JP2005317670A - Fabricating method of cubic silicon carbide crystal film with orientation (100) - Google Patents

Fabricating method of cubic silicon carbide crystal film with orientation (100) Download PDF

Info

Publication number
JP2005317670A
JP2005317670A JP2004131933A JP2004131933A JP2005317670A JP 2005317670 A JP2005317670 A JP 2005317670A JP 2004131933 A JP2004131933 A JP 2004131933A JP 2004131933 A JP2004131933 A JP 2004131933A JP 2005317670 A JP2005317670 A JP 2005317670A
Authority
JP
Japan
Prior art keywords
substrate
film
sic
silicon carbide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131933A
Other languages
Japanese (ja)
Inventor
Kanji Yasui
寛治 安井
Masashi Akaha
正志 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004131933A priority Critical patent/JP2005317670A/en
Publication of JP2005317670A publication Critical patent/JP2005317670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost in mass production of an SiCOI construction substrate with regard to a method to grow a cubic silicon carbide (3 C-SiC) crystal film with orientation (100) at relatively low substrate temperature. <P>SOLUTION: A hot-wire catalyst material which thermally decomposes a hydrogen gas is heated up to 1,400 to 1,800°C, and the hydrogen gas is thermally decomposed to generate a hydrogen radical. Then an organic silicon compound gas including an Si-C combination in molecules is directly supplied to near a surface of a silicon thermal oxide film substrate which is heated up to 700 to 800°C to decompose by the hydrogen radical, by which crystal growth of the cubic silicon carbide film with orientation (100) on the surface of a silicon thermal oxide film is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリコン基板上に形成したシリコン熱酸化膜上に、ホットワイア触媒体によ
る触媒反応による水素ガスの熱分解を利用したCVD法によって比較的低い基板温度で(1
00)配向した立方晶炭化珪素(3C-SiC)結晶膜を成長させる方法に関する。
In the present invention, a silicon thermal oxide film formed on a silicon substrate is formed at a relatively low substrate temperature by a CVD method using thermal decomposition of hydrogen gas by a catalytic reaction by a hot wire catalyst (1).
The present invention relates to a method for growing an oriented cubic silicon carbide (3C-SiC) crystal film.

これまで、低温での薄膜成長にはプラズマCVD法が主に用いられてきた。しかし、液
晶ディスプレーや太陽電池等の薄膜デバイスにおいては堆積面積が1m2 を超えるような
大面積堆積技術が求められており、プラズマの大型化には、均一性維持等の技術的課題の
解決が大変難しい。
So far, plasma CVD has been mainly used for thin film growth at low temperatures. However, thin-film devices such as liquid crystal displays and solar cells require large-area deposition technology that has a deposition area exceeding 1 m 2, and technical issues such as maintaining uniformity are required to increase plasma size. Very difficult.

高温に加熱したタングステン、タンタル、レニウム、白金等の高融点金属でできたフィ
ラメントの触媒分解反応によってガスを分解し、生成した分解種(ラジカル)を用いる膜
成長法として、触媒CVD(Catalytic-CVD:Cat-CVD)又はホットワイヤCVD(Hot Wir
e CVD :HW-CVD)やホットフィラメント(Hot Filament CVD;HF-CVD)等と呼ばれる成長法が
ある(例えば、特許文献1〜7)。Cat−CVDにおいては、触媒体の設置面積の増大
によって堆積面積の増大が容易に可能である。また、プラズマ中で発生する荷電粒子によ
る膜へのダメージの懸念がないこと、装置も単純である等多くの有利な特徴がある。
Catalytic-CVD (catalytic-CVD) is a film growth method that uses the decomposed species (radicals) to decompose gases by catalytic decomposition of filaments made of refractory metals such as tungsten, tantalum, rhenium, and platinum heated to high temperatures. : Cat-CVD) or hot wire CVD (Hot Wir
There is a growth method called e CVD (HW-CVD) or hot filament (HF-CVD) (for example, Patent Documents 1 to 7). In Cat-CVD, the deposition area can be easily increased by increasing the installation area of the catalyst body. In addition, there are many advantageous features such as no concern about damage to the film due to charged particles generated in the plasma, and a simple apparatus.

この方法の特徴として、減圧CVD法と比較した場合、基板表面温度による原料ガスの
熱分解ではないため、低温の基板温度での成長が可能なことや、原料ガスを金属触媒によ
って分解する場合、プラズマCVD法と異なり、金属ワイヤ等の二次元の固体表面でラジ
カルを生じるため、ガスの分解効率が高いこと等が挙げられる。これまで、成長温度20
0〜300℃ほどの低温でCat−CVD法を用い、太陽電池やTFT等への応用を目的
としたアモルファスSi(a-Si)、多結晶Si(Poly-Si)、アモルファスSiC(a-SiC
)、微結晶SiC(μc-SiC)等の作製について報告がなされている。
As a feature of this method, since it is not thermal decomposition of the source gas due to the substrate surface temperature when compared with the low pressure CVD method, it is possible to grow at a low substrate temperature, or when the source gas is decomposed by a metal catalyst, Unlike the plasma CVD method, radicals are generated on a two-dimensional solid surface such as a metal wire, so that the gas decomposition efficiency is high. So far, the growth temperature is 20
Amorphous Si (a-Si), polycrystalline Si (Poly-Si), amorphous SiC (a-SiC) for the application to solar cells and TFTs using Cat-CVD at a low temperature of about 0-300 ° C
), And production of microcrystalline SiC (μ c -SiC) has been reported.

炭化珪素(SiC)は、SiやGaAsのパワーデバイスや高周波デバイスの性能を凌駕
するデバイス用材料としての可能性を持っている。GaNを作製する際、サファイヤやS
iCを基板として作製されているが、SiCを用いた場合、熱伝導率が大きいことや格子
ミスマッチが約3%と比較的小さいなどの理由からサファイヤ基板を用いた場合より優れ
たデバイス特性が得られている。
Silicon carbide (SiC) has the potential as a device material that surpasses the performance of Si and GaAs power devices and high frequency devices. When making GaN, sapphire and S
Although iC is used as a substrate, when SiC is used, device characteristics superior to those using a sapphire substrate are obtained because of its high thermal conductivity and relatively low lattice mismatch of about 3%. It has been.

SiC/Siへテロエピタキシャル成長は主に、化学気相堆積成長(CVD)法、分子
線エピタキシー(MBE)法等を用いて行われている。しかし、SiとSiCとの間には
20%もの大きな格子不整合、約8%の熱膨張係数差が存在し、高い成長温度を用いた場
合SiC/Si界面付近には積層欠陥(Stacking Fault)や転移(Dislocation)が発生しや
すい。また、SiC核発生密度が低い場合には、基板のSi原子の外部拡散によるSiC
/Si界面のボイド(Void) 等の欠陥の問題が生じる。
The SiC / Si heteroepitaxial growth is mainly performed by using a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, or the like. However, there is a large lattice mismatch of 20% between Si and SiC, and a thermal expansion coefficient difference of about 8%. When a high growth temperature is used, a stacking fault occurs near the SiC / Si interface. And dislocation are likely to occur. In addition, when the SiC nucleus generation density is low, SiC due to external diffusion of Si atoms in the substrate
Problems of defects such as voids at the / Si interface occur.

Si基板上に形成される半導体素子は、基板との間に浮遊容量が発生し、消費電力の低
減と動作周波数の高速化が阻害されてきた。半導体素子と基板との間に絶縁層を挿入した
SOI(Silicon on Insulator)構造は浮遊容量を抑え、トランジスタの高速化や低消費
電力化、高集積化に有効な構造である。3C−SiCによる高周波デバイスやセンサー等
の電子デバイスの作製においても、Si基板とSiC膜の絶縁も非常に重要な技術であり
、Si基板とSiC膜の間に絶縁層を挿入したSiCOI(SiC on Insulator))構造と
して知られている。
A semiconductor element formed on a Si substrate generates a stray capacitance between the substrate and a reduction in power consumption and an increase in operating frequency have been hindered. An SOI (Silicon on Insulator) structure in which an insulating layer is inserted between a semiconductor element and a substrate is a structure that suppresses stray capacitance and is effective for increasing the speed, reducing power consumption, and increasing integration of transistors. In manufacturing electronic devices such as high-frequency devices and sensors using 3C-SiC, insulation between the Si substrate and the SiC film is also a very important technique. SiCOI (SiC on which an insulating layer is inserted between the Si substrate and the SiC film) Insulator)) known as structure.

これまで、Si基板の熱酸化膜上にSiC膜を持つ構造の作製には、貼り合わせ(Bond
ing)技術やエッチバック(Etch Back)技術等の方法が用いられてきた(非特許文献 1、
2)。これは、CVD法のように熱エネルギーによる水素の脱離によって膜成長が生じる
場合、アモルファスの酸化膜基板上ではSiCのどの結晶面が成長するかという選択性が
なく、無配向の多結晶になるため、これまで、シリコン熱酸化膜という非晶質基板上に(
100)配向を有するSiC結晶膜の成長が不可能であったためである。これらの方法は、
SiC膜を堆積させたSi基板をSi基板上の熱酸化膜に結合させ、Si基板をエッチン
グして取り除き、SiC膜を露出させるものであり、多くのプロセスを必要とする。
Up to now, bonding (Bond) has been used to fabricate a structure with a SiC film on a thermal oxide film on a Si substrate.
ing) technology and Etch Back technology have been used (Non-Patent Document 1,
2). This is because, when film growth occurs due to desorption of hydrogen by thermal energy as in the CVD method, there is no selectivity as to which crystal plane of SiC grows on an amorphous oxide film substrate, and non-oriented polycrystalline So far, on an amorphous substrate called a silicon thermal oxide film (
This is because it was impossible to grow a SiC crystal film having a 100) orientation. These methods are
The Si substrate on which the SiC film is deposited is bonded to the thermal oxide film on the Si substrate, and the Si substrate is removed by etching to expose the SiC film, which requires many processes.

Q. Y. Tong et.al., J. Electrochem. Soc.142(1) (1995) pp.232-236,Q. Y. Tong et.al., J. Electrochem. Soc. 142 (1) (1995) pp.232-236, C. Serre et.al.,Sensors and Actuators 74(1999) pp.169-173C. Serre et.al., Sensors and Actuators 74 (1999) pp.169-173 特開昭61−276976号(特公平3−65434号)公報Japanese Patent Laid-Open No. 61-276976 (Japanese Patent Publication No. 3-65434) 特開昭63−040314号公報JP 63-040314 A 特開平08−250438号公報JP-A-08-250438 特開2000−223421号公報JP 2000-223421 A 特開2000−243712号公報Japanese Patent Laid-Open No. 2000-243712 特開2002−093713号公報JP 2002-093713 A 特開2003−155567号公報JP 2003-155567 A 特開2004−95733号公報JP 2004-95733 A

SiCには100種類以上のポリタイプが存在する。SiCのポリタイプの中で、比較
的発生確率が高く、実用面で研究されているのが、3C−,4H−、6H−SiCである
。ここで、数字はC軸方向への繰り返し周期、Cは立方晶を、Hは六方晶を意味する。
これらのポリタイプの中で、3C−SiCは比較的大きな電子移動度と飽和ドリフト速度
を持つため、パワーデバイスや、高周波デバイス用材料として大変期待されている。
There are over 100 polytypes of SiC. Among the polytypes of SiC, 3C-, 4H-, and 6H-SiC have a relatively high probability of occurrence and have been studied in practical use. Here, the numbers indicate the repetition period in the C-axis direction, C means a cubic crystal, and H means a hexagonal crystal.
Among these polytypes, 3C-SiC has a relatively high electron mobility and saturation drift velocity, and thus is highly expected as a material for power devices and high-frequency devices.

また、閃亜鉛構造を有する3C−SiCは他のポリタイプに比べ低温安定ポリタイプで
あり、Si上に唯一エピタキシャル成長が可能で、この系のヘテロエピタキシャル技術が
向上すれば安価な大面積の結晶を得ることが可能であり、基板としてのSiCの用途が開
かれる。
In addition, 3C-SiC with zinc flash structure is a low-temperature stable polytype compared to other polytypes, and can only be epitaxially grown on Si. If this heteroepitaxial technology is improved, inexpensive large-area crystals can be obtained. Can be obtained and opens up the use of SiC as a substrate.

改良レーリ一法によって作製された六方晶SiC(4H−、6H−SiC)基板は、欠
陥を多く含むことや残留キャリア密度が高いこと、熱拡散による伝導度制御が困難である
といった原因から、素子構造のつくり込みが困難なため素子構造形成のためにもエピタキ
シャル成長が不可欠である。
The hexagonal SiC (4H-, 6H-SiC) substrate produced by the improved Rayleigh method contains many defects, has a high residual carrier density, and is difficult to control conductivity by thermal diffusion. Since it is difficult to build a structure, epitaxial growth is indispensable for forming an element structure.

3C−SiCによる高周波デバイスやセンサー等の電子デバイスの作製において、Si
COI(SiC on Insulator)構造が知られているものの、3C−SiC膜をSiの熱酸化
膜上へ直接成長させることによってSiCOI構造を形成する技術はこれまで報告されて
いない。また、従来CVD法に用いられているシラン系ガスは自然発火性があり大変危険
な原料であるため、その代替となる原料ガスを用いて3C−SiC膜の成膜を可能とする
方法が求められている。
In manufacturing electronic devices such as high-frequency devices and sensors using 3C-SiC, Si
Although a COI (SiC on Insulator) structure is known, a technique for forming a SiCOI structure by directly growing a 3C-SiC film on a thermal oxide film of Si has not been reported so far. Moreover, since the silane-based gas used in the conventional CVD method is a pyrophoric material that is very dangerous, a method that enables the formation of a 3C—SiC film using a material gas that is an alternative to the silane gas is required. It has been.

本発明は、シリコン基板上に形成した熱酸化膜、すなわち酸化ケイ素膜上に、ホットワ
イア触媒体を用いたCVD法によって、比較的低い基板温度で(100)配向の3C−Si
C結晶膜を成長させる方法を提供する。
The present invention is a thermal oxide film formed on a silicon substrate, that is, 3C-Si having (100) orientation at a relatively low substrate temperature by a CVD method using a hot wire catalyst on a silicon oxide film.
A method for growing a C crystal film is provided.

本発明は、水素ガスを熱分解させるホットワイア触媒体を1400〜1800℃に加熱
して水素ガスを熱分解させて水素ラジカルを生成させるとともに、分子内にSi−C結合
を有する有機珪素化合物ガスを700〜800℃に加熱したシリコン熱酸化膜基板の表面
近傍に直接供給して該水素ラジカルで分解することによってシリコン熱酸化膜表面に(10
0)配向の立方晶炭化珪素膜を結晶成長させることを特徴とする(100)配向した立方晶炭化
珪素結晶膜の作製方法、である。
In the present invention, a hot wire catalyst body that thermally decomposes hydrogen gas is heated to 1400 to 1800 ° C. to thermally decompose the hydrogen gas to generate hydrogen radicals, and an organosilicon compound gas having a Si—C bond in the molecule Is directly supplied to the vicinity of the surface of the silicon thermal oxide film substrate heated to 700 to 800 ° C. and decomposed by the hydrogen radicals (10
0) A method for producing a (100) -oriented cubic silicon carbide crystal film, characterized by crystal growth of an oriented cubic silicon carbide film.

本発明の方法では、ホットワイア触媒体の表面で原料の有機珪素化合物ガスは直接分解
されず、酸化ケイ素膜表面のSiC膜成長表面における有機珪素化合物の過剰なメチル基
や、結合水素の水素ラジカルによる引き抜き効果を用いて、荷電粒子の存在しない、純粋
に水素ラジカルの化学的反応過程のみを利用した条件で、シリコン熱酸化膜基板上に(100
)配向した3C−SiCの低温成長を行うことを特徴とする。
In the method of the present invention, the raw material organosilicon compound gas is not directly decomposed on the surface of the hot wire catalyst body, but excessive methyl groups of the organosilicon compound on the SiC film growth surface on the silicon oxide film surface or hydrogen radicals of bonded hydrogen. (100) on the silicon thermal oxide film substrate under the condition using only the chemical reaction process of hydrogen radicals without charged particles.
) It is characterized by performing low temperature growth of oriented 3C-SiC.

本発明の方法では、高融点金属ワィアをメッシュ状構造とした触媒体を基板と対向して
配置し、水素ガスを該触媒体のメッシュ孔を通過させて基板方向へ流すことが好ましい態
様として挙げられる。また、該有機珪素化合物ガスをノズルからシリコン熱酸化膜基板表
面近傍に直接供給することが好ましい態様として挙げられる。
In the method of the present invention, a catalyst body having a mesh structure of refractory metal wires is disposed facing the substrate, and hydrogen gas is allowed to flow through the mesh holes of the catalyst body toward the substrate. It is done. Further, it is preferable to supply the organosilicon compound gas directly from the nozzle to the vicinity of the silicon thermal oxide film substrate surface.

本発明の方法によって、シリコン熱酸化膜上への(100)配向した立方晶炭化珪素結晶膜
の直接成長がはじめて可能になったので、SiCOI構造基板の量産におけるコスト削減
の点で非常に有用である。
Since the method of the present invention enables the first direct growth of a (100) -oriented cubic silicon carbide crystal film on a silicon thermal oxide film, it is very useful in terms of cost reduction in mass production of SiCOI structure substrates. is there.

図1に、本発明の方法に用いるホットワイアCVD装置の一例を概略図で示す。成長チ
ャンバー1内には、基板2をPBN(熱分解法窒化ホウ素)板などの絶縁シート3を介し
て基板ヒータ4上にセットする。基板2の表面に対向する位置に水素ガスを熱分解させる
触媒体となるホットワイア触媒体5を取り付ける。基板ヒータ4と触媒体5にはそれぞれ
、チャンバーの電流導入端子(図示せず)から電流を供給できるようになっている。基板
ヒータ4としてはカーボン面状ヒータなどを用いる。ホットワイア触媒体を基板と対向し
て配置し、水素ガスをホットワイアを通過させて基板方向へ流すことによって触媒体表面
の触媒反応によって水素を熱分解して高密度の水素ラジカル(水素原子)を発生させる。
FIG. 1 schematically shows an example of a hot wire CVD apparatus used in the method of the present invention. In the growth chamber 1, the substrate 2 is set on the substrate heater 4 through an insulating sheet 3 such as a PBN (pyrolytic boron nitride) plate. A hot wire catalyst body 5 serving as a catalyst body for thermally decomposing hydrogen gas is attached to a position facing the surface of the substrate 2. A current can be supplied to the substrate heater 4 and the catalyst body 5 from a current introduction terminal (not shown) of the chamber. A carbon planar heater or the like is used as the substrate heater 4. A hot wire catalyst body is placed opposite to the substrate, and hydrogen gas is passed through the hot wire toward the substrate to thermally decompose hydrogen by catalytic reaction on the surface of the catalyst body, resulting in high-density hydrogen radicals (hydrogen atoms). Is generated.

ホットワイアの材料としては、タングステン、モリブデン、タンタル、チタン、バナジ
ウム等の高融点金属、パラジウム、シリコン、金属を付着したセラミックス、アルミナ、
炭化珪素などが上げられる。特に、高温強度に優れた高融点金属であるタングステン線が
好ましい。ホットワイアの構造としては、メッシュ状が好ましい。メッシュ状とすること
によって、フィラメントやコイル状と比べて単位面積あたりの触媒体表面積を大きくする
ことが容易であり、装置内にセットしやすく、水平に配置した場合に高温加熱時に垂れ下
がり等の問題も生じない。
Hot wire materials include tungsten, molybdenum, tantalum, titanium, vanadium and other refractory metals, palladium, silicon, metal-attached ceramics, alumina,
Silicon carbide and the like can be raised. In particular, a tungsten wire which is a high melting point metal excellent in high temperature strength is preferable. The hot wire structure is preferably a mesh. By making it mesh, it is easy to increase the surface area of the catalyst body per unit area compared to filaments and coils, it is easy to set in the equipment, and problems such as drooping when heated horizontally when placed horizontally Does not occur.

メッシュ構造は単位面積あたりの表面積が大きいほど触媒作用による水素の分解効率は
高くなるので線径が細く単位面積当りのメッシュ数が大きいものを用いる方が好ましいが
、市販品として入手容易なものとしては、線径約0.1mm、メッシュ間隔0.85mm
(30mesh/inch)のタングステン製メッシュが例示される。触媒体と基板表面間の距離は
、特に限定されないが、メッシュの輻射熱による基板表面温度の上昇を防ぐようにするこ
とが好ましい。
The larger the surface area per unit area of the mesh structure, the higher the efficiency of hydrogen decomposition by catalysis, so it is preferable to use a thin wire diameter and a large number of meshes per unit area. Is a wire diameter of about 0.1 mm, mesh spacing 0.85 mm
A (30mesh / inch) tungsten mesh is exemplified. The distance between the catalyst body and the substrate surface is not particularly limited, but it is preferable to prevent an increase in the substrate surface temperature due to the radiant heat of the mesh.

チャンバー1内には、原料ガス供給系S1,S2、反応用水素ガス供給系S3,希釈ガ
ス、パージ用ガス供給系S4によってそれぞれのガスを導入する。排気系はロータリーポ
ンプP1と拡散ポンプP2によって構成する。反応用水素ガスはホットワイヤ触媒体の背
面から供給されてホットワイアを通過して基板側へ流れるようにする。原料ガスは触媒体
を通過させずに基板表面へ直接供給する。原料ガスを効率的に基板表面へ供給するには原
料ガス供給管の先端にノズルを取り付けることが望ましい。大面積基板に均質な(100)
配向の立方晶炭化珪素膜を成長させるには、基板の周囲をリング状に取り囲み、基板表面
に向かって多数のガス配管の孔からガスを吹き付けるような形態とすることが望ましい。
希釈ガス、パージ用ガスはチャンバー内に直接供給する。
Respective gases are introduced into the chamber 1 by the source gas supply systems S1 and S2, the reaction hydrogen gas supply system S3, the dilution gas, and the purge gas supply system S4. The exhaust system is constituted by a rotary pump P1 and a diffusion pump P2. The hydrogen gas for reaction is supplied from the back surface of the hot wire catalyst body and flows to the substrate side through the hot wire. The source gas is directly supplied to the substrate surface without passing through the catalyst body. In order to efficiently supply the source gas to the substrate surface, it is desirable to attach a nozzle to the tip of the source gas supply pipe. Homogeneous to large area substrate (100)
In order to grow an oriented cubic silicon carbide film, it is desirable to surround the substrate in a ring shape and to blow a gas from the holes of many gas pipes toward the substrate surface.
Dilution gas and purge gas are supplied directly into the chamber.

原料ガスには分子内にSi−C結合を有する有機珪素化合物を用いる。このような有機
珪素化合物としてはモノメチルシラン、ジメチルシランが適する。反応用ガスには高純度
水素を用いる。希釈ガス、パージ用ガスとしてはNガスなどを用いる。
An organic silicon compound having an Si—C bond in the molecule is used as the source gas. As such an organosilicon compound, monomethylsilane and dimethylsilane are suitable. High purity hydrogen is used as the reaction gas. N 2 gas or the like is used as the dilution gas and the purge gas.

原料ガスの供給量は水素ガス供給量の1/100〜1/500程度と少なくする。原料ガスは、基
板直上に供給するが、原料ガス供給のノズルの位置で実際の基板表面での水素と原料分子
の比は大きく変化するので特定はできないが、基板表面での水素ラジカルに対する原料分
子の比は、1/100程度以上と考えられる。
The supply amount of the source gas is reduced to about 1/100 to 1/500 of the hydrogen gas supply amount. Although the source gas is supplied directly above the substrate, the ratio of hydrogen and source molecules on the actual substrate surface varies greatly depending on the position of the source gas supply nozzle, but it cannot be specified, but source molecules for hydrogen radicals on the substrate surface are not specified. The ratio is considered to be about 1/100 or more.

チャンバー内を真空排気した後、反応時のガス圧が約400Paとなるように原料ガス、反
応ガス、希釈ガスを供給する。基板ヒータに電圧を印加し、所定の成長温度まで急速加熱
し、その後ホットワイヤ触媒体に電圧を印加し、所定の温度まで触媒体を昇温させ、膜堆
積を行う。膜堆積は、加熱した触媒体に水素ガスを吹きつけ触媒分解反応によって水素ガ
スを分解する。そして、シリコン熱酸化膜基板近傍に原料ガスを吹きつけ、同時に、触媒
体で生成した高密度の水素ラジカル(水素原子)を基板上に供給することで基板上の酸化
ケイ素膜表面での分解反応を促し、700〜800℃に設定したシリコン熱酸化膜基板上
に(100)配向の立方晶炭化珪素(3C-SiC)膜が結晶成長する。
After evacuating the chamber, source gas, reaction gas, and dilution gas are supplied so that the gas pressure during the reaction is about 400 Pa. A voltage is applied to the substrate heater to rapidly heat up to a predetermined growth temperature, and then a voltage is applied to the hot wire catalyst body to raise the temperature of the catalyst body to a predetermined temperature to perform film deposition. In film deposition, hydrogen gas is blown onto the heated catalyst body to decompose the hydrogen gas by a catalytic decomposition reaction. Then, a raw material gas is blown near the silicon thermal oxide film substrate, and at the same time, high-density hydrogen radicals (hydrogen atoms) generated by the catalyst body are supplied onto the substrate, thereby causing a decomposition reaction on the surface of the silicon oxide film on the substrate. The (100) -oriented cubic silicon carbide (3C-SiC) film grows on the silicon thermal oxide film substrate set at 700 to 800 ° C.

この時、(100)配向の立方晶炭化珪素(3C-SiC)膜が成長するには、ホットワイヤ触
媒体の表面温度とシリコン熱酸化膜基板の設定温度に狭い条件範囲があり、触媒体の表面
温度は1600℃付近で最も結晶性の良好な(100)配向の3C−SiC結晶が成長する
。図2に、触媒体の温度を変化させ基板温度750℃で作製した膜のXRDスペクトルを
示す。ほぼ膜成長の見られない触媒体の温度1000〜1200℃で作製した膜において
は当然ながら3C−SiCに関する回折ピークは見られない。触媒体の温度1400〜1
800℃で作製した膜においては2θが41.4°付近において3C−SiC(200)に関
するピークが得られた。そして、触媒体の温度が1600℃においてピーク強度は最大と
なる。1800℃を超える温度では水素ラジカルの供給密度が高すぎてエッチングが支配
的となり、1400℃未満の温度では反応を進める水素ラジカルの供給密度が不足しどち
らも結晶成長が進まない。
At this time, in order to grow a (100) -oriented cubic silicon carbide (3C-SiC) film, the surface temperature of the hot wire catalyst body and the set temperature of the silicon thermal oxide film substrate have a narrow range of conditions. When the surface temperature is around 1600 ° C., a (100) -oriented 3C—SiC crystal having the best crystallinity grows. FIG. 2 shows an XRD spectrum of a film produced at a substrate temperature of 750 ° C. by changing the temperature of the catalyst body. Naturally, no diffraction peak related to 3C—SiC is observed in a film produced at a temperature of 1000 to 1200 ° C. of a catalyst body in which almost no film growth is observed. Temperature of catalyst body 1400-1
In the film prepared at 800 ° C., a peak related to 3C—SiC (200) was obtained when 2θ was around 41.4 °. The peak intensity becomes maximum when the temperature of the catalyst body is 1600 ° C. When the temperature exceeds 1800 ° C., the supply density of hydrogen radicals is too high and etching is dominant, and when the temperature is less than 1400 ° C., the supply density of hydrogen radicals that promote the reaction is insufficient, and neither crystal growth proceeds.

さらに、図3に、各成長温度における3C−SiC(111)、(220)、(200
)に関するピークの強度を示す。950℃から成長温度を下げるにつれ、無配向の多結晶
から、(111)、(220)に関するピークが弱まり、800〜750℃で(100)
配向優位な結晶になり、さらに700℃よりも温度を下げると結晶性が見られずアモルフ
ァス膜になることがわかる。
Further, FIG. 3 shows 3C-SiC (111), (220), (200
) Shows the intensity of the peak. As the growth temperature is decreased from 950 ° C., the peaks related to (111) and (220) are weakened from non-oriented polycrystals at (100) at 800 to 750 ° C.
It can be seen that the crystals are predominantly oriented, and when the temperature is further lowered below 700 ° C., no crystallinity is observed and an amorphous film is obtained.

シリコン熱酸化膜基板の設定温度は700℃〜800℃において最も良好な3C−Si
c(100)配向結晶膜が成長するが、850℃以上では様々な結晶方位のドメインからな
るSiC膜となり無配向の多結晶となる。700℃未満ではアモルファス膜となり結晶膜
は得られない。
The best setting temperature of the silicon thermal oxide film substrate is 700C to 800C.
A c (100) -oriented crystal film grows, but at 850 ° C. or higher, it becomes a SiC film composed of domains of various crystal orientations, and becomes a non-oriented polycrystal. If it is less than 700 ° C., it becomes an amorphous film and a crystal film cannot be obtained.

図1に模式的に示すメッシュ状構造のホットワイアを用いたCVD装置を用いてシリコ
ン熱酸化膜基板上にSiC膜の成長を行った。シリコン熱酸化膜基板は、シリコン(100)
基板(n-型、ρ=100〜200Ωcm)を純酸素雰囲気中1000℃で6時間加熱して表面にS
iO膜を形成したもので膜厚はばらつきがあったが0.2〜0.3μmの範囲内であっ
た。
A SiC film was grown on the silicon thermal oxide film substrate using a CVD apparatus using a hot wire having a mesh structure schematically shown in FIG. Silicon thermal oxide substrate is silicon (100)
A substrate (n-type, ρ = 100 to 200 Ωcm) was heated at 1000 ° C. in a pure oxygen atmosphere for 6 hours to form S
The iO 2 film was formed, and the film thickness varied, but was in the range of 0.2 to 0.3 μm.

シリコン基板は純水、メタノール、アセトン、メタノール、純水の順に洗浄液を用いて
各5分間超音波洗浄して脱脂、有機物除去を行った。基板をカーボンヒータ上に置いたP
BN板上にセットした。
The silicon substrate was degreased and organic matter was removed by ultrasonic cleaning for 5 minutes each using a cleaning solution in the order of pure water, methanol, acetone, methanol, and pure water. P with substrate placed on carbon heater
It was set on a BN plate.

ホットワイア触媒体としては、メッシュ状のタングステンワイア(30mesh/inch, メッ
シュ径0.1mmφ、メッシュ面積20mm×40mm)を用い、メッシュ状触媒体と基板間の距離を8
0mmとした。メッシュ状触媒体は両側をモリブデンの板状電極で挟み、直流安定化電源を
用いて電圧を印加して加熱した。
As the hot wire catalyst body, mesh-shaped tungsten wire (30mesh / inch, mesh diameter 0.1mmφ, mesh area 20mm × 40mm) is used, and the distance between the mesh-shaped catalyst body and the substrate is 8
It was set to 0 mm. The mesh-shaped catalyst body was sandwiched between molybdenum plate electrodes, and heated by applying a voltage using a direct current stabilized power source.

真空引きの前に、チャンバー内壁に付着したガスや水分の排気を促進させるため、チャ
ンバーをチャンバー外壁のニクロム線に約50Vの電圧を印加し、100℃程度の温度で
2時間ベーキングした。また、チャンバー内の基板ホルダー部分もカーボンヒータによっ
て約100℃で2時間ベーキングした。
Before evacuation, the chamber was baked at a temperature of about 100 ° C. for 2 hours by applying a voltage of about 50 V to the nichrome wire on the outer wall of the chamber in order to accelerate the exhaust of gas and moisture adhering to the inner wall of the chamber. The substrate holder in the chamber was also baked at about 100 ° C. for 2 hours with a carbon heater.

次いで、チャンバー内を減圧して圧力1.33×10−3Pa以下となった状態でモノ
メチルシランガスの供給を開始し、圧力1.33×10−3Paに調整した。次に、水素
ガスを供給し電離真空計でモニターしながら、約2.7×10−2Pa程度になるように
水素流量を調整した。次に、カーボンヒータに電圧を印加し、750℃の成長温度まで急
速加熱した。その後触媒体に電圧を印加し、1600℃まで触媒体の温度を上昇させた。
Subsequently, supply of monomethylsilane gas was started in a state where the pressure in the chamber was reduced to 1.33 × 10 −3 Pa or less and the pressure was adjusted to 1.33 × 10 −3 Pa. Next, the hydrogen flow rate was adjusted to about 2.7 × 10 −2 Pa while supplying hydrogen gas and monitoring with an ionization vacuum gauge. Next, a voltage was applied to the carbon heater to rapidly heat it to a growth temperature of 750 ° C. Thereafter, a voltage was applied to the catalyst body to increase the temperature of the catalyst body to 1600 ° C.

1600℃に加熱したメッシュ状のタングステンワイア触媒体に水素ガスを吹きつける
ことによって生成した高密度の水素ラジカル(水素原子)を基板方向に供給した。同時に
、750℃に加熱したシリコン熱酸化膜基板近傍にモノメチルシランをノズルを用いて吹
きつけることで基板表面での水素ラジカルによる分解反応によってシリコン熱酸化膜基板
上に膜成長させた。反応時のトータルガス圧は、約0.4kPa、水素流量は100sc
cmであった。成長膜のXRDスペクトルは図2に示されている。(100)配向の立方晶
炭化珪素(3C-SiC)膜が結晶成長したことが分かる。
High-density hydrogen radicals (hydrogen atoms) generated by blowing hydrogen gas onto a mesh-like tungsten wire catalyst heated to 1600 ° C. were supplied toward the substrate. At the same time, monomethylsilane was sprayed by using a nozzle near the silicon thermal oxide film substrate heated to 750 ° C., so that the film was grown on the silicon thermal oxide film substrate by decomposition reaction with hydrogen radicals on the substrate surface. The total gas pressure during the reaction is about 0.4 kPa, and the hydrogen flow rate is 100 sc.
cm. The XRD spectrum of the grown film is shown in FIG. It can be seen that the (100) -oriented cubic silicon carbide (3C-SiC) film has grown.

本発明の方法によって、非常に簡単なプロセスでシリコン熱酸化膜基板上に(100)配
向の3C−SiC結晶膜を成長させた基板を提供できる。本発明の方法によって製造され
る基板は、従来のSi半導体デバイスよりも高い電圧や電力を低損失でコントロールする
ためのワイドバンドギャップ半導体デバイス材料として、省エネルギー化の要求が高まっ
ている電力分野、産業機器、家庭電化製品などにおいて電力損失を大幅に低減することが
可能である。さらに、電気自動車や高速情報処理などの分野においてもその実用化の促進
が期待される。
The method of the present invention can provide a substrate obtained by growing a (100) -oriented 3C—SiC crystal film on a silicon thermal oxide film substrate by a very simple process. The substrate manufactured by the method of the present invention is a wide band gap semiconductor device material for controlling a higher voltage and power with a lower loss than a conventional Si semiconductor device. It is possible to significantly reduce power loss in devices, home appliances, and the like. Furthermore, it is expected to promote the practical application in fields such as electric vehicles and high-speed information processing.

本発明の方法に用いるホットワイアCVD装置の一例を示す概略図である。It is the schematic which shows an example of the hot wire CVD apparatus used for the method of this invention. 本発明の方法において、触媒体の温度を変化させ基板温度750℃で作製した膜のXRDスペクトルを示すグラフである。It is a graph which shows the XRD spectrum of the film | membrane produced by changing the temperature of a catalyst body in the method of this invention at the substrate temperature of 750 degreeC. 本発明の方法において、各成長温度における3C−SiC(111)、(220)、(200)に関するピークの強度を示すグラフである。In the method of this invention, it is a graph which shows the intensity | strength of the peak regarding 3C-SiC (111), (220), (200) in each growth temperature.

符号の説明Explanation of symbols

1 成長チャンバー
2 基板
3 絶縁シート
4 基板ヒータ
5 ホットワイア触媒体
DESCRIPTION OF SYMBOLS 1 Growth chamber 2 Substrate 3 Insulation sheet 4 Substrate heater 5 Hot wire catalyst body

Claims (3)

水素ガスを熱分解させるホットワイア触媒体を1400〜1800℃に加熱して水素ガス
を熱分解させて水素ラジカルを生成させるとともに、分子内にSi−C結合を有する有機
珪素化合物ガスを700〜800℃に加熱したシリコン熱酸化膜基板の表面近傍に直接供
給して該水素ラジカルで分解することによってシリコン熱酸化膜表面に(100)配向の立
方晶炭化珪素膜を結晶成長させることを特徴とする(100)配向した立方晶炭化珪素結晶膜
の作製方法。
A hot wire catalyst that thermally decomposes hydrogen gas is heated to 1400 to 1800 ° C. to thermally decompose the hydrogen gas to generate hydrogen radicals, and an organosilicon compound gas having a Si—C bond in the molecule is 700 to 800. It is characterized in that a (100) oriented cubic silicon carbide film is grown on the surface of the silicon thermal oxide film by supplying directly to the vicinity of the surface of the silicon thermal oxide film heated to ℃ and decomposing with the hydrogen radicals. (100) A method for producing an oriented cubic silicon carbide crystal film.
高融点金属ワィアをメッシュ状構造とした触媒体を基板と対向して配置し、水素ガスを該
触媒体のメッシュ孔を通過させて基板方向へ流すことを特徴とする請求項1記載の立方晶
炭化珪素結晶膜の作製方法。
2. The cubic crystal according to claim 1, wherein a catalyst body having a mesh structure of refractory metal wires is disposed facing the substrate, and hydrogen gas is passed through the mesh holes of the catalyst body to flow toward the substrate. A method for producing a silicon carbide crystal film.
該有機珪素化合物ガスをノズルからシリコン熱酸化膜基板表面近傍に直接供給することを
特徴とする請求項1又は2記載の立方晶炭化珪素結晶膜の作製方法。
3. The method for producing a cubic silicon carbide crystal film according to claim 1, wherein the organosilicon compound gas is directly supplied from the nozzle to the vicinity of the surface of the silicon thermal oxide film substrate.
JP2004131933A 2004-04-27 2004-04-27 Fabricating method of cubic silicon carbide crystal film with orientation (100) Pending JP2005317670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131933A JP2005317670A (en) 2004-04-27 2004-04-27 Fabricating method of cubic silicon carbide crystal film with orientation (100)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131933A JP2005317670A (en) 2004-04-27 2004-04-27 Fabricating method of cubic silicon carbide crystal film with orientation (100)

Publications (1)

Publication Number Publication Date
JP2005317670A true JP2005317670A (en) 2005-11-10

Family

ID=35444787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131933A Pending JP2005317670A (en) 2004-04-27 2004-04-27 Fabricating method of cubic silicon carbide crystal film with orientation (100)

Country Status (1)

Country Link
JP (1) JP2005317670A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839952B1 (en) 2007-04-10 2008-06-20 울산대학교 산학협력단 Etching method of poly-crystal 3c-sic thin film
EP1983579A2 (en) * 2007-04-20 2008-10-22 SANYO Electric Techno Create Co., Ltd. Method of manufacturing semiconductor film and method of manufacturing photovoltaic element
WO2017017858A1 (en) * 2015-07-30 2017-02-02 富士電機株式会社 Sic substrate production method
US9711353B2 (en) 2015-02-13 2017-07-18 Panasonic Corporation Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas
JP2017168524A (en) * 2016-03-14 2017-09-21 株式会社東芝 Semiconductor manufacturing device
EP4190748A1 (en) * 2021-11-11 2023-06-07 OCI Company Ltd. Method of manufacturing high-purity sic crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839952B1 (en) 2007-04-10 2008-06-20 울산대학교 산학협력단 Etching method of poly-crystal 3c-sic thin film
EP1983579A2 (en) * 2007-04-20 2008-10-22 SANYO Electric Techno Create Co., Ltd. Method of manufacturing semiconductor film and method of manufacturing photovoltaic element
US8043885B2 (en) 2007-04-20 2011-10-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor film and method of manufacturing photovoltaic element
US9711353B2 (en) 2015-02-13 2017-07-18 Panasonic Corporation Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas
WO2017017858A1 (en) * 2015-07-30 2017-02-02 富士電機株式会社 Sic substrate production method
JPWO2017017858A1 (en) * 2015-07-30 2018-01-18 富士電機株式会社 Method for manufacturing SiC substrate
US10297450B2 (en) 2015-07-30 2019-05-21 Fuji Electric Co., Ltd. Manufacturing method of SiC substrate
JP2017168524A (en) * 2016-03-14 2017-09-21 株式会社東芝 Semiconductor manufacturing device
US11031212B2 (en) 2016-03-14 2021-06-08 Toshiba Electronic Devices & Storage Corporation Semiconductor manufacturing apparatus
EP4190748A1 (en) * 2021-11-11 2023-06-07 OCI Company Ltd. Method of manufacturing high-purity sic crystal

Similar Documents

Publication Publication Date Title
US5471946A (en) Method for producing a wafer with a monocrystalline silicon carbide layer
US9048092B2 (en) Process for preparing graphene based on metal film-assisted annealing and the reaction with Cl2
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
WO2013013419A1 (en) Method for preparing graphene nano belt on insulating substrate
CN108987257B (en) Growth of Ga on Si substrate by halide vapor phase epitaxy2O3Method for making thin film
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
US10686041B2 (en) Solid phase epitaxy of 3C-SiC on Si(001)
JP2005317670A (en) Fabricating method of cubic silicon carbide crystal film with orientation (100)
JP2009231574A (en) SiC SEMICONDUCTOR ELEMENT, ITS MANUFACTURING METHOD AND ITS MANUFACTURING APPARATUS
JP5399772B2 (en) Method and apparatus for producing graphite thin film
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
CN102910614A (en) Method for heterogeneous epitaxial growth of graphene
CN103572248A (en) Diamond producing method and DC plasma enhanced CVD apparatus
CN115074825B (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
JPWO2007023722A1 (en) GaxIn1-xN (0 ≦ x ≦ 1) crystal manufacturing method, GaxIn1-xN (0 ≦ x ≦ 1) crystal substrate, GaN crystal manufacturing method, GaN crystal substrate and product
JP2014027028A (en) SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE, METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
CN107244666B (en) Method for growing large-domain graphene by taking hexagonal boron nitride as point seed crystal
JP2006036613A (en) Method for forming cubic silicon carbide crystal film on silicon substrate
CN110117814A (en) The preparation method of silicon carbide epitaxy with low-density C vacancy defect
JP7400389B2 (en) Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus
CN112136203B (en) Method for manufacturing SiC epitaxial substrate
CN106757358A (en) A kind of growing method of aluminum-nitride single crystal nano-tube array
WO2012090268A1 (en) Monocrystalline silicon carbide epitaxial substrate, method for producing same, and monocrystalline sic device
CN106399967B (en) A kind of preparation method of SiC thin-film material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715