JP7400389B2 - Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus - Google Patents

Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus Download PDF

Info

Publication number
JP7400389B2
JP7400389B2 JP2019210706A JP2019210706A JP7400389B2 JP 7400389 B2 JP7400389 B2 JP 7400389B2 JP 2019210706 A JP2019210706 A JP 2019210706A JP 2019210706 A JP2019210706 A JP 2019210706A JP 7400389 B2 JP7400389 B2 JP 7400389B2
Authority
JP
Japan
Prior art keywords
silicon carbide
film
carbide polycrystalline
film forming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210706A
Other languages
Japanese (ja)
Other versions
JP2021082765A (en
Inventor
崇志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019210706A priority Critical patent/JP7400389B2/en
Publication of JP2021082765A publication Critical patent/JP2021082765A/en
Application granted granted Critical
Publication of JP7400389B2 publication Critical patent/JP7400389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、炭化珪素多結晶膜、炭化珪素多結晶膜の製造方法および炭化珪素多結晶膜の成膜装置に関する。 The present invention relates to a silicon carbide polycrystalline film, a method for manufacturing a silicon carbide polycrystalline film, and a film forming apparatus for a silicon carbide polycrystalline film.

多結晶膜の材料として用いられる炭化珪素は、珪素と炭素で構成される化合物半導体材料である。絶縁破壊電界強度が珪素の10倍であり、バンドギャップが珪素の3倍と優れているだけでなく、デバイスの作製に必要なp型、n型の制御が広い範囲で可能であること等から、珪素の限界を超えるパワーデバイス用材料として期待されている。 Silicon carbide used as a material for polycrystalline films is a compound semiconductor material composed of silicon and carbon. Not only does it have an excellent dielectric breakdown field strength that is 10 times that of silicon, and a band gap that is three times that of silicon, but it is also possible to control the p-type and n-type over a wide range, which is necessary for device fabrication. , is expected to be a material for power devices that exceeds the limits of silicon.

また、炭化珪素は、より薄い厚さでも高い耐電圧が得られるため、薄く構成することにより、ON抵抗が小さく、低損失の半導体が得られることが特徴である。 Further, since silicon carbide can obtain a high withstand voltage even with a thinner thickness, a semiconductor having a small ON resistance and a low loss can be obtained by forming the silicon carbide thinly.

しかしながら、炭化珪素半導体は、広く普及するSi半導体と比較し、大面積のウェハが得られず、製造工程も複雑であることから、Si半導体と比較して大量生産ができず、高価であった。 However, silicon carbide semiconductors cannot be mass-produced compared to Si semiconductors, which are more expensive than Si semiconductors, because large-area wafers cannot be obtained and the manufacturing process is complicated. .

そこで、炭化珪素半導体のコストを下げるため、様々な工夫が行われてきた。例えば、特許文献1には、炭化珪素基板の製造方法が開示されており、その特徴として、少なくとも、マイクロパイプの密度が30個/cm2以下の炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程を行い、その後、炭化珪素単結晶基板を薄膜化する工程を行うことで、炭化珪素多結晶基板上に炭化珪素単結晶層を形成した基板を製造することが記載されている。 Therefore, various efforts have been made to reduce the cost of silicon carbide semiconductors. For example, Patent Document 1 discloses a method for manufacturing a silicon carbide substrate, which features at least a silicon carbide single crystal substrate with a density of 30 micropipes/cm 2 or less and a silicon carbide polycrystalline substrate. It is described that a substrate in which a silicon carbide single crystal layer is formed on a silicon carbide polycrystalline substrate is manufactured by performing a step of bonding the silicon carbide single crystal substrate and then performing a step of thinning the silicon carbide single crystal substrate.

更に、特許文献1には、炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程の前に、炭化珪素単結晶基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程の後、炭化珪素単結晶基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、炭化珪素単結晶基板を薄膜化する工程を、水素イオン注入層にて機械的に剥離する工程とする炭化珪素基板の製造方法が記載されている。 Further, Patent Document 1 discloses that before the step of bonding a silicon carbide single crystal substrate and a silicon carbide polycrystalline substrate, a step of implanting hydrogen ions into the silicon carbide single crystal substrate to form a hydrogen ion implanted layer is performed. After the step of bonding the silicon carbide single crystal substrate and the silicon carbide polycrystalline substrate together, and before the step of thinning the silicon carbide single crystal substrate, heat treatment is performed at a temperature of 350° C. or lower to form the silicon carbide single crystal substrate. A method for manufacturing a silicon carbide substrate is described in which the step of thinning the film is a step of mechanically peeling off a hydrogen ion implanted layer.

このような方法により、1つの炭化珪素の単結晶のインゴットから、より多くの炭化珪素ウェハが得られるようになった。 With this method, more silicon carbide wafers can be obtained from one silicon carbide single crystal ingot.

特開2009-117533号公報JP2009-117533A

しかしながら、上記の炭化珪素ウェハの製造方法は、水素イオン注入を行って薄いイオン注入層が形成された単結晶炭化珪素基板と、多結晶炭化珪素基板と、を貼り合わせたのちに加熱して単結晶炭化珪素基板を剥離することによって製造されているので、炭化珪素ウェハは、厚さの大部分が多結晶炭化珪素基板である。このため、炭化珪素ウェハは、研磨などのハンドリングの際に損傷しないよう、機械的な強度を有するよう十分な厚さの多結晶炭化珪素の基板を使用する。そのため、多結晶炭化珪素の基板の厚さとしては、半導体として機能するために必要な厚さよりも厚いものを用いなければならない。 However, the method for manufacturing silicon carbide wafers described above involves bonding a single-crystal silicon carbide substrate on which a thin ion-implanted layer has been formed by hydrogen ion implantation to a polycrystalline silicon carbide substrate, and then heating the single-crystal silicon carbide substrate to form a thin ion-implanted layer. Because they are manufactured by exfoliating a crystalline silicon carbide substrate, the silicon carbide wafer has a polycrystalline silicon carbide substrate for the majority of its thickness. For this reason, a polycrystalline silicon carbide substrate of sufficient thickness is used for the silicon carbide wafer so that it has mechanical strength so as not to be damaged during handling such as polishing. Therefore, the thickness of the polycrystalline silicon carbide substrate must be greater than the thickness required to function as a semiconductor.

ただし、多結晶炭化珪素基板の厚さが大きくなると抵抗値が高くなる。そして、抵抗値が高いと、ON抵抗が大きくなり、本来の炭化珪素半導体の特徴が充分に発揮できなくなる。 However, as the thickness of the polycrystalline silicon carbide substrate increases, the resistance value increases. When the resistance value is high, the ON resistance becomes large, and the original characteristics of the silicon carbide semiconductor cannot be fully exhibited.

つまり、製造工程において単結晶炭化珪素基板の損傷を防ぐためには、機械的強度を有する多結晶炭化珪素基板に十分な厚みが必要であり、その一方で、得られる炭化珪素半導体のON抵抗を小さくするためには、多結晶炭化珪素基板の抵抗値が低い必要がある。 In other words, in order to prevent damage to the single-crystal silicon carbide substrate during the manufacturing process, a polycrystalline silicon carbide substrate with sufficient mechanical strength is required, while at the same time reducing the ON resistance of the resulting silicon carbide semiconductor. In order to achieve this, the resistance value of the polycrystalline silicon carbide substrate needs to be low.

多結晶炭化珪素基板の抵抗値を低下させるためには、基板中のキャリア濃度を増加させる必要があり、一般的に炭化珪素では、V族元素である窒素をドープしている。例えば、ショットキーバリアダイオード等のパワーデバイスでは、基板の縦方向に大電流が流れるため、この抵抗率は20mΩcm以下の値が求められおり、この抵抗率を満たすにためには、多結晶炭化珪素基板への窒素ドープ量としては2×1019~1×1020原子/cm3の範囲であることが必要である。 In order to lower the resistance value of a polycrystalline silicon carbide substrate, it is necessary to increase the carrier concentration in the substrate, and silicon carbide is generally doped with nitrogen, which is a group V element. For example, in power devices such as Schottky barrier diodes, a large current flows in the vertical direction of the substrate, so the resistivity is required to be 20 mΩcm or less, and to meet this resistivity, polycrystalline silicon carbide is required. The amount of nitrogen doped into the substrate needs to be in the range of 2×10 19 to 1×10 20 atoms/cm 3 .

従来この多結晶炭化珪素基板は、熱CVD法等の気相成長法により、窒素をドーパントとして加えながら、所定の厚さまで成膜することで得ていた。窒素は、炭化珪素多結晶中の炭素(C)と置換することで、炭化珪素多結晶中にドープされる。ただし、Si-Cの結合が強いため、成膜時に多くの窒素ガスを成膜装置の成膜室に導入する必要がある。 Conventionally, this polycrystalline silicon carbide substrate has been obtained by forming a film to a predetermined thickness by a vapor phase growth method such as a thermal CVD method while adding nitrogen as a dopant. Nitrogen is doped into the silicon carbide polycrystal by substituting carbon (C) in the silicon carbide polycrystal. However, since the Si--C bond is strong, it is necessary to introduce a large amount of nitrogen gas into the film-forming chamber of the film-forming apparatus during film formation.

また、炭化珪素多結晶膜を成長させる際の膜内への窒素の取り込みは、その成膜温度に依存する。例えば成膜雰囲気中の窒素分圧を同じ条件としても、成膜温度が低くなるほど、膜内に取り込まれる窒素量は増加する。しかしながら、熱CVD法による炭化珪素多結晶膜の成膜のレートは、温度の上昇とともに上昇する。炭化珪素多結晶膜は、成膜レートを考慮して、通常は1300~1400℃の高温で成膜を実施する。ただし、この温度範囲では窒素のドープ量が2×1019~1×1020原子/cm3の範囲よりも少なくなる。そのため、炭化珪素多結晶膜の成膜において、窒素の高ドープと成膜レートの両立が課題であった。 Further, the incorporation of nitrogen into the silicon carbide polycrystalline film when growing it depends on the film formation temperature. For example, even if the partial pressure of nitrogen in the film-forming atmosphere remains the same, the lower the film-forming temperature, the more the amount of nitrogen taken into the film increases. However, the rate of forming a silicon carbide polycrystalline film by thermal CVD increases as the temperature increases. A silicon carbide polycrystalline film is usually formed at a high temperature of 1300 to 1400° C. in consideration of the film formation rate. However, in this temperature range, the amount of nitrogen doped is smaller than in the range of 2×10 19 to 1×10 20 atoms/cm 3 . Therefore, in forming a silicon carbide polycrystalline film, it has been a challenge to achieve both high nitrogen doping and film formation rate.

上記の問題点に鑑み、本発明では、熱CVD法による炭化珪素多結晶膜の成膜レートを低下させること無く、窒素ドープ量の多い炭化珪素多結晶基板を容易に得ることが可能な、炭化珪素多結晶膜の製造方法、炭化珪素多結晶膜および炭化珪素多結晶膜の成膜装置を提供することにある。 In view of the above problems, the present invention provides a silicon carbide polycrystalline substrate that can easily obtain a silicon carbide polycrystalline substrate with a high nitrogen doping amount without reducing the deposition rate of a silicon carbide polycrystalline film by thermal CVD method. An object of the present invention is to provide a method for manufacturing a silicon polycrystalline film, a silicon carbide polycrystalline film, and a film forming apparatus for a silicon carbide polycrystalline film.

本発明者らは、多結晶炭化珪素基板の母材となる珪素基板もしくはカーボン基板上に炭化珪素多結晶膜を成膜する工程において、プラズマ処理された窒素を導入することで、成膜レートを低下させること無く、膜への窒素の取り込み量を増やし、炭化珪素多結晶基板中のキャリア濃度を増加させることで、電気伝導度の高い炭化珪素多結晶基板を得ることができることを見出した。 The present inventors introduced plasma-treated nitrogen in the process of forming a silicon carbide polycrystalline film on a silicon substrate or a carbon substrate, which is the base material of the polycrystalline silicon carbide substrate, thereby increasing the film formation rate. It has been discovered that a silicon carbide polycrystalline substrate with high electrical conductivity can be obtained by increasing the amount of nitrogen taken into the film and increasing the carrier concentration in the silicon carbide polycrystalline substrate without reducing the electrical conductivity.

上記課題を解決するため、本発明の炭化珪素多結晶膜の製造方法は、化学蒸着により、支持基板に平均膜厚が50μm~500μm、窒素原子濃度が2×1019個/cm3~1×1020個/cm3の炭化珪素多結晶膜を成膜する成膜工程を含み、前記成膜工程の成膜温度は、1000℃~1500℃であり、前記成膜工程のドーピングガスとして、プラズマ状態の窒素ガスを使用する。 In order to solve the above problems, the method for producing a silicon carbide polycrystalline film of the present invention uses chemical vapor deposition to deposit an average film thickness on a support substrate of 50 μm to 500 μm and a nitrogen atom concentration of 2×10 19 atoms/cm 3 to 1× It includes a film forming step of forming a silicon carbide polycrystalline film of 10 20 pieces/cm 3 , the film forming temperature in the film forming step is 1000°C to 1500°C, and plasma is used as a doping gas in the film forming step. Use standard nitrogen gas.

前記成膜工程は、窒素原子濃度が2×1019個/cm3以上の炭化珪素多結晶膜を成膜する工程であってもよい。 The film forming step may be a step of forming a silicon carbide polycrystalline film having a nitrogen atom concentration of 2×10 19 atoms/cm 3 or more.

また、上記課題を解決するために、本発明の炭化珪素多結晶膜は、平均膜厚が50μm~500μmであり、抵抗率が5~18mΩ・cmである。 Furthermore, in order to solve the above problems, the silicon carbide polycrystalline film of the present invention has an average film thickness of 50 μm to 500 μm and a resistivity of 5 to 18 mΩ·cm.

前記炭化珪素多結晶膜は、窒素原子濃度が2×1019個/cm3以上であってもよい。 The silicon carbide polycrystalline film may have a nitrogen atom concentration of 2×10 19 atoms/cm 3 or more.

また、上記課題を解決するために、本発明の炭化珪素多結晶膜の成膜装置は、炭化珪素多結晶膜を成膜する成膜室と、窒素ガスをプラズマ処理するプラズマ処理部と、前記窒素ガスを前記プラズマ処理部へ導入する第1窒素ガス導入菅と、プラズマ処理された窒素ガスを前記プラズマ処理部から前記成膜室へ導入する第2窒素ガス導入菅と、を備える。 In order to solve the above problems, the silicon carbide polycrystalline film forming apparatus of the present invention includes a film forming chamber for forming a silicon carbide polycrystalline film, a plasma processing section for plasma processing nitrogen gas, and a plasma processing section for plasma processing nitrogen gas. A first nitrogen gas introduction tube introduces nitrogen gas into the plasma processing section, and a second nitrogen gas introduction tube introduces plasma-treated nitrogen gas from the plasma processing section into the film forming chamber.

本発明によれば、熱CVD法による炭化珪素多結晶膜の成膜レートを低下させること無く、窒素ドープ量の多い炭化珪素多結晶基板を容易に得ることが可能な、炭化珪素多結晶膜の製造方法、炭化珪素多結晶膜および炭化珪素多結晶膜の成膜装置を提供することができる。 According to the present invention, a silicon carbide polycrystalline film that can easily obtain a silicon carbide polycrystalline substrate with a high nitrogen doping amount without reducing the deposition rate of a silicon carbide polycrystalline film by thermal CVD method. A manufacturing method, a silicon carbide polycrystalline film, and a silicon carbide polycrystalline film forming apparatus can be provided.

本発明の炭化珪素多結晶膜の成膜装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a silicon carbide polycrystalline film forming apparatus according to the present invention.

以下、本発明の具体的な実施形態について、図面を参照しつつ説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

[炭化珪素多結晶膜の製造方法]
本発明の炭化珪素多結晶膜の製造方法は、以下に説明する炭化珪素多結晶膜を成膜する成膜工程を含む。
[Method for manufacturing silicon carbide polycrystalline film]
The method for manufacturing a silicon carbide polycrystalline film of the present invention includes a film forming step of forming a silicon carbide polycrystalline film as described below.

〈成膜工程〉
本工程では、化学蒸着により、支持基板に平均膜厚が50μm~500μmの炭化珪素多結晶膜を成膜する。多結晶膜を成膜する対象となる支持基板としては、シリコン基板またはカーボン基板を用いることができる。また、支持基板の厚さや成膜対象面の大きさ等の形状は特に限定されず、所望の炭化珪素多結晶基板に合わせたものを用いることができる。
<Film formation process>
In this step, a polycrystalline silicon carbide film having an average thickness of 50 μm to 500 μm is formed on the support substrate by chemical vapor deposition. A silicon substrate or a carbon substrate can be used as a support substrate on which a polycrystalline film is formed. Furthermore, the thickness of the support substrate, the size of the surface to be filmed, and other shapes are not particularly limited, and any support substrate suitable for the desired polycrystalline silicon carbide substrate can be used.

化学蒸着の具体例としては、熱CVD法が挙げられる。具体的には、加熱した支持基板上に、炭化珪素多結晶膜の成分を含む原料ガスやキャリアガス等を供給し、支持基板の表面や気相での化学反応により、炭化珪素多結晶膜を堆積する方法が挙げられる。 A specific example of chemical vapor deposition is a thermal CVD method. Specifically, raw material gas, carrier gas, etc. containing the components of the silicon carbide polycrystalline film are supplied onto the heated support substrate, and the silicon carbide polycrystalline film is formed by a chemical reaction on the surface of the support substrate or in the gas phase. An example is a method of depositing.

原料ガスとしては、本発明の炭化珪素多結晶膜を成膜させることができれば、特に限定されず、一般的に炭化珪素多結晶膜の成膜に使用されるSi系原料ガス、C系原料ガスを用いることができる。例えば、Si系原料ガスとしては、シラン(SiH4)を用いることができるほか、モノクロロシラン(SiH3Cl)、ジクロロシラン(SiH2Cl2)、トリクロロシラン(SiHCl3)、テトラクロロシラン(SiCl4)などのエッチング作用があるClを含む塩素系Si原料含有ガス(クロライド系原料)を用いることができる。C系原料ガスとしては、例えば、メタン(CH4)、プロパン(C38)、アセチレン(C22)等の炭化水素を用いることができる。上記のほか、トリクロロメチルシラン(CH3Cl3Si)、トリクロロフェニルシラン(C65Cl3Si)、ジクロロメチルシラン(CH4Cl2Si)、ジクロロジメチルシラン((CH32SiCl2)、クロロトリメチルシラン((CH33SiCl)等のSiとCとを両方含むガスも、原料ガスとして用いることができる。 The raw material gas is not particularly limited as long as it can form the silicon carbide polycrystalline film of the present invention, and may include Si-based raw material gas and C-based raw material gas that are generally used to form a silicon carbide polycrystalline film. can be used. For example, as the Si-based source gas, silane (SiH 4 ) can be used, as well as monochlorosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), and tetrachlorosilane (SiCl 4 ) A chlorine-based Si raw material-containing gas (chloride-based raw material) containing Cl that has an etching effect can be used. As the C-based raw material gas, for example, hydrocarbons such as methane (CH 4 ), propane (C 3 H 8 ), acetylene (C 2 H 2 ), etc. can be used. In addition to the above, trichloromethylsilane (CH 3 Cl 3 Si), trichlorophenylsilane (C 6 H 5 Cl 3 Si), dichloromethylsilane (CH 4 Cl 2 Si), dichlorodimethylsilane ((CH 3 ) 2 SiCl 2 ), chlorotrimethylsilane ((CH 3 ) 3 SiCl), and other gases containing both Si and C can also be used as the raw material gas.

また、キャリアガスとしては、炭化珪素多結晶膜の成膜を阻害することなく、原料ガスを支持基板へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、熱伝導率に優れ、炭化ケイ素に対してエッチング作用があるH2ガスをキャリアガスとして用いることができる。また、後述するプラズマ処理された窒素ガスを、不純物ドーピングガスとして同時に供給する。 Further, as the carrier gas, a commonly used carrier gas can be used as long as it can spread the raw material gas to the supporting substrate without inhibiting the formation of the silicon carbide polycrystalline film. For example, H 2 gas, which has excellent thermal conductivity and has an etching effect on silicon carbide, can be used as the carrier gas. Further, plasma-treated nitrogen gas, which will be described later, is simultaneously supplied as an impurity doping gas.

成膜工程では、炭化珪素多結晶膜の平均膜厚が50μm~500μmとなるように成膜する。炭化珪素多結晶膜は、炭化珪素単結晶基板と張り合わせて使用し、ハンドリングの際に炭化珪素単結晶基板が損傷しないよう、機械的な強度を有するために十分な厚さであることが求められる。平均膜厚が上記範囲の炭化珪素多結晶膜であれば、機械的な強度を満足することができる。平均膜厚が50μm未満の場合には、機械的な強度が不十分となるおそれがある。また、平均膜厚が500μmあれば、機械的な強度を十分有するため、これより厚膜とすることは、製造時間や製造コストがかかってしまうおそれがある。 In the film forming process, the silicon carbide polycrystalline film is formed so that the average film thickness is 50 μm to 500 μm. The silicon carbide polycrystalline film is used in conjunction with a silicon carbide single crystal substrate, and is required to be thick enough to have mechanical strength so that the silicon carbide single crystal substrate is not damaged during handling. . A polycrystalline silicon carbide film having an average thickness within the above range can satisfy mechanical strength. If the average film thickness is less than 50 μm, the mechanical strength may be insufficient. Further, if the average film thickness is 500 μm, the film has sufficient mechanical strength, so making the film thicker than this may increase manufacturing time and manufacturing cost.

なお、平均膜厚は、例えば、炭化珪素多結晶膜を切断してSEM(走査型電子顕微鏡)等により断面観察することで測定可能である。例えば、炭化珪素多結晶膜の中央部分の1点と、両端の端部より10mm内側の2点の合計3点における炭化珪素多結晶膜の膜厚の平均を平均膜厚とすることができる。 Note that the average film thickness can be measured, for example, by cutting a silicon carbide polycrystalline film and observing the cross section using an SEM (scanning electron microscope) or the like. For example, the average thickness of the silicon carbide polycrystalline film at three points in total, one point in the center of the silicon carbide polycrystalline film and two points 10 mm inside the ends at both ends, can be taken as the average film thickness.

また、成膜工程では、炭化珪素多結晶膜の窒素原子濃度が2×1019個/cm3以上となるように成膜することが好ましい。窒素原子濃度が上記であれば、炭化珪素多結晶膜をショットキーバリアダイオード等のパワーデバイスに用いる際に、要求される抵抗率を満たすことができる。炭化珪素多結晶膜の窒素原子濃度が2×1019個/cm3~1×1020個/cm3の範囲内であれば、要求される抵抗率を、余裕を持って満たすことができる。 Further, in the film forming step, it is preferable to form the silicon carbide polycrystalline film so that the nitrogen atom concentration is 2×10 19 atoms/cm 3 or more. If the nitrogen atom concentration is above, the resistivity required can be satisfied when the silicon carbide polycrystalline film is used in a power device such as a Schottky barrier diode. If the nitrogen atom concentration of the silicon carbide polycrystalline film is within the range of 2×10 19 atoms/cm 3 to 1×10 20 atoms/cm 3 , the required resistivity can be satisfied with a margin.

(成膜温度)
成膜工程では、成膜温度を1000℃~1500℃とする。この範囲の温度での成膜であれば、膜厚を制御しつつ、十分に早い成膜レートで炭化珪素多結晶膜を成膜することができる。
(Film forming temperature)
In the film forming process, the film forming temperature is set at 1000°C to 1500°C. If the film is formed at a temperature within this range, the silicon carbide polycrystalline film can be formed at a sufficiently fast film formation rate while controlling the film thickness.

成膜温度が1000℃より低くなると、著しく全体の成膜レートが低下し、生産性の上で効率が低下するおそれがある。また、成膜温度が1500℃を超えると、成膜レートは上がるものの、炭化珪素多結晶膜の膜厚の制御性能が低下して膜厚がばらつくおそれがある。なお、支持基板としてシリコン基板を用いる場合には、シリコン基板が加熱されることによる変形を抑えるため、成膜の際の最高温度を1350℃以下に設定することが好ましい。 If the film forming temperature is lower than 1000° C., the overall film forming rate will drop significantly, and there is a possibility that efficiency in terms of productivity will drop. Furthermore, if the film forming temperature exceeds 1500° C., although the film forming rate increases, the control performance of the film thickness of the silicon carbide polycrystalline film may deteriorate and the film thickness may vary. Note that when a silicon substrate is used as the support substrate, the maximum temperature during film formation is preferably set to 1350° C. or lower in order to suppress deformation of the silicon substrate due to heating.

(プラズマ状態の窒素ガス)
成膜工程では、ドーピングガスとしてプラズマ状態の窒素ガスを使用する。これにより、炭化珪素多結晶膜の窒素原子濃度を2×1019個/cm3~1×1020個/cm3とすることができる。
(Nitrogen gas in plasma state)
In the film forming process, nitrogen gas in a plasma state is used as a doping gas. Thereby, the nitrogen atom concentration of the silicon carbide polycrystalline film can be set to 2×10 19 atoms/cm 3 to 1×10 20 atoms/cm 3 .

窒素ガスに大きなエネルギーを与えることで、原子の回りを回っている電子が飛び出し、電子が少なくなった窒素原子は不安定で活発な状態、すなわちプラズマ状態となる。プラズマ状態の窒素原子は、安定な状態に戻ろうとして周囲の物質と化学反応を起こす性質がある。本発明では、この性質を利用して、炭化珪素多結晶中への窒素のドープ量を増やすことができる。 By applying a large amount of energy to nitrogen gas, the electrons orbiting the atoms fly out, and the nitrogen atoms, which have fewer electrons, enter an unstable and active state, that is, a plasma state. Nitrogen atoms in a plasma state tend to cause chemical reactions with surrounding substances in an attempt to return to a stable state. In the present invention, by utilizing this property, it is possible to increase the amount of nitrogen doped into silicon carbide polycrystal.

プラズマ状態の窒素ガスを得るための、窒素ガスのプラズマ処理方法は、プラズマの元となる窒素原子に大きな電気エネルギーやマイクロ波を与えてプラズマ状態とすることができる方法であれば、特に限定されない。例えば、直流電圧を与えて継続的にプラズマを発生させ、数千~数万度の高温になる熱プラズマと、パルス電源により、プラズマガスの温度上昇を抑えた低温プラズマが挙げられる。本発明では、炭化珪素多結晶膜の成膜温度が1000℃~1500℃であることから、高温になりすぎる熱プラズマを用いることができるが、低温プラズマの方が、取り扱いが容易である。 The plasma treatment method for nitrogen gas to obtain nitrogen gas in a plasma state is not particularly limited as long as it is a method that can give large electrical energy or microwaves to nitrogen atoms, which are the source of plasma, and bring them into a plasma state. . Examples include thermal plasma in which plasma is continuously generated by applying a direct current voltage and reaches a high temperature of several thousand to tens of thousands of degrees, and low-temperature plasma in which the temperature rise of plasma gas is suppressed by a pulsed power source. In the present invention, since the silicon carbide polycrystalline film is formed at a temperature of 1000° C. to 1500° C., it is possible to use thermal plasma that is too high in temperature, but low-temperature plasma is easier to handle.

〈その他の工程〉
本発明の炭化珪素多結晶膜の製造方法は、成膜工程に加え、更なる工程を含むことができる。例えば、支持基板を成膜装置の成膜室に載置する載置工程や、載置工程と成膜工程との間に支持基板を所定温度に加熱する加熱工程や、化学蒸着前の支持基板に、成膜を阻害するような何らかの反応が生じないよう、支持基板を不活性雰囲気下とするべく、アルゴン等の不活性ガスを流通させる工程等が挙げられる。
<Other processes>
The method for manufacturing a silicon carbide polycrystalline film of the present invention can include further steps in addition to the film forming step. For example, a mounting process in which the supporting substrate is placed in the film forming chamber of a film forming apparatus, a heating process in which the supporting substrate is heated to a predetermined temperature between the mounting process and the film forming process, and a supporting substrate before chemical vapor deposition. Another example is a step of flowing an inert gas such as argon in order to place the support substrate under an inert atmosphere so that any reaction that would inhibit film formation does not occur.

[炭化珪素多結晶膜]
上記した本発明の炭化珪素多結晶膜の製造方法により、平均膜厚が50μm~500μmであり、抵抗率が5~18mΩ・cmである、炭化珪素多結晶膜を得ることができる。この炭化珪素多結晶膜は、一般的な膜厚を有しつつ、従来の炭化珪素多結晶膜よりも窒素原子濃度が多く、かつ抵抗率が低いため、ショットキーバリアダイオード等のパワーデバイス等に有用な膜である。
[Silicon carbide polycrystalline film]
By the method for manufacturing a silicon carbide polycrystalline film of the present invention described above, a silicon carbide polycrystalline film having an average thickness of 50 μm to 500 μm and a resistivity of 5 to 18 mΩ·cm can be obtained. Although this silicon carbide polycrystalline film has a typical thickness, it has a higher nitrogen atom concentration and lower resistivity than conventional silicon carbide polycrystalline films, so it is used in power devices such as Schottky barrier diodes. It is a useful membrane.

また、炭化珪素多結晶膜の窒素原子濃度が2×1019個/cm3以上であれば、炭化珪素多結晶膜をショットキーバリアダイオード等のパワーデバイスに用いる際に、要求される抵抗率を満たすことができる。さらに、炭化珪素多結晶膜の窒素原子濃度が2×1019個/cm3~1×1020個/cm3の範囲内であれば、要求される抵抗率を、余裕を持って満たすことができる。 In addition, if the nitrogen atom concentration of the silicon carbide polycrystalline film is 2×10 19 atoms/cm 3 or more, the resistivity required when using the silicon carbide polycrystalline film for power devices such as Schottky barrier diodes can be achieved. can be met. Furthermore, if the nitrogen atom concentration of the silicon carbide polycrystalline film is within the range of 2×10 19 atoms/cm 3 to 1×10 20 atoms/cm 3 , the required resistivity can be easily met. can.

[炭化珪素多結晶膜の成膜装置]
上記した本発明の炭化珪素多結晶膜の製造方法に用いることのできる炭化珪素多結晶膜の成膜装置について、その一実施形態として図1に示す炭化珪素多結晶膜の成膜装置1000について、説明する。
[Silicon carbide polycrystalline film deposition equipment]
Regarding the silicon carbide polycrystalline film forming apparatus 1000 shown in FIG. 1 as one embodiment of the silicon carbide polycrystalline film forming apparatus that can be used in the above-described silicon carbide polycrystalline film manufacturing method of the present invention, explain.

成膜装置1000は、熱CVD法によって、支持基板100に炭化珪素多結晶膜を成膜するために用いることができる装置である。成膜装置1000は、成膜装置1000の外装となる筐体1100と、支持基板100に炭化珪素多結晶膜を成膜させる成膜室1010と、成膜室1010より排出された原料ガスやキャリアガス等を後述のガス排出口1030へ導入する排出ガス導入室1040と、排出ガス導入室1040を覆うボックス1050と、ボックス1050の外部より成膜室1010内を加温する、カーボン製のヒーター1060と、成膜室1010の下部に設けられ、原料ガスやキャリアガス等を成膜装置の外へ排出するガス排出口1030と、支持基板100を保持する基板ホルダー1070を備える。また、基板ホルダー1070は、2つの柱1071と、支持基板100を水平に載置する、柱1071に設けられた載置部1072を備える。 Film forming apparatus 1000 is an apparatus that can be used to form a silicon carbide polycrystalline film on support substrate 100 by thermal CVD. The film forming apparatus 1000 includes a casing 1100 serving as an exterior of the film forming apparatus 1000, a film forming chamber 1010 for forming a silicon carbide polycrystalline film on a support substrate 100, and a source gas and carrier discharged from the film forming chamber 1010. An exhaust gas introduction chamber 1040 that introduces gas etc. to a gas exhaust port 1030 (described later), a box 1050 that covers the exhaust gas introduction chamber 1040, and a carbon heater 1060 that heats the inside of the film forming chamber 1010 from the outside of the box 1050. A gas exhaust port 1030 that is provided at the bottom of the film forming chamber 1010 and discharges source gas, carrier gas, etc. to the outside of the film forming apparatus, and a substrate holder 1070 that holds the support substrate 100 are provided. Further, the substrate holder 1070 includes two pillars 1071 and a mounting section 1072 provided on the pillars 1071 on which the support substrate 100 is horizontally mounted.

また、成膜装置1000は、成膜室1010へキャリアガスに同伴されたSi系原料ガスを導入するSi系原料ガス導入菅200と、成膜室1010へキャリアガスに同伴されたC系原料ガスを導入するC系原料ガス導入菅300とを備える。 The film forming apparatus 1000 also includes a Si-based source gas introduction pipe 200 that introduces a Si-based source gas accompanied by a carrier gas into the film-forming chamber 1010, and a C-based source gas introduced into the film-forming chamber 1010 along with a carrier gas. and a C-based raw material gas introduction pipe 300 for introducing C-based raw material gas.

さらに、成膜装置1000は、窒素ガスをプラズマ処理するプラズマ処理部400と、窒素ガスを外部からプラズマ処理部400へ導入する第1窒素ガス導入菅500と、プラズマ処理された窒素ガスをプラズマ処理部400から成膜室1010へ導入する第2窒素ガス導入菅600を備える。プラズマ処理後の窒素ガスが流れる第2窒素ガス導入菅600は、プラズマ状態の窒素を成膜室1010内へ送れるように、プラズマ状態の窒素と反応しない素材の菅であることが重要である。このような素材としては、テフロン(登録商標)系のフッ化樹脂、アルミナ等が挙げられる。第2窒素ガス導入菅600は、高温領域での使用となるため、耐熱性のあるアルミナ製の配管であることが好ましい。 Further, the film forming apparatus 1000 includes a plasma processing section 400 for plasma processing nitrogen gas, a first nitrogen gas introduction tube 500 for introducing nitrogen gas from the outside into the plasma processing section 400, and a plasma processing section 500 for introducing nitrogen gas into the plasma processing section 400 from the outside. A second nitrogen gas introduction pipe 600 is provided for introducing nitrogen gas from the section 400 into the film forming chamber 1010. It is important that the second nitrogen gas introducing tube 600 through which nitrogen gas flows after plasma processing is made of a material that does not react with nitrogen in a plasma state so that nitrogen in a plasma state can be sent into the deposition chamber 1010. Examples of such materials include Teflon (registered trademark)-based fluororesin, alumina, and the like. Since the second nitrogen gas introduction pipe 600 is used in a high temperature region, it is preferably a heat-resistant alumina pipe.

〈プラズマ処理部400〉
プラズマ処理部400としては、窒素ガスをプラズマ状態にできれば、特に限定されず、高周波誘導熱プラズマ装置や低温プラズマ装置等、種々のプラズマ処理装置を備えることができる。
<Plasma processing section 400>
The plasma processing unit 400 is not particularly limited as long as nitrogen gas can be turned into a plasma state, and various plasma processing devices such as a high-frequency induction thermal plasma device and a low-temperature plasma device can be provided.

特に、成膜装置1000のプラズマ処理部としての取り扱いの容易性の観点から、高温とならない低温プラズマ装置を備えることが好ましく、さらに低温プラズマ装置のようにプラズマ装置内を真空状態とする等の、大掛かりな設備を必要としない、製造ライン中にも容易に組み込むことのできる大気圧低温プラズマ装置を備えることが好ましい。 In particular, from the viewpoint of ease of handling as a plasma processing section of the film forming apparatus 1000, it is preferable to include a low-temperature plasma device that does not reach high temperatures. It is preferable to provide an atmospheric pressure low temperature plasma device that does not require large-scale equipment and can be easily incorporated into a production line.

さらに、大気圧低温プラズマ装置には、向かい合った2枚の電極間に高電圧をかけ、処理用ガスを送り込むことで発生したプラズマガス中に処理対象素材を通過させる方式、または導電性の処理対象素材を電極の片側として利用し、電極と素材間にプラズマを発生させる方式であるダイレクト方式の装置と、プラズマ発生用電極ユニットを窒素ガス通路内に設け、窒素ガスを高速で通過させることで、プラズマにより活性化したガスを放出する方式であるジェット方式の装置が挙げられる。 Furthermore, atmospheric pressure low-temperature plasma equipment has a method in which the material to be processed passes through the plasma gas generated by applying a high voltage between two facing electrodes and feeding a processing gas, or a method in which the material to be processed passes through the plasma gas generated by applying a high voltage between two facing electrodes, or A direct method device uses the material as one side of the electrode to generate plasma between the electrode and the material, and the plasma generation electrode unit is installed in the nitrogen gas passage, allowing nitrogen gas to pass through at high speed. An example is a jet type device that emits gas activated by plasma.

本発明では、ジェット方式によりプラズマ発生用電極ユニットに窒素ガスを通過させて、窒素ガスをプラズマ状態に処理することが好ましい。例えば、幅が10mmの高圧電極とアース電極が1.5mmの間隔で対向して配されている電極ユニットに10KVの交流電圧を印可し、電極ユニットに5L/分の流量で窒素ガスを通過させることにより、プラズマ状態のラジカルな窒素を得ることができる。このようなプラズマ処理であれば、プラズマ状態の窒素ガスの温度は150℃以下となる。 In the present invention, it is preferable to process the nitrogen gas into a plasma state by passing the nitrogen gas through the plasma generation electrode unit using a jet method. For example, an AC voltage of 10 KV is applied to an electrode unit in which a high voltage electrode with a width of 10 mm and a ground electrode are arranged facing each other with an interval of 1.5 mm, and nitrogen gas is passed through the electrode unit at a flow rate of 5 L/min. By this, radical nitrogen in a plasma state can be obtained. In such plasma processing, the temperature of nitrogen gas in a plasma state is 150° C. or lower.

なお、プラズマ処理部400は、成膜室1010とできる限り近づけて、第2窒素ガス導入菅600の長さを短くすることが好ましい。これにより、プラズマ状態の窒素ガスが成膜室1010へ導入される前に周囲の物質と化学反応することを抑制することができる。例えば、第2窒素ガス導入菅600は、内径が5mm~10mm程度とし、長さを50cm以下とすれば、プラズマ状態の窒素ガスの大部分がその状態を維持したまま、成膜室1010へ導入される。 Note that it is preferable that the plasma processing section 400 be placed as close as possible to the film forming chamber 1010 so that the length of the second nitrogen gas introduction tube 600 is shortened. This makes it possible to prevent nitrogen gas in a plasma state from chemically reacting with surrounding substances before it is introduced into the film forming chamber 1010. For example, if the second nitrogen gas introduction tube 600 has an inner diameter of about 5 mm to 10 mm and a length of 50 cm or less, most of the nitrogen gas in the plasma state will be introduced into the film forming chamber 1010 while maintaining that state. be done.

次に、成膜装置1000を用いて、化学的気相成長法により、支持基板100上に炭化ケイ素多結晶膜を成膜させる手順の一例を説明する。 Next, an example of a procedure for forming a silicon carbide polycrystalline film on support substrate 100 by chemical vapor deposition using film forming apparatus 1000 will be described.

まず、支持基板100を載置部1072に載置し、減圧状態で、Ar等の不活性ガス雰囲気下で、成膜の反応温度まで、ヒーター1060により支持基板100を加熱する。成膜の反応温度まで達したら、不活性ガスの供給を止めて、温度を維持して、成膜室1010内に炭化珪素多結晶膜の成分を含む原料ガスやキャリアガス、プラズマ状態の窒素ガスを供給する。支持基板100の成膜対象面や気相での化学反応により、加熱した支持基板100の両面に炭化珪素多結晶膜を成膜させることができる。その後、室温まで冷却することで、支持基板100に炭化珪素多結晶膜が成膜された、積層体が得られる。 First, the support substrate 100 is placed on the mounting part 1072, and the support substrate 100 is heated by the heater 1060 under reduced pressure in an inert gas atmosphere such as Ar to the reaction temperature for film formation. When the reaction temperature for film formation is reached, the supply of inert gas is stopped, the temperature is maintained, and the source gas containing the components of the silicon carbide polycrystalline film, carrier gas, and nitrogen gas in a plasma state are introduced into the film formation chamber 1010. supply. A silicon carbide polycrystalline film can be formed on both surfaces of the heated support substrate 100 by a chemical reaction in the film formation target surface of the support substrate 100 or in the gas phase. Thereafter, by cooling to room temperature, a laminate in which a silicon carbide polycrystalline film is formed on support substrate 100 is obtained.

なお、Si系原料ガスとC系原料ガスは、混合ガスとして1つの導入菅によって成膜室1010へ導入してもよい。ただし、プラズマ状態の窒素ガスは、Si系原料ガス、C系原料ガスおよびキャリアガスとは別で成膜室1010へ導入することが好ましい。成膜室1010へ導入される前に、プラズマ状態の窒素ガスと、Si系原料ガス、C系原料ガスまたはキャリアガスを予め混合してしまうと、プラズマ状態の窒素ガスが原料ガス等と化学反応してしまい。十分な量のプラズマ状態の窒素ガスが成膜室1010へ導入されないおそれがあるからである。 Note that the Si-based source gas and the C-based source gas may be introduced into the film forming chamber 1010 as a mixed gas through one introduction tube. However, it is preferable that nitrogen gas in a plasma state be introduced into the film forming chamber 1010 separately from the Si-based source gas, C-based source gas, and carrier gas. If nitrogen gas in a plasma state is mixed with a Si-based source gas, a C-based source gas, or a carrier gas before being introduced into the film forming chamber 1010, the nitrogen gas in a plasma state will chemically react with the source gas, etc. I did it. This is because a sufficient amount of nitrogen gas in a plasma state may not be introduced into the film forming chamber 1010.

以下、実施例に基づいて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on Examples. However, the present invention is not limited to the contents of the following examples.

[実施例1]
(炭化珪素多結晶基板の製造)
直径150mmの支持基板を成膜装置1000の成膜室1010にある基板ホルダーに設置し、成膜室1010内へArガスを流入させながら排気ポンプにより炉内を22kPaに減圧化した後、1400℃まで加熱し、1400℃に達した後Arガスの供給を停止した。その後、原料ガスとして、SiCl4、CH4を用い、ドーピングガスとしてプラズマ状態の窒素ガス、キャリアガスとしてH2を用い、それぞれのガスをSi系原料ガス導入菅200、C系原料ガス導入菅300、第2窒素ガス導入菅600より成膜室1010へ導入することにより、炭化珪素多結晶膜の成膜を10時間実施した。
[Example 1]
(Manufacture of silicon carbide polycrystalline substrate)
A supporting substrate with a diameter of 150 mm was placed on a substrate holder in the film forming chamber 1010 of the film forming apparatus 1000, and the pressure inside the furnace was reduced to 22 kPa using an exhaust pump while Ar gas was flowing into the film forming chamber 1010, and then the temperature was increased to 1400°C. After the temperature reached 1400° C., the supply of Ar gas was stopped. Thereafter, SiCl 4 and CH 4 are used as source gases, nitrogen gas in a plasma state is used as a doping gas, and H 2 is used as a carrier gas. A silicon carbide polycrystalline film was formed for 10 hours by introducing nitrogen gas into the film forming chamber 1010 through the second nitrogen gas introduction pipe 600.

なお、プラズマ処理部400としては、幅が10mmの高圧電極とアース電極が1.5mmの間隔で対向して配されている電極ユニットを備えるジェット方式のプラズマ発生装置(株式会社アクア製 SPJ-X01HP)を使用した。電極ユニットに10KVの交流電圧を印可し、電極ユニットに5L/分の流量で窒素ガスを通過させて、温度150℃のプラズマ状態の窒素ガスを成膜室1010へ導入した。 The plasma processing unit 400 is a jet-type plasma generator (SPJ-X01HP manufactured by Aqua Co., Ltd.) equipped with an electrode unit in which a high-voltage electrode with a width of 10 mm and a ground electrode are arranged facing each other with an interval of 1.5 mm. )It was used. An AC voltage of 10 KV was applied to the electrode unit, nitrogen gas was passed through the electrode unit at a flow rate of 5 L/min, and nitrogen gas in a plasma state at a temperature of 150° C. was introduced into the film forming chamber 1010.

表1に、実施例1の成膜工程における成膜室1010内の温度および圧力、各ガスの導入量、成膜時間を示す。 Table 1 shows the temperature and pressure inside the film forming chamber 1010, the amount of each gas introduced, and the film forming time in the film forming process of Example 1.

Figure 0007400389000001
Figure 0007400389000001

(平均膜厚の測定)
得られた炭化珪素多結晶膜を切断してSEMにより断面観察し、炭化珪素多結晶膜の中央部分の1点と、両端の端部より10mm内側の2点の合計3点における炭化珪素多結晶膜の膜厚の平均を算出し、これを平均膜厚とした。なお、炭化珪素多結晶膜は支持基板100の両面に成膜されるが、平均膜厚は支持基板100の片面に成膜した膜についてのものである。
(Measurement of average film thickness)
The obtained silicon carbide polycrystalline film was cut and the cross section was observed using SEM, and silicon carbide polycrystalline film was observed at three points in total: one point in the center of the silicon carbide polycrystalline film and two points 10 mm inside from both ends. The average film thickness of the film was calculated, and this was taken as the average film thickness. Note that although the silicon carbide polycrystalline film is formed on both sides of support substrate 100, the average film thickness is for the film formed on one side of support substrate 100.

(窒素ドープ量の測定)
二次イオン質量分析装置を使用し、炭化珪素多結晶膜中の窒素原子濃度を測定した。
(Measurement of nitrogen doping amount)
The nitrogen atom concentration in the silicon carbide polycrystalline film was measured using a secondary ion mass spectrometer.

(抵抗率の測定)
炭化珪素多結晶膜の抵抗率を、JIS R1637に基づいて測定した。
(Measurement of resistivity)
The resistivity of the silicon carbide polycrystalline film was measured based on JIS R1637.

[実施例2]
窒素導入量を2500sccmとした他は、実施例1と同じ条件により炭化珪素多結晶基板を製造し、膜厚、窒素ドープ量および抵抗率を測定した。
[Example 2]
A silicon carbide polycrystalline substrate was manufactured under the same conditions as in Example 1, except that the amount of nitrogen introduced was 2500 sccm, and the film thickness, nitrogen doping amount, and resistivity were measured.

[実施例3]
窒素導入量を12500sccmとした他は、実施例1と同じ条件により炭化珪素多結晶基板を製造し、膜厚、窒素ドープ量および抵抗率を測定した。
[Example 3]
A silicon carbide polycrystalline substrate was manufactured under the same conditions as in Example 1, except that the amount of nitrogen introduced was 12,500 sccm, and the film thickness, nitrogen doping amount, and resistivity were measured.

[従来例1]
窒素ガスをプラズマ処理せずにドーピングガスとして使用して成膜した他は、実施例1と同じ条件により炭化珪素多結晶基板を製造し、膜厚、窒素ドープ量および抵抗率を測定した。
[Conventional example 1]
A silicon carbide polycrystalline substrate was manufactured under the same conditions as in Example 1, except that the film was formed using nitrogen gas as a doping gas without plasma treatment, and the film thickness, nitrogen doping amount, and resistivity were measured.

実施例1~3および従来例1の条件で製造した炭化珪素多結晶基板の膜厚、窒素ドープ量および抵抗率の測定結果について、表2に示す。 Table 2 shows the measurement results of the film thickness, nitrogen doping amount, and resistivity of the silicon carbide polycrystalline substrates manufactured under the conditions of Examples 1 to 3 and Conventional Example 1.

Figure 0007400389000002
Figure 0007400389000002

表2の結果より、実施例1~3および従来例1のいずれも、平均膜厚は同じであり、成膜工程の時間も同じであったことから、実施例1~3は従来例1と同様の成膜レートを維持した。その一方で、窒素ガスをプラズマ処理して得られた実施例1~3の炭化珪素多結晶膜は、プラズマ処理をしなかった従来例1の炭化珪素多結晶膜と比較して、窒素ドープ量が多くなり、抵抗率が低くなる結果となった。 From the results in Table 2, Examples 1 to 3 and Conventional Example 1 had the same average film thickness and the same film forming process time, so Examples 1 to 3 were the same as Conventional Example 1. Similar deposition rates were maintained. On the other hand, the silicon carbide polycrystalline films of Examples 1 to 3 obtained by plasma treatment of nitrogen gas have a higher nitrogen doping amount than the silicon carbide polycrystalline film of Conventional Example 1 which was not subjected to plasma treatment. This resulted in an increase in resistivity and a decrease in resistivity.

[まとめ]
以上のとおり、本発明に従えば、多結晶炭化珪素基板の支持基板となるシリコン基板もしくはカーボン基板上に炭化珪素多結晶膜を成膜する工程において、プラズマ処理された窒素を導入することで、成膜レートを低下させること無く、炭化珪素多結晶膜への窒素の取り込み量を増やし、炭化珪素多結晶基板中のキャリア濃度を増加させて、炭化珪素多結晶基板の電気伝導度の高い基板を得ることが可能となる。したがって、炭化珪素多結晶基板を工業的に製造する技術として有用性が期待される。
[summary]
As described above, according to the present invention, by introducing plasma-treated nitrogen in the step of forming a silicon carbide polycrystalline film on a silicon substrate or a carbon substrate that serves as a support substrate for a polycrystalline silicon carbide substrate, By increasing the amount of nitrogen taken into the silicon carbide polycrystalline film and increasing the carrier concentration in the silicon carbide polycrystalline substrate without reducing the film formation rate, the silicon carbide polycrystalline substrate has a high electrical conductivity. It becomes possible to obtain. Therefore, it is expected to be useful as a technique for industrially manufacturing silicon carbide polycrystalline substrates.

100 支持基板
200 Si系原料ガス導入菅
300 C系原料ガス導入菅
400 プラズマ処理部
500 第1窒素ガス導入菅
600 第2窒素ガス導入菅
1000 成膜装置
1010 成膜室
1030 ガス排出口
1040 排出ガス導入室
1050 ボックス
1060 ヒーター
1070 基板ホルダー
1071 柱
1072 載置部
1100 筐体
100 Support substrate 200 Si-based raw material gas introduction pipe 300 C-based raw material gas introduction pipe 400 Plasma processing section 500 First nitrogen gas introduction pipe 600 Second nitrogen gas introduction pipe 1000 Film forming apparatus 1010 Film forming chamber 1030 Gas outlet 1040 Exhaust gas Introduction chamber 1050 Box 1060 Heater 1070 Substrate holder 1071 Pillar 1072 Placement section 1100 Housing

Claims (3)

化学蒸着により、支持基板に平均膜厚が50μm~500μmの炭化珪素多結晶膜を成膜する成膜工程を含み、
前記成膜工程の成膜温度は、1000℃~1500℃であり、
前記成膜工程のドーピングガスとして、プラズマ状態の窒素ガスを使用する、
炭化珪素多結晶膜の製造方法。
A film forming step of forming a silicon carbide polycrystalline film with an average film thickness of 50 μm to 500 μm on a supporting substrate by chemical vapor deposition,
The film forming temperature in the film forming step is 1000°C to 1500°C,
using nitrogen gas in a plasma state as a doping gas in the film forming process;
A method for manufacturing a silicon carbide polycrystalline film.
前記成膜工程は、窒素原子濃度が2×1019個/cm以上の炭化珪素多結晶膜を成膜する工程である、請求項1に記載の炭化珪素多結晶膜の製造方法。 2. The method of manufacturing a silicon carbide polycrystalline film according to claim 1, wherein the film forming step is a step of forming a silicon carbide polycrystalline film having a nitrogen atom concentration of 2×10 19 atoms/cm 3 or more. 炭化珪素多結晶膜を成膜する成膜室と、
窒素ガスをプラズマ処理するプラズマ処理部と、
前記窒素ガスを前記プラズマ処理部へ導入する第1窒素ガス導入管と、
プラズマ処理された窒素ガスを前記プラズマ処理部から前記成膜室へ導入する第2窒素ガス導入管と、
成膜温度を1000℃~1500℃とする加熱手段と、
前記成膜室へキャリアガスに同伴されたSi系原料ガスを導入するSi系原料ガス導入と、
前記成膜室へキャリアガスに同伴されたC系原料ガスを導入するC系原料ガス導入と、
を備える、炭化珪素多結晶膜の成膜装置。
a deposition chamber for depositing a silicon carbide polycrystalline film;
a plasma processing unit that processes nitrogen gas with plasma;
a first nitrogen gas introduction pipe for introducing the nitrogen gas into the plasma processing section;
a second nitrogen gas introduction pipe for introducing plasma-treated nitrogen gas from the plasma processing section to the film forming chamber;
a heating means for setting the film-forming temperature to 1000°C to 1500°C;
a Si-based raw material gas introduction pipe for introducing a Si-based raw material gas accompanied by a carrier gas into the film forming chamber;
a C-based raw material gas introduction pipe for introducing a C-based raw material gas accompanied by a carrier gas into the film forming chamber;
A silicon carbide polycrystalline film forming apparatus comprising:
JP2019210706A 2019-11-21 2019-11-21 Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus Active JP7400389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210706A JP7400389B2 (en) 2019-11-21 2019-11-21 Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210706A JP7400389B2 (en) 2019-11-21 2019-11-21 Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus

Publications (2)

Publication Number Publication Date
JP2021082765A JP2021082765A (en) 2021-05-27
JP7400389B2 true JP7400389B2 (en) 2023-12-19

Family

ID=75966050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210706A Active JP7400389B2 (en) 2019-11-21 2019-11-21 Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus

Country Status (1)

Country Link
JP (1) JP7400389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7504311B1 (en) 2022-07-26 2024-06-21 東海カーボン株式会社 Polycrystalline SiC compact and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332492A (en) 2000-05-19 2001-11-30 Sony Corp Silicon carbide thin film structure, method of manufacturing the same, and thin film transistor
US20030036471A1 (en) 2000-02-24 2003-02-20 Shipley Company, L.L.C. Low resistivity silicon carbide
JP2003282451A (en) 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology METHOD OF FORMATION SiC MONOCRYSTALLINE THIN FILM
JP2007294740A (en) 2006-04-26 2007-11-08 Nissan Motor Co Ltd Semiconductor device
KR100978711B1 (en) 2008-07-25 2010-08-30 울산대학교 산학협력단 Growth of polycrystalline 3C-SiC thin films by in-situ doping
JP2013219161A (en) 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
JP2018014372A (en) 2016-07-19 2018-01-25 株式会社サイコックス Semiconductor substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967625A (en) * 1983-03-23 1984-04-17 Shunpei Yamazaki Semiconductor
JP3035337B2 (en) * 1990-11-27 2000-04-24 株式会社日立製作所 Plasma coating equipment
JPH06224140A (en) * 1992-10-27 1994-08-12 Tonen Corp Manufacture of silicon laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030036471A1 (en) 2000-02-24 2003-02-20 Shipley Company, L.L.C. Low resistivity silicon carbide
JP2001332492A (en) 2000-05-19 2001-11-30 Sony Corp Silicon carbide thin film structure, method of manufacturing the same, and thin film transistor
JP2003282451A (en) 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology METHOD OF FORMATION SiC MONOCRYSTALLINE THIN FILM
JP2007294740A (en) 2006-04-26 2007-11-08 Nissan Motor Co Ltd Semiconductor device
KR100978711B1 (en) 2008-07-25 2010-08-30 울산대학교 산학협력단 Growth of polycrystalline 3C-SiC thin films by in-situ doping
JP2013219161A (en) 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
JP2018014372A (en) 2016-07-19 2018-01-25 株式会社サイコックス Semiconductor substrate

Also Published As

Publication number Publication date
JP2021082765A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
TWI438839B (en) Passivation layer formation by plasma clean process to reduce native oxide growth
TWI520216B (en) Oxide etch with nh3-nf3 chemistry
US5834371A (en) Method and apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
TW200830942A (en) Contamination reducing liner for inductively coupled chamber
CN110731002B (en) Nitride semiconductor laminate, semiconductor device, method for producing nitride semiconductor laminate, method for producing nitride semiconductor self-supporting substrate, and method for producing semiconductor device
WO2000044033A1 (en) Method and apparatus for film deposition
JP2009545165A (en) Method and system for manufacturing polycrystalline silicon and silicon-germanium solar cells
WO2008096884A1 (en) N-type conductive aluminum nitride semiconductor crystal and method for producing the same
JP2005005280A (en) Method for passivating semiconductor substrate
US10000850B2 (en) Deposition method and method of manufacturing a catalyst wire for a catalytic chemical vapor deposition apparatus
US10370775B2 (en) Silicon carbide epitaxial wafer manufacturing method, silicon carbide semiconductor device manufacturing method and silicon carbide epitaxial wafer manufacturing apparatus
JP7400389B2 (en) Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus
CN110998791B (en) Method for depositing semiconductor film
US20090239085A1 (en) SiC SEMICONDUCTOR ELEMENT, METHOD OF MANUFACTURING THE SAME, AND MANUFACTURING APPARATUS THEREOF
JPH036652B2 (en)
JP2010116287A (en) Amorphous carbon semiconductor and production method of the same
TWI302342B (en)
KR101926687B1 (en) Apparatus, method for fabrication epi wafer and epi wafer
JP2011023431A (en) Method of fabricating silicon carbide semiconductor device
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
KR101823678B1 (en) Apparatus and method for deposition
JP2009135229A (en) Vapor-phase growth device and vapor-phase growth method
US20090081869A1 (en) Process for producing silicon compound
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
JP2012015229A (en) Method of producing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150