrate 102: hexagonal phosphide-based semiconducting Bulk layer 102Α: undoped η-type monomer ΒΡ layer 102 Β : η-type GaN layer 103: wurtzite type hexagonal η-type GaN layer 1 03 A : hexagonal η-type GaN layer 103B: wurtzite type Hexagonal η-type GaN layer 104: lower cladding layer 105: light-emitting layer 106: upper cladding layer - 90 - (88) 1310247 107: contact layer 108: p-type ohmic electrode 109: η-type ohmic electrode 1 2 0 A : first stacked structure portion 120B : second stacked structural portion 2 0 0 : stacked structure 20 1 : substrate

202 :六方BP層 203:未摻雜的η-型GaN層 204 :下包覆層 205 :發光層 206 :上包覆層 2 0 7 :接觸層 208: p -型歐姆電極 209: η -型歐姆電極 3 00 :堆疊結構 3 0 1 :基材 3 02 : η-型 GaN 層 3 03 :未摻雜p-型單體BP層 3 0 4 :電子傳輸層 3 05 :電子供應層 3 0 6 :接觸層 307 :蕭特基閘極 3 0 8 :歐姆源極 -91 (89) 1310247 3 0 9 :歐姆汲極 310:蕭特基接觸形成層 320A:第一堆疊結構部分 3 20B :第二堆疊結構部分 3 3 0 :凹部部分 -92 -202: hexagonal BP layer 203: undoped n-type GaN layer 204: lower cladding layer 205: light-emitting layer 206: upper cladding layer 2 0 7 : contact layer 208: p-type ohmic electrode 209: η-type Ohmic electrode 3 00 : stacked structure 3 0 1 : substrate 3 02 : η-type GaN layer 3 03 : undoped p-type monomer BP layer 3 0 4 : electron transport layer 3 05 : electron supply layer 3 0 6 : contact layer 307: Schottky gate 3 0 8 : ohmic source - 91 (89) 1310247 3 0 9 : ohmic drain 310: Schottky contact forming layer 320A: first stacked structure portion 3 20B: second Stacking structure part 3 3 0 : recess part -92 -

Claims (1)

1310247 (1) 十、申請專利範圍 1· 一種化合物半導體裝置,其包括: 化合物半導體,其具有六方單晶層、形成在該六方單 晶層表面上之磷化硼爲底的半導體層及配置在該磷化硼爲 底的半導體層上之化合物半導體層的堆疊結構;及 配置在該堆疊結構上的電極; 其中該磷化硼爲底的半導體層係由配置在該六方單晶 0層的(1.1.-2.0.)晶面表面上之六方晶體所形成。 2 ·如申請專利範圍第1項之化合物半導體裝置,其 中該六方單晶層係由α -氧化鋁單晶體所形成。 3-如申請專利範圍第1項之化合物半導體裝置,其 中該六方單晶層係由六方III族氮化物半導體所形成。 4 ·如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層係由具有(1.1.-2.0.)晶面爲其表面的晶體所形成。 胃 5.如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層係由具有(1.0._ 1-0.)晶面爲其表面的晶體所形成。 6.如申請專利範圍第1至3項中任一項之化合物半 導體裝置’其中該磷化硼爲底的半導體層之內部中,( 〇·〇·〇.1.)晶面係實質上平行於該半導體層的厚度方向排 列’且其中該半導體層的「η」個連續性(〇 · 〇. 〇. 2 .)晶面 的距離實質上等於該單晶層的c -軸長度,該「η」表示2 或更大的正整數。 -93- (2) 1310247 7. 如申請專利範圍第6項之化合物半導體裝置,其 中該「η」表示6或更小。 8. 如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該化合物半導體層係由六方半導體材料所 形成。 9. 如申請專利範圍第1項之化合物半導體裝置,其 中該鱗化棚爲底的半導體層與該化合物半導體層係經由( ® 1.1·-2·0.)晶面作爲界面而接合。 10. 如申請專利範圍第1項之化合物半導體裝置,其 中該磷化硼爲底的半導體層與該化合物半導體層係經由( 1.0.-1.0.)晶面作爲界面而接合。 1 1 .如申請專利範圍第9或1 0項之化合物半導體裝 置,其中構成該化合物半導體層的(0.0 · 0.1 .)晶面及構 成該磷化硼爲底的半導體層的(〇.〇.0.1.)晶面係經配置 而平行於該化合物半導體的堆疊方向。 ® 1 2.如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層不含反相晶粒邊 界。 1 3 ·如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該電極係配置使得裝置操作電流可依實質 上平行於構成該磷化硼爲底的半導體層的(0·0·0·1·)晶 面及構成該化合物半導體層的(〇·〇.〇. 1.)晶面之方向流 動。 14.如申請專利範圍第1至3項中任一項之化合物半 -94- (3) 1310247 導體裝置’其中該電極係配置使得裝置操作電流可依實質 上垂直於構成該磷化硼爲底的半導體層的(〇·〇.0.1.)晶 面及構成該化合物半導體層的(0·0·0.1.)晶面之方向流; 動。 1 5 .如申請專利範圍第1至3項中任一項之化合物半 導體裝置,其中該磷化硼爲底的半導體層係由六方單體磷 化硼所形成。 1 6 .如申請專利範圍第1 5項之化合物半導體裝置’ 其中該六方單體磷化硼具有C-軸的長度在〇·52奈米或吏 大且0.53奈米或更小的範圍。 .nc.1310247 (1) X. Patent Application No. 1. A compound semiconductor device comprising: a compound semiconductor having a hexagonal single crystal layer, a phosphide boron-based semiconductor layer formed on the surface of the hexagonal single crystal layer, and a semiconductor layer a stacked structure of a compound semiconductor layer on the semiconductor layer of the phosphide boring; and an electrode disposed on the stacked structure; wherein the borophosphide-based semiconductor layer is disposed on the hexagonal single crystal 0 layer ( 1.1.-2.0.) The hexagonal crystal on the surface of the crystal face is formed. 2. The compound semiconductor device according to claim 1, wherein the hexagonal single crystal layer is formed of a single crystal of α-alumina. A compound semiconductor device according to claim 1, wherein the hexagonal single crystal layer is formed of a hexagonal group III nitride semiconductor. The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is formed of a crystal having a (1.1.-2.0.) crystal plane as its surface. The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is composed of a crystal having a (1.0.1 to 1-0.) crystal plane as its surface. Formed. 6. The compound semiconductor device according to any one of claims 1 to 3, wherein the crystal plane of the phosphide-based semiconductor layer is substantially parallel. Arranging 'in the thickness direction of the semiconductor layer' and wherein the distance of the "n" continuity (〇·〇. 〇. 2 .) crystal plane of the semiconductor layer is substantially equal to the c-axis length of the single crystal layer, η" represents a positive integer of 2 or more. -93- (2) 1310247 7. The compound semiconductor device according to claim 6, wherein the "η" represents 6 or less. 8. The compound semiconductor device according to any one of claims 1 to 3, wherein the compound semiconductor layer is formed of a hexagonal semiconductor material. 9. The compound semiconductor device according to claim 1, wherein the squaring semiconductor layer and the compound semiconductor layer are bonded via an (® 1.1·-2·0.) crystal plane as an interface. 10. The compound semiconductor device according to claim 1, wherein the phosphide-based semiconductor layer is bonded to the compound semiconductor layer via a (1.0.-1.0.) crystal plane as an interface. A compound semiconductor device according to claim 9 or 10, wherein a (0.0.0.1.) crystal plane constituting the semiconductor layer of the compound and a semiconductor layer constituting the boron phosphide as a base are provided (〇.〇. 0.1.) The crystal face is configured to be parallel to the stacking direction of the compound semiconductor. The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer does not contain a reverse phase grain boundary. The compound semiconductor device according to any one of claims 1 to 3, wherein the electrode system is configured such that a device operating current is substantially parallel to a semiconductor layer constituting the phosphide boron base (0· The 0·0·1·) crystal plane and the crystal plane of the compound semiconductor layer (构成·〇.〇. 1.) flow in the direction of the crystal plane. 14. The compound semi-94-(3) 1310247 conductor device of any one of claims 1 to 3 wherein the electrode system is configured such that the device operating current can be substantially perpendicular to the bottom of the phosphide. The crystal plane of the semiconductor layer (及·〇.0.1.) and the direction of the (0·0·0.1.) crystal plane constituting the semiconductor layer of the compound; The compound semiconductor device according to any one of claims 1 to 3, wherein the boron phosphide-based semiconductor layer is formed of hexagonal monomer phosphide. A compound semiconductor device as claimed in claim 15 wherein the hexagonal monomer phosphide has a C-axis length in the range of 〇·52 nm or 且 and 0.53 nm or less. .nc. -95--95-
TW95133090A 2005-09-07 2006-09-07 Compound semiconductor device TWI310247B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005259042A JP2007073732A (en) 2005-09-07 2005-09-07 Compound semiconductor element
JP2005261946A JP2007073872A (en) 2005-09-09 2005-09-09 Semiconductor element
JP2005266418A JP2007081084A (en) 2005-09-14 2005-09-14 Semiconductor light emitting element
JP2005269516A JP5005900B2 (en) 2005-09-16 2005-09-16 Semiconductor element
JP2005277536A JP5005902B2 (en) 2005-09-26 2005-09-26 Compound semiconductor device
JP2005286495A JP4700464B2 (en) 2005-09-30 2005-09-30 Compound semiconductor device
JP2005312758A JP5005905B2 (en) 2005-10-27 2005-10-27 Compound semiconductor device and compound semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
TW200805704A TW200805704A (en) 2008-01-16
TWI310247B true TWI310247B (en) 2009-05-21

Family

ID=39477977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95133090A TWI310247B (en) 2005-09-07 2006-09-07 Compound semiconductor device

Country Status (3)

Country Link
KR (1) KR100981077B1 (en)
DE (1) DE112006002403T5 (en)
TW (1) TWI310247B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398966B (en) * 2009-06-08 2013-06-11 Epistar Corp Light-emitting device and the manufacturing method thereof
JP5890991B2 (en) * 2011-09-28 2016-03-22 トランスフォーム・ジャパン株式会社 Compound semiconductor device and manufacturing method thereof
US10741494B2 (en) * 2018-11-07 2020-08-11 Semiconductor Components Industries, Llc Electronic device including a contact structure contacting a layer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553834B2 (en) 1972-02-26 1980-01-26
JP2809690B2 (en) 1989-01-13 1998-10-15 株式会社東芝 Compound semiconductor material, semiconductor device using the same, and method of manufacturing the same
JP2809691B2 (en) 1989-04-28 1998-10-15 株式会社東芝 Semiconductor laser
JP2809692B2 (en) 1989-04-28 1998-10-15 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JP3053836B2 (en) 1989-06-16 2000-06-19 株式会社東芝 (III) —Method of manufacturing Group V compound semiconductor device
JPH03211888A (en) * 1990-01-17 1991-09-17 Toshiba Corp Semiconductor device and manufacture thereof
JP3104979B2 (en) 1990-07-27 2000-10-30 株式会社東芝 Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof
JP3102647B2 (en) 1990-12-10 2000-10-23 日本電信電話株式会社 Semiconductor light emitting device
JP3257442B2 (en) 1997-04-09 2002-02-18 松下電器産業株式会社 Method for producing gallium nitride crystal
US6069021A (en) 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JP3779255B2 (en) 2002-10-22 2006-05-24 昭和電工株式会社 Group III nitride semiconductor device, manufacturing method thereof, and light-emitting diode
JP3895266B2 (en) 2002-12-02 2007-03-22 昭和電工株式会社 BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE
JP4063801B2 (en) 2003-08-08 2008-03-19 昭和電工株式会社 Light emitting diode
JP2005259042A (en) 2004-03-15 2005-09-22 Seiko Epson Corp Image processing method and program
FR2867374B1 (en) 2004-03-15 2007-04-13 Ge Med Sys Global Tech Co Llc PATIENT POSITIONING GUIDANCE IN A MEDICAL IMAGING ACQUISITION BEAM
JP4576862B2 (en) 2004-03-22 2010-11-10 株式会社デンソー Integrated circuit device
JP2005266418A (en) 2004-03-19 2005-09-29 Canon Inc Image forming apparatus
JP2005277536A (en) 2004-03-23 2005-10-06 Toshiba Corp Digital broadcast receiver
JP4270000B2 (en) 2004-03-29 2009-05-27 三菱電機株式会社 Unequal power distribution synthesizer
JP2005312758A (en) 2004-04-30 2005-11-10 Nintendo Co Ltd Game system and game program

Also Published As

Publication number Publication date
DE112006002403T5 (en) 2008-07-10
KR20080042932A (en) 2008-05-15
TW200805704A (en) 2008-01-16
KR100981077B1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US8084781B2 (en) Compound semiconductor device
JP4652888B2 (en) Method for manufacturing gallium nitride based semiconductor multilayer structure
JP6472459B2 (en) Optoelectronic semiconductor chip manufacturing method and optoelectronic semiconductor chip
TWI252599B (en) N-type group III nitride semiconductor layered structure
WO2012012010A2 (en) High efficiency ultraviolet light emitting diode with band structure potential fluctuations
JP2002305323A (en) n-TYPE NITRIDE SEMICONDUCTOR LAMINATE AND SEMICONDUCTOR DEVICE USING IT
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
JP5873260B2 (en) Method for producing group III nitride laminate
JP4174913B2 (en) Group III nitride semiconductor light emitting device
TWI310247B (en) Compound semiconductor device
TW200414569A (en) Group-III nitride semiconductor device, production method thereof and light-emitting diode
TWI296160B (en) Pn junction-type compound semiconductor light emitting diode
JP4282976B2 (en) BORON PHOSPHIDE COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DIODE
JP4700464B2 (en) Compound semiconductor device
US6774402B2 (en) Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP4647286B2 (en) Semiconductor device and manufacturing method thereof
JP3659174B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing the same
US20190348569A1 (en) Light emitting diode element and method for manufacturing same
JPWO2004047188A1 (en) Boron phosphide-based semiconductor light-emitting device, manufacturing method thereof, and light-emitting diode
JP4809669B2 (en) Multilayer structure, method for forming the same, and semiconductor element
JP4987240B2 (en) Compound semiconductor device, method of manufacturing compound semiconductor device, diode device
KR20060133279A (en) Gallium nitride based compound semiconductor device and forming method thereof
JP4864435B2 (en) Compound semiconductor laminated structure, compound semiconductor device and lamp
JP5005902B2 (en) Compound semiconductor device
TW202347821A (en) Nitride semiconductor light-emitting element