JP2009274899A - Method for manufacturing substrate for epitaxy of silicon carbide - Google Patents

Method for manufacturing substrate for epitaxy of silicon carbide Download PDF

Info

Publication number
JP2009274899A
JP2009274899A JP2008126357A JP2008126357A JP2009274899A JP 2009274899 A JP2009274899 A JP 2009274899A JP 2008126357 A JP2008126357 A JP 2008126357A JP 2008126357 A JP2008126357 A JP 2008126357A JP 2009274899 A JP2009274899 A JP 2009274899A
Authority
JP
Japan
Prior art keywords
silicon carbide
substrate
temperature
supply
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008126357A
Other languages
Japanese (ja)
Other versions
JP4916479B2 (en
Inventor
Hiroaki Saito
広明 斎藤
Akinori Seki
章憲 関
Yukari Tani
由加里 谷
Noriyoshi Shibata
柴田  典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Toyota Motor Corp
Original Assignee
Japan Fine Ceramics Center
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Toyota Motor Corp filed Critical Japan Fine Ceramics Center
Priority to JP2008126357A priority Critical patent/JP4916479B2/en
Publication of JP2009274899A publication Critical patent/JP2009274899A/en
Application granted granted Critical
Publication of JP4916479B2 publication Critical patent/JP4916479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carbide substrate, which is suitable as a substrate for epitaxial growth, under such a condition in a reactive chamber that the supply of carbon is suppressed. <P>SOLUTION: The method for manufacturing a substrate 4 for the epitaxy of silicon carbide comprises raising the temperature of a silicon carbide substrate 4 to an epitaxial growth temperature in argon atmosphere to subject the surface of the substrate 4 to an argon treatment, under such a condition in a reaction chamber that the supply of carbon is suppressed, and stopping heating for raising the temperature and the supply of argon gas at the stage when the temperature of the substrate reaches the epitaxial growth temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、炭化珪素エピタキシャル用基板の製造方法に関し、さらに詳しくはカーボンの供給を抑えた反応室内条件下に、特定組成のガスを用いて炭化珪素基板表面を加熱処理してSiドロップレットが抑制され平滑な表面を有する炭化珪素エピタキシャル用基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate for silicon carbide epitaxial, and more specifically, heat treatment is performed on the surface of a silicon carbide substrate using a gas having a specific composition under conditions in a reaction chamber in which carbon supply is suppressed, thereby suppressing Si droplets. The present invention relates to a method for manufacturing a silicon carbide epitaxial substrate having a smooth surface.

近年、エレクトロニクス分野における低損失化や小型化の実現に向けて、従来のシリコン半導体素子に比べて高い電気変換効率および高い熱伝導率などによって大幅な性能向上が期待できる炭化珪素単結晶半導体素子がパワー半導体デバイス材料として有望視されている。この炭化珪素単結晶半導体素子は、例えばCVD(Chemical Vapor Deposition)装置などの製膜装置を用いて半導体基板上へのエピタキシャル薄膜の形成によって得られる。
この製膜装置によれば、サセプタおよび断熱材を備えた反応室に原料ガスであるSi原料ガスおよびC原料ガスをキャリアガスとともに供給して炭化珪素基板に炭化珪素単結晶薄膜をエピタキシャル結晶成長させることができる。
In recent years, silicon carbide single crystal semiconductor elements that can be expected to significantly improve performance due to high electrical conversion efficiency and high thermal conductivity compared to conventional silicon semiconductor elements have been developed toward the realization of low loss and downsizing in the electronics field. Promising as a power semiconductor device material. The silicon carbide single crystal semiconductor element is obtained by forming an epitaxial thin film on a semiconductor substrate using a film forming apparatus such as a CVD (Chemical Vapor Deposition) apparatus.
According to this film forming apparatus, a Si raw material gas and a C raw material gas, which are raw material gases, are supplied together with a carrier gas to a reaction chamber equipped with a susceptor and a heat insulating material, and a silicon carbide single crystal thin film is epitaxially grown on a silicon carbide substrate. be able to.

しかし、一般的な製膜装置にグラファイトサセプタやグラファイト断熱材などを備えた反応室内条件下にエピタキシャル成長させると、この製膜装置を起源とするハイドロカーボン・不純物の発生があり、その発生量や種類の制御が難しく、炭化珪素単結晶のエピタキシャル成長条件の精密な制御が困難である。
このため、サセプタとして炭化珪素を用いるかサセプタ表面を炭化珪素でコートした炭化珪素コートグラファイトを用いるなどのカーボンの供給を抑えた反応室内条件下で炭化珪素基板上に炭化珪素単結晶をエピタキシャル成長させる技術が検討されている。
However, when epitaxial growth is performed under the conditions in a reaction chamber equipped with a graphite susceptor, graphite insulation, etc. in a general film-forming device, there are generations of hydrocarbons and impurities originating from this film-forming device. Therefore, it is difficult to precisely control the epitaxial growth conditions of the silicon carbide single crystal.
For this reason, a technique for epitaxially growing a silicon carbide single crystal on a silicon carbide substrate under reaction chamber conditions in which the supply of carbon is suppressed, such as using silicon carbide as a susceptor or using silicon carbide coated graphite whose susceptor surface is coated with silicon carbide. Is being considered.

一方、炭化珪素基板のスライス技術や研磨技術がシリコン基板(シリコンウェハー)の技術に比べて未だ十分でないため、炭化珪素基板には研磨によるダメージ層やスクラッチと呼ばれる傷が全面に発生する。最終的なデバイス性能の多くは炭化珪素基板上に成長させたエピタキシャル薄膜の膜質に左右され、エピタキシャル薄膜は下地層の影響を受けることから、高品質のエピタキシャル薄膜を得るためには、エピタキシャル成長前に炭化珪素基板表面のダメージ層を除去して平坦かつ清浄な表面を得ることが必要となる。
このため、炭化珪素基板へのエピタキシャル成長の前処理として、炭化珪素基板の水素雰囲気によるエッチング処理が提案された(特許文献1〜4)。
On the other hand, since a silicon carbide substrate slicing technique and polishing technique are still not sufficient as compared with a silicon substrate (silicon wafer) technique, a damage layer or scratches called scratches are generated on the entire surface of the silicon carbide substrate. Much of the final device performance depends on the quality of the epitaxial thin film grown on the silicon carbide substrate, and the epitaxial thin film is affected by the underlying layer. It is necessary to obtain a flat and clean surface by removing the damaged layer on the surface of the silicon carbide substrate.
For this reason, the etching process by the hydrogen atmosphere of a silicon carbide substrate was proposed as a pretreatment of the epitaxial growth to a silicon carbide substrate (patent documents 1-4).

特開2001−077030号公報Japanese Patent Laid-Open No. 2001-0707030 特開2002−255692号公報JP 2002-255692 A 特開2005−277229号公報JP 2005-277229 A 特開2005−311348号公報JP 2005-311348 A

上記の特許文献1には、炭化珪素基板を反応炉に配置し、炭化珪素基板を加熱して水素ガス又は水素とアルゴンとの混合ガスを導入し、雰囲気圧力を760Torr(1気圧)より小さい減圧にして炭化珪素基板表面をエッチングする工程を含む炭化珪素半導体装置の製造方法が記載されている。   In Patent Document 1 described above, a silicon carbide substrate is placed in a reaction furnace, the silicon carbide substrate is heated to introduce hydrogen gas or a mixed gas of hydrogen and argon, and the atmospheric pressure is reduced to less than 760 Torr (1 atm). A method for manufacturing a silicon carbide semiconductor device including a step of etching the surface of a silicon carbide substrate is described.

上記の特許文献2には、炭化珪素単結晶ウェハーを1550℃以上の温度で水素ガス又は塩化水素ガス流通雰囲気中で前処理を行った後に、該ウェハー上に炭化珪素薄膜をエピタキシャル成長する炭化珪素エピタキシャル基板の製造方法が記載されている。そして、具体例として、水素ガスのみ又は水素ガスと塩化水素ガスとの混合ガスによりグラファイトサセプタを用いて前記温度および雰囲気で前処理を行った後エピタキシャル成長により炭化珪素エピタキシャル基板を得た例が示されている。   In the above Patent Document 2, a silicon carbide single crystal wafer is pretreated in a hydrogen gas or hydrogen chloride gas circulation atmosphere at a temperature of 1550 ° C. or higher, and then a silicon carbide epitaxial film is epitaxially grown on the wafer. A method for manufacturing a substrate is described. As a specific example, an example is shown in which a silicon carbide epitaxial substrate is obtained by epitaxial growth after pretreatment at a temperature and atmosphere using a graphite susceptor with only hydrogen gas or a mixed gas of hydrogen gas and hydrogen chloride gas. ing.

上記の特許文献3には、炭化珪素基板の平滑化における水素エッチング時に原料ガスを添加する炭化珪素平滑化基板の作製方法が記載されている。そして、原料ガスとしてシランが記載され、サセプタの種類については記載がない。   Patent Document 3 described above describes a method for manufacturing a silicon carbide smoothed substrate in which a source gas is added during hydrogen etching in smoothing a silicon carbide substrate. And silane is described as source gas and there is no description about the kind of susceptor.

上記の特許文献4には、炭化珪素基板の表面を水素エッチングで処理した後に、この処理面から炭化珪素をエピタキシャル成長させてエピタキシャル層を形成するバイポーラ型半導体装置の製造方法が記載されているが、サセプタの種類については記載がない。   Patent Document 4 described above describes a method for manufacturing a bipolar semiconductor device in which the surface of a silicon carbide substrate is processed by hydrogen etching, and then silicon carbide is epitaxially grown from the processed surface to form an epitaxial layer. There is no description of the type of susceptor.

このように、公知文献に記載されている炭化珪素エピタキシャル用基板の製造方法は、いずれもグラファイトサセプタを用いるなどカーボンの供給を前提とする反応室内条件下あるいはカーボンの供給を抑えることが不明な反応室内条件下での水素エッチングによるエピタキシャル成長の前処理によるものであり、カーボンの供給を抑えた反応室内条件下で加熱処理して平滑な表面を有する炭化珪素エピタキシャル用基板の製造方法は知られていない。
従って、この発明の目的は、カーボンの供給を抑えた反応室内条件下でのエピタキシャル成長用基板として好適な炭化珪素エピタキシャル用基板の製造方法を提供することである。
As described above, the silicon carbide epitaxial substrate manufacturing methods described in the publicly known literature are reactions that are unknown in the reaction chamber under the premise of carbon supply such as using a graphite susceptor or the carbon supply is unknown. There is no known method for manufacturing a silicon carbide epitaxial substrate having a smooth surface by heat treatment under reaction chamber conditions with suppressed carbon supply, due to pretreatment of epitaxial growth by hydrogen etching under room conditions .
Accordingly, an object of the present invention is to provide a method for manufacturing a silicon carbide epitaxial substrate suitable as a substrate for epitaxial growth under reaction chamber conditions in which the supply of carbon is suppressed.

この発明者らは、前記の目的を達成することを目的として鋭意検討した結果、カーボンの供給を抑えた反応室内条件下に水素ガスを供給して炭化珪素基板を高温加熱処理すると基板表面がSi過剰となりSiドロップレットが生じ、エピタキシャル成長用基板として好ましくないことを見出し、さらに検討を行った結果、この発明を完成した。
この発明は、カーボンの供給を抑えた反応室内条件下、炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させて基板表面をアルゴン処理し、エピタキシャル成長温度に到達した段階で昇温のための加熱およびアルゴンガス供給を停止する炭化珪素エピタキシャル用基板の製造方法に関する。
As a result of intensive studies aimed at achieving the above object, the present inventors have found that when the silicon carbide substrate is heated at a high temperature by supplying hydrogen gas under the reaction chamber conditions in which the supply of carbon is suppressed, the substrate surface becomes Si. As a result of further investigation, the present invention was completed.
According to the present invention, the temperature of the silicon carbide substrate is increased to the epitaxial growth temperature under an argon atmosphere under the conditions in the reaction chamber in which the supply of carbon is suppressed, and the substrate surface is treated with argon. The present invention relates to a method for manufacturing a silicon carbide epitaxial substrate in which heating and argon gas supply are stopped.

この発明によれば、カーボンの供給を抑えた反応室内条件下でのエピタキシャル成長用基板として好適な、Siドロップレットが抑制されて平滑な表面を有する炭化珪素エピタキシャル用基板を得ることができる。   According to the present invention, it is possible to obtain a silicon carbide epitaxial substrate having a smooth surface with suppressed Si droplets, which is suitable as a substrate for epitaxial growth under reaction chamber conditions in which carbon supply is suppressed.

この発明における好適な態様を次に示す。
1)昇温のための加熱およびアルゴンガス供給を停止した後、さらに、水素ガスを供給して基板表面をエッチングする前記の製造方法。
2)カーボンの供給を抑えた反応室内条件が、サセプタを炭化珪素又は炭化珪素コートグラファイトによって構成することである前記の製造方法。
3)カーボンの供給を抑えた反応室内条件が、断熱材を炭化珪素又は炭化珪素コートグラファイトによって構成することである前記の製造方法。
4)水素ガスを5〜60分間供給して基板表面をエッチングする前記の製造方法。
A preferred embodiment of the present invention will be described below.
1) The manufacturing method described above, wherein after heating for raising temperature and supply of argon gas are stopped, hydrogen gas is further supplied to etch the substrate surface.
2) The said manufacturing method whose reaction chamber conditions which suppressed supply of carbon are comprising a susceptor with silicon carbide or silicon carbide coat graphite.
3) The said manufacturing method whose reaction chamber conditions which suppressed supply of carbon are comprising a heat insulating material with a silicon carbide or silicon carbide coat graphite.
4) The said manufacturing method which supplies a hydrogen gas for 5 to 60 minutes and etches the substrate surface.

以下、この発明を図面を参照して説明する。図1は、この発明の製造方法に用いる製膜装置の1実施態様の概略図であり、図2はこの発明の1実施態様における加熱温度の時間変化および供給ガスの時間変化を示すグラフであり、図3はこの発明の他の1実施態様における加熱温度の時間変化および供給ガスの時間変化を示すグラフである。
図1において、製膜装置は、反応室1内に例えば炭化珪素又は炭化珪素コートグラファイトで構成したサセプタ2および例えば炭化珪素又は炭化珪素コートグラファイトで構成した断熱材3を備え、サセプタ2上の炭化珪素基板4に薄膜を形成するためのチャンバー、例えば、石英製チャンバーからなり、反応室1外に装置内加熱装置5、例えば、高周波電源と、装置内加熱温度測定用の熱電対温度計6と、アルゴンガスおよび他のガス、例えば水素キャリアガス、原料ガスの供給配管(図示せず)、排気管(図示せず)および形成された薄膜を取り出す薄膜取り出し装置(図示せず)を備えている。なお、図1の円形図(右側にある図)は反応室内の横断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of one embodiment of a film forming apparatus used in the production method of the present invention, and FIG. 2 is a graph showing the time variation of heating temperature and the time variation of supply gas in one embodiment of the present invention. FIG. 3 is a graph showing the time change of the heating temperature and the time change of the supply gas in another embodiment of the present invention.
In FIG. 1, a film forming apparatus includes a susceptor 2 made of, for example, silicon carbide or silicon carbide coated graphite and a heat insulating material 3 made of, for example, silicon carbide or silicon carbide coated graphite, in a reaction chamber 1, and carbonized on the susceptor 2. A chamber for forming a thin film on the silicon substrate 4, such as a quartz chamber, is provided outside the reaction chamber 1 with an in-apparatus heating device 5, for example, a high-frequency power source, and a thermocouple thermometer 6 for measuring the in-apparatus heating temperature. , An argon gas and other gases such as hydrogen carrier gas, source gas supply piping (not shown), an exhaust pipe (not shown), and a thin film extracting device (not shown) for taking out the formed thin film. . 1 is a cross-sectional view of the inside of the reaction chamber.

この発明は、例えば図1に一例を示す製膜装置を用いたカーボンの供給を抑えた反応室内条件下、炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させて基板表面をアルゴン処理し、エピタキシャル成長温度に到達した段階で昇温のための加熱およびアルゴンガス供給を停止する炭化珪素エピタキシャル用基板の製造方法に関するものであり、先ずカーボンの供給を抑えた反応室内条件下に炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させることが必要である。
前記のカーボンの供給を抑えた反応室内条件としては、好適にはサセプタを炭化珪素又は炭化珪素コートグラファイトで構成すること、又は断熱材を炭化珪素又は炭化珪素コートグラファイトで構成することが挙げられる。特に、サセプタを炭化珪素又は炭化珪素コートグラファイトで構成することと断熱材を炭化珪素又は炭化珪素コートグラファイトで構成することを組み合わせることが好ましい。
In the present invention, for example, a silicon carbide substrate is heated up to an epitaxial growth temperature in an argon atmosphere under a reaction chamber condition using a film forming apparatus shown in FIG. The present invention relates to a method for manufacturing a silicon carbide epitaxial substrate in which heating for raising temperature and stopping supply of argon gas are stopped when the epitaxial growth temperature is reached. First, a silicon carbide substrate is formed under reaction chamber conditions in which carbon supply is suppressed. It is necessary to raise the temperature to the epitaxial growth temperature in an argon atmosphere.
As the reaction chamber conditions in which the carbon supply is suppressed, preferably, the susceptor is made of silicon carbide or silicon carbide coated graphite, or the heat insulating material is made of silicon carbide or silicon carbide coated graphite. In particular, it is preferable to combine the susceptor with silicon carbide or silicon carbide coated graphite and the heat insulating material with silicon carbide or silicon carbide coated graphite.

そして、前記のカーボンの供給を抑えた反応室内条件下に炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させるために、図2に示すように、昇温の最初からアルゴンガスを供給する。また、前記の昇温とは、エピタキシャル成長温度に到達するまでの温度範囲内で熱電対温度計が示す温度が上昇している状態を示す。昇温の条件については特に制限はなく、図2に示すように一定の昇温速度で温度上昇させてもよく又は、温度上昇−温度保持−温度上昇等の段階的な昇温を繰り返しても良い。   Then, in order to raise the temperature of the silicon carbide substrate to the epitaxial growth temperature in an argon atmosphere under the reaction chamber conditions in which the supply of carbon is suppressed, argon gas is supplied from the beginning of the temperature rise as shown in FIG. . Moreover, the said temperature rise shows the state which the temperature which a thermocouple thermometer rises within the temperature range until it reaches epitaxial growth temperature. There are no particular restrictions on the temperature raising conditions, and the temperature may be raised at a constant rate of temperature rise as shown in FIG. good.

この発明の方法において、アルゴンガスは、好適には10〜5000sccm(standard cc/minの略号、0℃で規格化したccmを表示する。)、特に50〜2500sccmの供給速度で供給することが好ましい。また、圧力は、1torr〜2atm、特に2torr〜1atm、その中でも2〜100torrであることが好ましい。
また、この発明の好適な態様として、昇温のための加熱およびアルゴンガス供給を停止し、さらに、水素ガスを供給して炭化珪素エピタキシャル用基板表面をエッチングすることが好ましい。
In the method of the present invention, the argon gas is preferably supplied at a supply rate of 10 to 5000 sccm (abbreviation of standard cc / min, ccm normalized at 0 ° C.), particularly 50 to 2500 sccm. . The pressure is preferably 1 torr to 2 atm, particularly 2 torr to 1 atm, and preferably 2 to 100 torr.
Further, as a preferred aspect of the present invention, it is preferable to stop heating for heating and supply of argon gas, and further supply hydrogen gas to etch the surface of the silicon carbide epitaxial substrate.

この発明においては、前記のカーボンの供給を抑えた反応室内条件下で昇温中にアルゴンガスを供給することが必要であり、昇温中にエッチングガスとしての水素ガスを供給したのでは炭化珪素基板表面にシリコンドロップレットが生じる。この水素ガスによるSiドロップレットの発生は水素ガス単独でも水素ガスとアルゴンガスとの混合ガスでも水素ガスが存在する限り避けられない。
この昇温中での水素ガス供給によるSiドロップレット生成の要因として、水素雰囲気下に炭化珪素基板を加熱することによって炭化珪素基板表面で下記の反応が起こることによると考えられる。
In the present invention, it is necessary to supply argon gas during the temperature rise under the above-described reaction chamber conditions in which the carbon supply is suppressed. If hydrogen gas as an etching gas is supplied during the temperature rise, silicon carbide Silicon droplets are generated on the substrate surface. The generation of Si droplets by hydrogen gas is inevitable as long as hydrogen gas is present, whether hydrogen gas alone or a mixed gas of hydrogen gas and argon gas.
It is considered that the following reaction occurs on the surface of the silicon carbide substrate by heating the silicon carbide substrate in a hydrogen atmosphere as a factor for generating Si droplets by supplying hydrogen gas during the temperature rise.

炭化珪素+2H→Si(s)+CH(g)+0.72eV (1)
この炭化珪素基板表面に発生したSi(s)がドロップレットとして表面に残ると考えられる。
このSi(s)は加熱により次式に従って蒸発すると考えられる。
Si(s)→Si(g)+4.4eV (2)
この反応によるSiの蒸発は、活性化エネルギーの関係から低温域では遅く、高温域では早い。また、飽和蒸気圧の関係から、蒸発速度は圧力の平方根分の1に比例するため温度や圧力によって炭化珪素基板表面に残るSi量が異なり、結局水素ガス雰囲気では炭化珪素基板表面にSiがドロップレットとして残ることは避けられない。
Silicon carbide + 2H 2 → Si (s) + CH 4 (g) +0.72 eV (1)
It is considered that Si (s) generated on the surface of the silicon carbide substrate remains on the surface as droplets.
This Si (s) is considered to evaporate by heating according to the following formula.
Si (s) → Si (g) +4.4 eV (2)
The evaporation of Si due to this reaction is slow in the low temperature range and fast in the high temperature range due to the activation energy. Also, because of the saturation vapor pressure, the evaporation rate is proportional to 1 / square root of the pressure, so the amount of Si remaining on the silicon carbide substrate surface varies depending on the temperature and pressure, and eventually Si drops on the silicon carbide substrate surface in a hydrogen gas atmosphere. It is inevitable to remain as a lett.

これに対して、この発明においては昇温中にアルゴンガスを供給し水素ガスを供給しないためSiドロップレットの発生を抑えた状態で高温に到達させることができ、活性化エネルギーの関係から、発生したSiはすぐに蒸発し炭化珪素基板表面に残らず、ハイドロカーボンなしで平坦な炭化珪素エピタキシャル用基板表面が得られると考えられる。また、この発明によれば、ハイドロカーボン供給下で起きる平坦化の悪化を抑えることが出来る。
さらに、昇温中のガスはアルゴンのみであるため、昇温過程における昇温条件、特に昇温速度が表面に及ぼす影響がほとんどない。このため、形状やタイプの異なる製膜装置(成長炉)を用いても、昇温中に水素ガスを供給する場合に比べて、再現性が得られやすいので好適である。
On the other hand, in the present invention, argon gas is supplied during temperature rise and hydrogen gas is not supplied, so that it is possible to reach a high temperature while suppressing the generation of Si droplets. It is considered that Si thus evaporated immediately does not remain on the silicon carbide substrate surface, and a flat silicon carbide epitaxial substrate surface can be obtained without hydrocarbon. Moreover, according to this invention, the deterioration of the planarization which occurs under the supply of hydrocarbon can be suppressed.
Furthermore, since the only gas that is being heated is argon, there is almost no influence on the surface by the temperature rising conditions in the temperature rising process, particularly the temperature rising rate. For this reason, even if a film forming apparatus (growth furnace) having a different shape and type is used, reproducibility can be easily obtained as compared with the case where hydrogen gas is supplied during temperature rise.

この発明においては、前記のアルゴン雰囲気下にてエピタキシャル成長温度に到達した段階で昇温のための加熱およびアルゴンガス供給を停止することによって、この発明における炭化珪素エピタキシャル用基板を得ることができる。
この発明においては、図3に示すようにエピタキシャル成長温度に到達した段階でアルゴンガス供給を停止した後、さらに、水素ガスを供給して炭化珪素エピタキシャル用基板表面をエッチングしてもよい。この場合エピタキシャル成長温度以上の温度であれば温度については特に制限はなく、前記の範囲で温度一定に保つか前記の範囲で降温させて基板表面を水素ガスでエッチングして炭化珪素エピタキシャル用基板を得てもよい。
In the present invention, the silicon carbide epitaxial substrate in the present invention can be obtained by stopping the heating for raising the temperature and supplying the argon gas when the epitaxial growth temperature is reached under the argon atmosphere.
In the present invention, as shown in FIG. 3, after the argon gas supply is stopped when the epitaxial growth temperature is reached, the surface of the silicon carbide epitaxial substrate may be etched by supplying hydrogen gas. In this case, the temperature is not particularly limited as long as the temperature is equal to or higher than the epitaxial growth temperature. The temperature is kept constant in the above range or the temperature is lowered in the above range and the substrate surface is etched with hydrogen gas to obtain a silicon carbide epitaxial substrate. May be.

前記のエピタキシャル成長温度としては、1500℃以上〜2000℃未満、特に1500℃以上〜1800℃、その中でも特に1500〜1650℃の温度が好適である。
また、前記のアルゴンガスの供給を停止した後に引き続き水素ガスを供給して基板表面をエッチングする条件としては、10〜5000sccm、特に50〜2500sccm程度の水素ガス供給量、1500℃以上〜2000℃未満、特に1500〜1800℃程度、その中でも特に1500〜1650℃の温度、5分間〜2時間、特に5〜60分間の時間が好ましい。
The epitaxial growth temperature is preferably 1500 ° C. or higher and lower than 2000 ° C., particularly 1500 ° C. or higher and 1800 ° C., and particularly preferably 1500 to 1650 ° C.
The conditions for etching the substrate surface by continuously supplying hydrogen gas after stopping the supply of the argon gas are as follows: hydrogen gas supply amount of about 10 to 5000 sccm, especially about 50 to 2500 sccm, 1500 ° C. to less than 2000 ° C. In particular, a temperature of about 1500 to 1800 ° C., particularly a temperature of 1500 to 1650 ° C., a time of 5 minutes to 2 hours, particularly a time of 5 to 60 minutes is preferable.

この発明の方法により得られる炭化珪素エピタキシャル用基板は、基板表面に炭化珪素ドロップレットの発生が抑制され、表面の研磨ひずみ層が除去されてSRqが好適には1nm以下、特に0.5nm以下、その中でも0.4nm以下の平坦面を有している。
前記の方法によって得られた炭化珪素エピタキシャル用基板の表面に、図4に示すように、引き続いてキャリアガス(例えば、水素ガス)およびSi原料ガスおよびC原料ガスを供給して炭化珪素単結晶をエピタキシャル成長させることができる。
この発明の方法によれば、カーボンの供給を抑えた反応室内条件下にエピタキシャル成長に好適な炭化珪素エピタキシャル用基板を製造することができ、基板自体が良好な特性を有しているとともにそのままの反応室内で炭化珪素単結晶のエピタキシャル成長を行うことによって、従来の製膜装置を起源とするハイドロカーボン・不純物の発生を抑制することができる。
In the silicon carbide epitaxial substrate obtained by the method of the present invention, generation of silicon carbide droplets is suppressed on the substrate surface, the surface polishing strain layer is removed, and SRq is preferably 1 nm or less, particularly 0.5 nm or less, Among them, it has a flat surface of 0.4 nm or less.
As shown in FIG. 4, a carrier gas (for example, hydrogen gas), a Si source gas, and a C source gas are subsequently supplied to the surface of the silicon carbide epitaxial substrate obtained by the above method to form a silicon carbide single crystal. It can be epitaxially grown.
According to the method of the present invention, a silicon carbide epitaxial substrate suitable for epitaxial growth can be produced under the reaction chamber conditions in which the supply of carbon is suppressed, and the substrate itself has good characteristics and the reaction as it is. By epitaxially growing a silicon carbide single crystal in a room, generation of hydrocarbons and impurities originating from a conventional film forming apparatus can be suppressed.

前記の炭化珪素単結晶をエピタキシャル成長させる方法としては特に制限はなく、任意の方法を採用することが出来る。
例えば、エピタキシャル成長によって形成される薄膜は単一層であってもよく2種以上の多層であってもよい。また、炭化珪素のみからなる薄膜の場合、p型およびn型の単結晶が相互に接合されて構成されてもよく、異種の結晶からなる薄膜が相互に接合されて構成されてもよい。
前記の炭化珪素をエピタキシャル成長させるためのSi原料ガスとしては、SiHやジクロルシランなどを挙げることができ、C原料ガスとしてメタン、プロパン、アセチレンなどを挙げることができる。
There is no restriction | limiting in particular as a method of making the said silicon carbide single crystal grow epitaxially, Arbitrary methods are employable.
For example, the thin film formed by epitaxial growth may be a single layer or two or more types of multilayers. In the case of a thin film made of only silicon carbide, p-type and n-type single crystals may be joined to each other, or thin films made of different types of crystals may be joined to each other.
Examples of the Si source gas for epitaxially growing the silicon carbide include SiH 4 and dichlorosilane, and examples of the C source gas include methane, propane, and acetylene.

さらに、エピタキシャル成長させるときの反応室内の温度(例えば、サセプタの熱電対温度)は1000℃以上2000℃未満、特に1500〜1800℃の範囲内の温度であることが好ましく、1torr〜2atmの圧力、厚みによって異なるが5〜10μmの場合には通常1〜2時間の反応時間(素子1枚ごとの成長時間)でエピタキシャル成長を行うことが好ましい。
前記の各サセプタおよび断熱材のうちどれを組み合わせて使用するかによって、原料のSi原料およびC原料の割合を変えることが好ましく、例えば、炭化珪素サセプタおよび炭化珪素断熱材を組み合わせて用いる場合、炭化珪素エピタキシャル結晶成長時の適切な原料供給比のC/Siは6である。
Further, the temperature in the reaction chamber during epitaxial growth (for example, the thermocouple temperature of the susceptor) is preferably 1000 ° C. or higher and lower than 2000 ° C., particularly 1500 to 1800 ° C., preferably 1 to 2 to 2 atm in pressure and thickness. However, in the case of 5 to 10 μm, it is preferable to perform epitaxial growth usually with a reaction time of 1 to 2 hours (growth time for each element).
It is preferable to change the ratio of the raw material Si raw material and the C raw material depending on which one of the susceptors and the heat insulating material is used in combination. For example, when a silicon carbide susceptor and a silicon carbide heat insulating material are used in combination, C / Si of an appropriate raw material supply ratio at the time of silicon epitaxial crystal growth is 6.

この発明の製造方法によって得られるSiドロップレットがなく平滑な表面を有する炭化珪素エピタキシャル用基板の表面に、前記の炭化珪素エピタキシャル成長によって炭化珪素エピタキシャル薄膜を形成することができる。   A silicon carbide epitaxial thin film can be formed by silicon carbide epitaxial growth on the surface of a silicon carbide epitaxial substrate having a smooth surface without Si droplets obtained by the production method of the present invention.

以下にこの発明の実施例を示すが、この発明は以下の実施例に限定されるものではない。
以下の各例において、炭化珪素エピタキシャル用基板の表面粗さを原子間力顕微鏡によって測定し、SRq(粗さ曲面の自乗平均平方根粗さを示す)で表示する。
Examples of the present invention are shown below, but the present invention is not limited to the following examples.
In each of the following examples, the surface roughness of the silicon carbide epitaxial substrate is measured by an atomic force microscope, and displayed by SRq (indicating the root mean square roughness of the roughness curved surface).

実施例1
図1に示す製膜装置(CVD装置)を用いて、下記の工程で炭化珪素エピタキシャル用基板を製造し、評価した。
1)洗浄した炭化珪素基板を、炭化珪素サセプタおよび炭化珪素断熱材を備えたCVD装置の反応室に設置した。
2)アルゴンガス500sccmを流しながら5torrの圧力下で加熱を始める。
3)50℃/ 分の一定の昇温速度で昇温させて基板表面をアルゴン処理し、エピタキシャル成長温度(1650℃)になったところで昇温のための加熱を停止して、炭化珪素エピタキシャル用基板を得た。
Example 1
Using the film forming apparatus (CVD apparatus) shown in FIG. 1, a silicon carbide epitaxial substrate was manufactured and evaluated in the following steps.
1) The cleaned silicon carbide substrate was placed in a reaction chamber of a CVD apparatus equipped with a silicon carbide susceptor and a silicon carbide heat insulating material.
2) Heating is started under a pressure of 5 torr while flowing 500 sccm of argon gas.
3) The substrate surface is heated at a constant temperature increase rate of 50 ° C./min, and the substrate surface is treated with argon. When the epitaxial growth temperature (1650 ° C.) is reached, heating for temperature increase is stopped, and the silicon carbide epitaxial substrate Got.

加熱を停止した後、降温して炭化珪素エピタキシャル用基板を取り出し、基板の表面形状をAFM(Atomic Force Microscope、原子間力顕微鏡)を用いて評価した。実験結果をまとめて表1に示す。実施例1で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真を図5に示す。
また、得られた炭化珪素エピタキシャル用基板の表面粗さを測定した結果、鏡面でSRq=0.5nmの平坦面であった。
After stopping the heating, the temperature was lowered, the silicon carbide epitaxial substrate was taken out, and the surface shape of the substrate was evaluated using an AFM (Atomic Force Microscope). The experimental results are summarized in Table 1. A surface shape photograph of the silicon carbide epitaxial substrate obtained in Example 1 by AFM is shown in FIG.
Moreover, as a result of measuring the surface roughness of the obtained silicon carbide epitaxial substrate, it was a flat surface with SRq = 0.5 nm as a mirror surface.

実施例2
加熱を停止した後、さらに、以下の工程に示すように水素ガスを供給して炭化珪素エピタキシャル用基板表面をエッチングする工程を加えた他は実施例1と同様に実施した。
1)洗浄した炭化珪素基板を、炭化珪素サセプタおよび炭化珪素断熱材を備えたCVD装置の反応室に設置した。
2)アルゴンガス500sccmを流しながら5torrの圧力下で加熱を始める。
3)50℃/ 分の一定の昇温速度で昇温させて基板表面をアルゴン処理し、エピタキシャル温度(1650℃)になったところで昇温のための加熱を停止して、供給ガスをアルゴンから水素に切替えて30分間保持して、炭化珪素エピタキシャル用基板を得た。
Example 2
After stopping the heating, the same procedure as in Example 1 was performed except that a step of etching the surface of the silicon carbide epitaxial substrate by supplying hydrogen gas was added as shown in the following steps.
1) The cleaned silicon carbide substrate was placed in a reaction chamber of a CVD apparatus equipped with a silicon carbide susceptor and a silicon carbide heat insulating material.
2) Heating is started under a pressure of 5 torr while flowing 500 sccm of argon gas.
3) The substrate surface is heated at a constant temperature increase rate of 50 ° C./min to treat the substrate with argon. When the epitaxial temperature (1650 ° C.) is reached, heating for temperature increase is stopped and the supply gas is changed from argon. The substrate was switched to hydrogen and held for 30 minutes to obtain a silicon carbide epitaxial substrate.

30分間保持した後、降温して炭化珪素エピタキシャル用基板を取り出し、基板の表面形状をAFMを用いて評価した。実験結果をまとめて表1に示す。実施例2で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真を図6に示す。
また、得られた炭化珪素エピタキシャル用基板の表面粗さを測定した結果、鏡面でSRq=0.2nmの平坦面であった。
After holding for 30 minutes, the temperature was lowered, the silicon carbide epitaxial substrate was taken out, and the surface shape of the substrate was evaluated using AFM. The experimental results are summarized in Table 1. FIG. 6 shows a photograph of the surface shape of the silicon carbide epitaxial substrate obtained in Example 2 by AFM.
Moreover, as a result of measuring the surface roughness of the obtained silicon carbide epitaxial substrate, it was a flat surface with SRq = 0.2 nm as a mirror surface.

比較例1
以下の工程に示すように、昇温中の供給ガスをアルゴンから水素に変えた他は実施例1と同様に実施した。
1)洗浄した炭化珪素基板を、炭化珪素サセプタおよび炭化珪素断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始める。
3)50℃/ 分の一定の昇温速度で昇温し、エピタキシャル温度(1650℃)になったところで昇温のための加熱を停止して、炭化珪素エピタキシャル用基板を得た。
Comparative Example 1
As shown in the following steps, the same procedure as in Example 1 was performed except that the supply gas during the temperature increase was changed from argon to hydrogen.
1) The cleaned silicon carbide substrate was placed in a reaction chamber of a film forming apparatus provided with a silicon carbide susceptor and a silicon carbide heat insulating material.
2) Heating is started under a pressure of 2 torr while flowing 500 sccm of hydrogen gas.
3) The temperature was increased at a constant temperature increase rate of 50 ° C./min, and when the epitaxial temperature (1650 ° C.) was reached, heating for temperature increase was stopped to obtain a silicon carbide epitaxial substrate.

加熱を停止後、降温して炭化珪素エピタキシャル用基板を取り出し、基板の表面形状をAFMを用いて評価した。実験結果をまとめて表1に示す。比較例1で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真を図7に示す。
炭化珪素エピタキシャル用基板表面にはSiドロップレットの発生が確認された(図7の全面に点在する白い部分がSiドロップレットである。)。
After stopping the heating, the temperature was lowered, the silicon carbide epitaxial substrate was taken out, and the surface shape of the substrate was evaluated using AFM. The experimental results are summarized in Table 1. A surface shape photograph of the silicon carbide epitaxial substrate obtained in Comparative Example 1 by AFM is shown in FIG.
Generation | occurrence | production of Si droplet was confirmed on the substrate surface for silicon carbide epitaxial (the white part scattered on the whole surface of FIG. 7 is Si droplet).

比較例2
以下の工程に示すように、昇温中の供給ガスをアルゴンから水素に変えた他は実施例2と同様に実施した。
1)洗浄した炭化珪素基板を、炭化珪素サセプタおよび炭化珪素断熱材を備えた製膜装置の反応室に設置した。
2)水素ガス500sccmを流しながら2torrの圧力下で加熱を始める。
3)50℃/ 分の一定の昇温速度で昇温し、エピタキシャル温度(1650℃)になったところで昇温のための加熱を停止し30分間保持して、炭化珪素エピタキシャル用基板を得た。
Comparative Example 2
As shown in the following steps, the same procedure as in Example 2 was performed except that the supply gas during the temperature increase was changed from argon to hydrogen.
1) The cleaned silicon carbide substrate was placed in a reaction chamber of a film forming apparatus provided with a silicon carbide susceptor and a silicon carbide heat insulating material.
2) Heating is started under a pressure of 2 torr while flowing 500 sccm of hydrogen gas.
3) The temperature was raised at a constant heating rate of 50 ° C./min, and when the epitaxial temperature (1650 ° C.) was reached, heating for raising the temperature was stopped and held for 30 minutes to obtain a silicon carbide epitaxial substrate. .

30分間保持した後、降温して炭化珪素エピタキシャル用基板を取り出し、基板の表面形状をAFMを用いて評価した。実験結果をまとめて表1に示す。比較例2で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真を図8に示す。
基板周辺部にのみSiドロップレットの発生が確認された(図8の周辺部の白く見えるところがSiドロップレットの発生領域)。
After holding for 30 minutes, the temperature was lowered, the silicon carbide epitaxial substrate was taken out, and the surface shape of the substrate was evaluated using AFM. The experimental results are summarized in Table 1. FIG. 8 shows a surface shape photograph of the silicon carbide epitaxial substrate obtained in Comparative Example 2 by AFM.
Generation of Si droplets was confirmed only at the periphery of the substrate (the area where Si droplets appear white in the periphery of FIG. 8).

図5(実施例1)および図6(実施例2)と図7(比較例1)および図8(比較例2)との比較、および表1から、この発明のカーボンの供給を抑えた反応室内条件下、炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させて基板表面をアルゴン処理し、エピタキシャル成長温度に到達した段階で昇温のための加熱およびアルゴンガス供給を停止することによって得られた炭化珪素エピタキシャル用基板は、基板表面にSiドロップレットの生成が抑制されて、平滑な表面を有しており、炭化珪素単結晶をエピタキシャル成長させる基板として好適であることが理解される。   From the comparison of FIG. 5 (Example 1) and FIG. 6 (Example 2) with FIG. 7 (Comparative Example 1) and FIG. 8 (Comparative Example 2) and Table 1, the reaction of suppressing the supply of carbon of the present invention Obtained by raising the temperature of the silicon carbide substrate to the epitaxial growth temperature in an argon atmosphere under indoor conditions, treating the substrate surface with argon, and stopping heating and argon gas supply when the temperature reaches the epitaxial growth temperature. It is understood that the silicon carbide epitaxial substrate thus obtained has a smooth surface with generation of Si droplets suppressed on the substrate surface and is suitable as a substrate for epitaxial growth of a silicon carbide single crystal.

図1は、この発明に用いるCVD装置の1実施態様の概略図である。FIG. 1 is a schematic view of one embodiment of a CVD apparatus used in the present invention. 図2は、この発明の1実施態様における加熱温度の時間変化およびガス供給の時間変化を示すグラフである。FIG. 2 is a graph showing the time change of the heating temperature and the time change of the gas supply in one embodiment of the present invention. 図3は、この発明の他の1実施態様における加熱温度の時間変化およびガス供給の時間変化を示すグラフである。FIG. 3 is a graph showing the time change of the heating temperature and the time change of the gas supply in another embodiment of the present invention. 図4は、この発明の他の1実施態様に引き続いてエピタキシャル成長を行う1例の温度変化およびガス供給の時間変化を示すグラフである。FIG. 4 is a graph showing a temperature change and a gas supply time change of an example in which epitaxial growth is performed subsequent to another embodiment of the present invention. 図5は、実施例1で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真である。FIG. 5 is a surface shape photograph of the silicon carbide epitaxial substrate obtained in Example 1 by AFM. 図6は、実施例2で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真である。FIG. 6 is a photograph of the surface shape of the silicon carbide epitaxial substrate obtained in Example 2 by AFM. 図7は、比較例1で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真である。FIG. 7 is a surface shape photograph of the silicon carbide epitaxial substrate obtained in Comparative Example 1 by AFM. 図8は、比較例2で得られた炭化珪素エピタキシャル用基板のAFMによる表面形状写真である。FIG. 8 is a photograph of the surface shape of the silicon carbide epitaxial substrate obtained in Comparative Example 2 by AFM.

符号の説明Explanation of symbols

1 反応室
2 サセプタ
3 断熱材
4 基板
5 装置内加熱装置
6 熱電対温度計
10 製膜装置
DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Susceptor 3 Heat insulation material 4 Board | substrate 5 In-apparatus heating apparatus 6 Thermocouple thermometer 10 Film-forming apparatus

Claims (5)

カーボンの供給を抑えた反応室内条件下、炭化珪素基板をアルゴン雰囲気下にてエピタキシャル成長温度まで昇温させて基板表面をアルゴン処理し、エピタキシャル成長温度に到達した段階で昇温のための加熱およびアルゴンガス供給を停止する炭化珪素エピタキシャル用基板の製造方法。   Under the reaction chamber conditions with suppressed carbon supply, the silicon carbide substrate is heated to the epitaxial growth temperature in an argon atmosphere to treat the substrate surface with argon, and when the epitaxial growth temperature is reached, heating for heating and argon gas are performed. A method for manufacturing a silicon carbide epitaxial substrate, the supply of which is stopped. 昇温のための加熱およびアルゴンガス供給を停止した後、さらに、水素ガスを供給して基板表面をエッチングする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein after the heating for raising the temperature and the supply of argon gas are stopped, the substrate surface is further etched by supplying hydrogen gas. カーボンの供給を抑えた反応室内条件が、サセプタを炭化珪素又は炭化珪素コートグラファイトによって構成することである請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the reaction chamber condition in which carbon supply is suppressed is that the susceptor is composed of silicon carbide or silicon carbide-coated graphite. カーボンの供給を抑えた反応室内条件が、断熱材を炭化珪素又は炭化珪素コートグラファイトによって構成することである請求項1〜3のいずれか1項に記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the condition in the reaction chamber in which the supply of carbon is suppressed is that the heat insulating material is composed of silicon carbide or silicon carbide-coated graphite. 水素ガスを5〜60分間供給して基板表面をエッチングする請求項2〜4のいずれか1項に記載の製造方法。   The manufacturing method according to claim 2, wherein the substrate surface is etched by supplying hydrogen gas for 5 to 60 minutes.
JP2008126357A 2008-05-13 2008-05-13 Manufacturing method of silicon carbide epitaxial substrate Expired - Fee Related JP4916479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126357A JP4916479B2 (en) 2008-05-13 2008-05-13 Manufacturing method of silicon carbide epitaxial substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126357A JP4916479B2 (en) 2008-05-13 2008-05-13 Manufacturing method of silicon carbide epitaxial substrate

Publications (2)

Publication Number Publication Date
JP2009274899A true JP2009274899A (en) 2009-11-26
JP4916479B2 JP4916479B2 (en) 2012-04-11

Family

ID=41440667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126357A Expired - Fee Related JP4916479B2 (en) 2008-05-13 2008-05-13 Manufacturing method of silicon carbide epitaxial substrate

Country Status (1)

Country Link
JP (1) JP4916479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157332A1 (en) * 2013-03-27 2014-10-02 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor substrate
KR20160067960A (en) 2014-02-28 2016-06-14 신닛테츠스미킨 카부시키카이샤 Epitaxial silicon carbide wafer manufacturing method
CN112885708A (en) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 Preparation method of silicon carbide homoepitaxy material
CN112885708B (en) * 2021-01-13 2024-04-26 中电化合物半导体有限公司 Preparation method of silicon carbide homoepitaxial material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121441A (en) * 1997-10-20 1999-04-30 Fuji Electric Co Ltd Preparation of silicon carbide semiconductor substrate
JP2002037699A (en) * 2000-07-25 2002-02-06 Osaka Prefecture Method of forming thin film of single crystal silicon carbide and apparatus of forming it
JP2003002795A (en) * 2001-06-22 2003-01-08 Toyota Central Res & Dev Lab Inc Method and apparatus for producing silicon carbide single crystal
JP2005223143A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Cvd reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121441A (en) * 1997-10-20 1999-04-30 Fuji Electric Co Ltd Preparation of silicon carbide semiconductor substrate
JP2002037699A (en) * 2000-07-25 2002-02-06 Osaka Prefecture Method of forming thin film of single crystal silicon carbide and apparatus of forming it
JP2003002795A (en) * 2001-06-22 2003-01-08 Toyota Central Res & Dev Lab Inc Method and apparatus for producing silicon carbide single crystal
JP2005223143A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Cvd reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157332A1 (en) * 2013-03-27 2014-10-02 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor substrate
JP2014189442A (en) * 2013-03-27 2014-10-06 Sumitomo Electric Ind Ltd Production method of silicon carbide semiconductor substrate
US9269572B2 (en) 2013-03-27 2016-02-23 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor substrate
KR20160067960A (en) 2014-02-28 2016-06-14 신닛테츠스미킨 카부시키카이샤 Epitaxial silicon carbide wafer manufacturing method
US9957639B2 (en) 2014-02-28 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Method for producing epitaxial silicon carbide wafer
CN112885708A (en) * 2021-01-13 2021-06-01 中电化合物半导体有限公司 Preparation method of silicon carbide homoepitaxy material
CN112885708B (en) * 2021-01-13 2024-04-26 中电化合物半导体有限公司 Preparation method of silicon carbide homoepitaxial material

Also Published As

Publication number Publication date
JP4916479B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US7329593B2 (en) Germanium deposition
JP6177295B2 (en) Method for producing graphene nanoribbons on h-BN
US9957638B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5234968B2 (en) N-type conductive aluminum nitride semiconductor crystal and manufacturing method thereof
WO2016075957A1 (en) Method for manufacturing silicon carbide epitaxial substrate and silicon carbide epitaxial substrate
JP2005324994A (en) METHOD FOR GROWING SiC SINGLE CRYSTAL AND SiC SINGLE CRYSTAL GROWN BY THE SAME
JP2013537164A (en) Method for graphene growth
CN104867818B (en) A kind of method for reducing silicon carbide epitaxy material defect
JP6248532B2 (en) 3C-SiC epitaxial layer manufacturing method, 3C-SiC epitaxial substrate, and semiconductor device
CN105441902A (en) Epitaxial silicon carbide-graphene composite film preparation method
JP2014058411A (en) Method for producing epitaxial silicon carbide wafer
JP5024886B2 (en) Planarization processing method and crystal growth method
CN109119327A (en) The method of epitaxial growth aluminium nitride on nano-patterned sapphire substrate
US7763529B2 (en) Method of fabricating silicon carbide (SiC) layer
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP4916479B2 (en) Manufacturing method of silicon carbide epitaxial substrate
JP2008028277A (en) Manufacturing method for semiconductor substrate
JP2014232799A (en) Method of manufacturing silicon carbide semiconductor substrate
JP2012171811A (en) Method for producing silicon carbide single crystal epitaxial wafer
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
JP2013035731A (en) Manufacturing method for single crystal silicon carbide film and manufacturing method for substrate with single crystal silicon carbide film
US9269572B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2006036613A (en) Method for forming cubic silicon carbide crystal film on silicon substrate
JP2010225734A (en) Method of manufacturing semiconductor substrate
KR101383295B1 (en) Synthesis Method of Graphene using 3C-SiC Thin Film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4916479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees