JP2007294740A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007294740A
JP2007294740A JP2006122197A JP2006122197A JP2007294740A JP 2007294740 A JP2007294740 A JP 2007294740A JP 2006122197 A JP2006122197 A JP 2006122197A JP 2006122197 A JP2006122197 A JP 2006122197A JP 2007294740 A JP2007294740 A JP 2007294740A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
semiconductor
hetero
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122197A
Other languages
Japanese (ja)
Other versions
JP5114865B2 (en
Inventor
Tetsuya Hayashi
林  哲也
Masakatsu Hoshi
星  正勝
Yoshio Shimoida
良雄 下井田
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006122197A priority Critical patent/JP5114865B2/en
Priority to KR1020087008540A priority patent/KR101012532B1/en
Priority to CN200680033530XA priority patent/CN101263606B/en
Priority to PCT/JP2006/316806 priority patent/WO2007032197A2/en
Priority to US12/065,847 priority patent/US8164116B2/en
Priority to EP06796840.4A priority patent/EP1935028B1/en
Publication of JP2007294740A publication Critical patent/JP2007294740A/en
Application granted granted Critical
Publication of JP5114865B2 publication Critical patent/JP5114865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve cutoff characteristics while suppressing a leakage current during a reverse operation. <P>SOLUTION: A semiconductor device is composed so that a distance of a current pathway flowing between a hetero junction 5 and a contact 8 through a hetero semiconductor region 4 is longer than at least a film thickness of the hetero semiconductor region 4 due to an insulating region 3. By this, a crystal grain boundary linearly connecting the contact 8 with the hetero junction 5 is not formed even when the hetero semiconductor region 4 is formed by polysilicon. Consequently, it is possible to limit an amount of electrons supplied from a first electrode 7 to the hetero junction 5 through the crystal grain boundary. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置に関し、より詳しくは、逆方向動作時の漏れ電流を抑制し、遮断特性を改善するための技術に係わる。   The present invention relates to a semiconductor device, and more particularly to a technique for suppressing a leakage current during reverse operation and improving a cutoff characteristic.

従来より、N型の炭化珪素基板上にN型のエピタキシャル領域が形成された半導体基体の一主面にP型の多結晶シリコン領域が接するように形成され、エピタキシャル領域と多結晶シリコン領域間にヘテロ接合が形成されている半導体装置が知られている(特許文献1参照)。このような半導体装置では、多結晶シリコン領域上に表面金属電極が形成され、炭化珪素基板の裏面には裏面金属電極が形成されている。そして、表面金属電極及び裏面金属電極をそれぞれアノード及びカソードとして電極間に電圧を印加することにより、ヘテロ接合界面において整流作用を生じさせ、ダイオード特性を得ることができる。 Conventionally, a P + -type polycrystalline silicon region is formed in contact with one main surface of a semiconductor substrate in which an N -- type epitaxial region is formed on an N + -type silicon carbide substrate. A semiconductor device in which a heterojunction is formed between regions is known (see Patent Document 1). In such a semiconductor device, a surface metal electrode is formed on the polycrystalline silicon region, and a back metal electrode is formed on the back surface of the silicon carbide substrate. Then, by applying a voltage between the electrodes using the front surface metal electrode and the back surface metal electrode as an anode and a cathode, respectively, a rectifying action is produced at the heterojunction interface, and diode characteristics can be obtained.

具体的には、カソードを接地した状態でアノードに正電位を印加した場合、ダイオードの順方向特性に相当する導通特性が得られ、逆にアノードに負電位を印加した場合には、ダイオードの逆方向特性に相当する阻止特性が得られる。この順方向特性及び逆方向特性は、金属電極と半導体材料から構成されるショットキー接合のような特性を示す上に任意に調整することができるので、ショットキー接合を利用したダイオードと比較して、必要に応じて最適な耐圧系に調整できるという利点を有する。さらに、多結晶シリコン領域の不純物密度や導電型を所定の条件に調整することにより、ショットキー接合とは本質的に異なる動作メカニズムによって非常に小さな漏れ電流特性を得ることができる。
特開2005−259797号公報
Specifically, when a positive potential is applied to the anode with the cathode grounded, a conduction characteristic corresponding to the forward characteristic of the diode is obtained, and conversely, when a negative potential is applied to the anode, the reverse of the diode is obtained. A blocking characteristic corresponding to the directional characteristic is obtained. These forward and reverse characteristics can be adjusted arbitrarily as well as exhibiting characteristics such as a Schottky junction composed of a metal electrode and a semiconductor material, compared with a diode using a Schottky junction. This has the advantage that it can be adjusted to the optimum pressure resistance system as required. Furthermore, by adjusting the impurity density and conductivity type of the polycrystalline silicon region to predetermined conditions, a very small leakage current characteristic can be obtained by an operation mechanism that is essentially different from that of the Schottky junction.
JP 2005-259797 A

しかしながら、上記半導体装置の構造によれば、多結晶シリコン領域中に存在する結晶粒界の影響によって逆方向動作時に大きな漏れ電流が生じるために、理論的な遮断特性を実現することが困難であった。   However, according to the structure of the semiconductor device described above, since a large leakage current is generated during reverse operation due to the influence of crystal grain boundaries existing in the polycrystalline silicon region, it is difficult to realize a theoretical cutoff characteristic. It was.

本発明は、上記課題を解決するためになされたものであり、その目的は、逆方向動作時の漏れ電流を抑制し、遮断特性を改善することが可能な半導体装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device capable of suppressing a leakage current during reverse operation and improving a cutoff characteristic.

上述の課題を解決するために、本発明に係る半導体装置の特徴は、第1導電型の半導体基体と、半導体基体の一主面に接すると共に、半導体基体のバンドギャップ幅とは異なるバンドギャップ幅を有するヘテロ半導体領域と、ヘテロ半導体領域に接続された第1の電極と、半導体基体に接続された第2の電極とを有する半導体装置であって、半導体基体とヘテロ半導体領域間のヘテロ接合部と第1の電極とヘテロ半導体領域が接するコンタクト部との間を流れる電流経路の距離を少なくともヘテロ半導体領域の膜厚より長くするバリア領域を有することにある。   In order to solve the above-described problems, a semiconductor device according to the present invention is characterized by a first-conductivity-type semiconductor substrate and a band gap width that is in contact with one main surface of the semiconductor substrate and different from the band gap width of the semiconductor substrate. A semiconductor device comprising: a hetero semiconductor region having a first electrode connected to the hetero semiconductor region; and a second electrode connected to the semiconductor substrate, wherein the hetero junction between the semiconductor substrate and the hetero semiconductor region And a barrier region in which the distance of the current path flowing between the first electrode and the contact portion where the hetero semiconductor region is in contact is longer than the thickness of the hetero semiconductor region.

本発明に係る半導体装置によれば、ヘテロ半導体領域を介してヘテロ接合部とコンタクト部との間を流れる電流経路の距離が少なくともヘテロ半導体領域の膜厚よりも長くなっているので、ヘテロ半導体領域を多結晶シリコンで形成した場合であっても、コンタクト部とヘテロ接合部を直線的に結ぶ結晶粒界が形成されず、結晶粒界を介して第1の電極からヘテロ接合部に供給される電子の量を制限することができる。従って、本発明に係る半導体装置によれば、逆方向動作時の漏れ電流を低減し、遮断特性を改善することができる。   According to the semiconductor device of the present invention, the distance of the current path flowing between the heterojunction portion and the contact portion through the hetero semiconductor region is at least longer than the thickness of the hetero semiconductor region. Is formed of polycrystalline silicon, a crystal grain boundary that linearly connects the contact portion and the heterojunction portion is not formed, and is supplied from the first electrode to the heterojunction portion via the crystal grain boundary. The amount of electrons can be limited. Therefore, according to the semiconductor device of the present invention, it is possible to reduce the leakage current during the reverse operation and improve the cutoff characteristic.

以下、図面を参照して、本発明の実施形態となる半導体装置の構成について詳しく説明する。   Hereinafter, a configuration of a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the drawings.

[実施例1]
始めに、図1を参照して、本発明の第1の実施形態となる半導体装置の構成について説明する。
[Example 1]
First, the configuration of the semiconductor device according to the first embodiment of the present invention will be described with reference to FIG.

〔半導体装置の構成〕
本実施形態の半導体装置は、図1に示すように、ポリタイプが4HタイプのN型である炭化珪素から成る基板領域(NSiC)1上にN型のドリフト領域(NSiC)2が形成された基板材料から成る第1の半導体領域100を備える。なお、基板領域1としては、例えば、抵抗率が数〜数10[mΩcm]、膜厚が数10〜数100[μm]程度の材料を用いることができる。また、ドリフト領域2としては、例えば、N型の不純物密度が1015〜1018[cm−3]、膜厚が数〜数10[μm]の材料を用いることができる。本実施形態では、ドリフト領域2の不純物密度は1016[cm−3]、膜厚は10[μm]とした。また、本実施形態では、第1の半導体領域100が基板領域1とドリフト領域2からなる基板材料により形成されている場合について説明するが、抵抗率の大きさに係わらず第1の半導体領域100を基板領域1のみにより形成してもよい。
[Configuration of semiconductor device]
As shown in FIG. 1, the semiconductor device of the present embodiment includes an N type drift region (N SiC) on a substrate region (N + SiC) 1 made of silicon carbide of N + type whose polytype is 4H type. ) Comprising a first semiconductor region 100 made of a substrate material on which 2 is formed. As the substrate region 1, for example, a material having a resistivity of several to several tens [mΩcm] and a film thickness of several tens to several hundreds [μm] can be used. As the drift region 2, for example, a material having an N-type impurity density of 10 15 to 10 18 [cm −3 ] and a film thickness of several to several tens [μm] can be used. In the present embodiment, the impurity density of the drift region 2 is 10 16 [cm −3 ] and the film thickness is 10 μm. In the present embodiment, the case where the first semiconductor region 100 is formed of a substrate material including the substrate region 1 and the drift region 2 will be described. However, the first semiconductor region 100 regardless of the resistivity. May be formed only by the substrate region 1.

本実施形態の半導体装置では、酸化膜等の絶縁領域3と、炭化珪素のバンドギャップ幅よりもバンドギャップ幅が小さい多結晶シリコンからなるヘテロ半導体領域4が、ドリフト領域2と基板領域1の接合面に対向する主面に接するように形成されている。すなわち、この半導体装置では、ドリフト領域2とヘテロ半導体領域4の接合部には炭化珪素のバンドギャップ幅と多結晶シリコンのバンドギャップ幅が異なることによってヘテロ接合ダイオード(ヘテロ接合部5)が形成され、接合界面にエネルギー障壁が存在している。なお、本実施形態では、ヘテロ半導体領域4として、P型で不純物密度が1019[cm−3]、膜厚が0.5[μm]の材料を用いた。 In the semiconductor device of the present embodiment, an insulating region 3 such as an oxide film and a hetero semiconductor region 4 made of polycrystalline silicon having a band gap width smaller than that of silicon carbide are connected to the drift region 2 and the substrate region 1. It is formed in contact with the main surface opposite to the surface. That is, in this semiconductor device, a heterojunction diode (heterojunction portion 5) is formed at the junction between the drift region 2 and the hetero semiconductor region 4 because the band gap width of silicon carbide and the band gap width of polycrystalline silicon are different. There is an energy barrier at the junction interface. In the present embodiment, a P-type material having an impurity density of 10 19 [cm −3 ] and a film thickness of 0.5 [μm] is used as the hetero semiconductor region 4.

本実施形態の半導体装置では、ヘテロ半導体領域4に接するように酸化膜等の層間絶縁膜6及び金属材料からなる第1の電極7が形成されている。また、ヘテロ半導体領域4と第1の電極7はコンタクト部8において接続されている。また、半導体装置は、基板領域1に接するように金属材料からなる第2の電極9を備える。また、ヘテロ半導体領域4を介してヘテロ接合部5とコンタクト部8の間を流れる電流経路の距離は、絶縁領域3の存在によって少なくともヘテロ半導体領域4の膜厚よりも長くなっている。   In the semiconductor device of this embodiment, an interlayer insulating film 6 such as an oxide film and a first electrode 7 made of a metal material are formed so as to be in contact with the hetero semiconductor region 4. Further, the hetero semiconductor region 4 and the first electrode 7 are connected at the contact portion 8. The semiconductor device also includes a second electrode 9 made of a metal material so as to be in contact with the substrate region 1. In addition, the distance of the current path that flows between the heterojunction portion 5 and the contact portion 8 through the hetero semiconductor region 4 is at least longer than the film thickness of the hetero semiconductor region 4 due to the presence of the insulating region 3.

〔半導体装置の動作〕
次に、第1の電極7及び第2の電極9をそれぞれアノード及びカソードとすることにより縦型のダイオードとして動作する場合の半導体装置の動作を順方向動作及び逆方向動作に分けて説明する。
[Operation of semiconductor device]
Next, the operation of the semiconductor device in the case of operating as a vertical diode by using the first electrode 7 and the second electrode 9 as an anode and a cathode, respectively, will be described separately for a forward operation and a reverse operation.

〔順方向動作〕
始めに、上記半導体装置の順方向動作について説明する。
[Forward operation]
First, the forward operation of the semiconductor device will be described.

第2の電極9を接地電位とし、第1の電極7に正電位を印加した場合、ヘテロ接合ダイオードは順方向特性を示し、ショットキー接合ダイオードのように導通特性を示す。すなわちこの場合、ヘテロ接合部5からドリフト領域2側及びヘテロ半導体領域4側にそれぞれ広がる内蔵電位の和によって決定される電圧降下によって順方向電流が流れる。例えば、本実施形態では、ヘテロ接合部5からドリフト領域2及びヘテロ半導体領域3にそれぞれ広がる内蔵電位の和は1.3[V]程度であり、この和に応じた電圧降下により順方向電流が流れる。   When the second electrode 9 is set to the ground potential and a positive potential is applied to the first electrode 7, the heterojunction diode exhibits a forward characteristic and a conduction characteristic like a Schottky junction diode. That is, in this case, a forward current flows due to a voltage drop determined by the sum of the built-in potentials spreading from the heterojunction 5 to the drift region 2 side and the hetero semiconductor region 4 side. For example, in this embodiment, the sum of the built-in potentials extending from the heterojunction portion 5 to the drift region 2 and the hetero semiconductor region 3 is about 1.3 [V], and the forward current is caused by a voltage drop corresponding to this sum. Flowing.

なお、本実施形態の半導体装置では、コンタクト部8からヘテロ接合部5までの距離が従来の半導体装置と比較して長くなっているために、ヘテロ半導体領域4中の抵抗は大きくなる。しかしながら、従来の半導体装置におけるドリフト領域中の抵抗はヘテロ半導体領域中の抵抗と比較してほとんど影響しない大きさである。すなわち、従来の半導体装置におけるドリフト領域及びヘテロ半導体領域の不純物濃度及び厚みを本実施形態の半導体装置におけるそれと同じにした場合、不純物濃度に起因して2桁以上、厚みに起因して1桁以上、合計で3〜4桁程度高いためである。このことから、本実施形態の半導体装置では、ヘテロ半導体領域4中の抵抗は半導体装置全体としてのオン抵抗にはほとんど影響しない。   In the semiconductor device of this embodiment, since the distance from the contact portion 8 to the heterojunction portion 5 is longer than that in the conventional semiconductor device, the resistance in the hetero semiconductor region 4 is increased. However, the resistance in the drift region in the conventional semiconductor device has a magnitude that hardly affects the resistance in the hetero semiconductor region. That is, when the impurity concentration and thickness of the drift region and the hetero semiconductor region in the conventional semiconductor device are the same as those in the semiconductor device of this embodiment, it is two digits or more due to the impurity concentration and one digit or more due to the thickness. This is because the total is about 3 to 4 digits higher. For this reason, in the semiconductor device of this embodiment, the resistance in the hetero semiconductor region 4 hardly affects the on-resistance of the entire semiconductor device.

〔逆方向動作〕
次に、上記半導体装置の逆方向動作について説明する。
[Reverse operation]
Next, the reverse operation of the semiconductor device will be described.

第1の電極7を接地電位とし、第2の電極9に正電位を印加した場合、ヘテロ接合ダイオードは逆方向特性を示し、遮断状態となる。なお、本実施形態の半導体装置では、活性領域の主領域部において、ヘテロ半導体領域4の導電型をP型としているため、遮断特性はPN接合ダイオードのごとく動作する。これは、ヘテロ半導体領域4の導電型をP型、ドリフト領域2の導電型をN型とした構成では、PN接合ダイオードに見られるような所定の電界下で発生するキャリアによる漏れ電流特性が優勢になる程に、ヘテロ接合界面5のエネルギー障壁を介する漏れ電流を大幅に低減できるためである。以下にその理由について説明する。   When the first electrode 7 is set to the ground potential and a positive potential is applied to the second electrode 9, the heterojunction diode exhibits reverse characteristics and enters a cut-off state. In the semiconductor device of this embodiment, since the conductivity type of the hetero semiconductor region 4 is P type in the main region portion of the active region, the cutoff characteristic operates like a PN junction diode. This is because, in the configuration in which the conductivity type of the hetero semiconductor region 4 is P-type and the conductivity type of the drift region 2 is N-type, leakage current characteristics due to carriers generated under a predetermined electric field as seen in a PN junction diode are dominant. This is because the leakage current through the energy barrier of the heterojunction interface 5 can be greatly reduced. The reason will be described below.

ショットキー接合ダイオードの漏れ電流特性は、半導体材料の電子親和力とショットキー金属の仕事関数の差によって形成されるショットキー障壁の高さでほぼ一義的に決まる。しかしながら、ヘテロ接合ダイオードは、異なる半導体材料の接合によって構成されているために、その漏れ電流特性は、主に、異なる半導体材料間に生じるエネルギー障壁の高さと漏れ電流の起源となる多数キャリアの供給源の大きさによって決まる。このうち、エネルギー障壁の高さは、炭化珪素からなるドリフト領域2及びシリコンからなるヘテロ半導体領域4それぞれの半導体材料によってほぼ決まるために、ショットキー接合ダイオードと同様の性能を有する。また、本実施形態の半導体装置は、漏れ電流の起源となる多数キャリアの供給源という観点では、ショットキー接合ダイオード及び従来の半導体装置と比較して格段に小さくなっている。これは、本実施形態の半導体装置では、ヘテロ半導体領域4がP型で構成され、N型のドリフト領域2にとって多数キャリアとなる伝導電子がヘテロ半導体領域4で発生しにくくなっており、伝導電子の発生起源を抑える構成となっているためである。   The leakage current characteristic of the Schottky junction diode is determined almost uniquely by the height of the Schottky barrier formed by the difference between the electron affinity of the semiconductor material and the work function of the Schottky metal. However, since heterojunction diodes are composed of junctions of different semiconductor materials, their leakage current characteristics are mainly due to the supply of majority carriers that are the source of the energy barrier height and leakage current that occurs between different semiconductor materials. It depends on the size of the source. Among these, the height of the energy barrier is almost determined by the semiconductor materials of the drift region 2 made of silicon carbide and the hetero semiconductor region 4 made of silicon, and therefore has the same performance as a Schottky junction diode. In addition, the semiconductor device of the present embodiment is much smaller than the Schottky junction diode and the conventional semiconductor device in terms of the supply source of majority carriers that cause the leakage current. This is because in the semiconductor device of the present embodiment, the hetero semiconductor region 4 is configured as a P-type, and conduction electrons serving as majority carriers for the N-type drift region 2 are less likely to be generated in the hetero-semiconductor region 4. This is because it has a structure that suppresses the origin of the occurrence.

しかしながら、従来の半導体装置では、多結晶シリコン領域中の結晶粒界の存在によって第1の電極から結晶粒界を介してヘテロ接合部に多数キャリアとなる伝導電子が供給され、逆方向動作時の漏れ電流が生じるため、耐圧の向上に限界が生じていた。ヘテロ接合部に電子が供給されれば、P型のヘテロ半導体領域4とN型のドリフト領域2で構成されたヘテロ接合ダイオードの本来の逆方向特性が得られず、ショットキー接合ダイオードと同様の漏れ電流特性となる。特に、実際に多結晶シリコン層を炭化珪素基板にLPCVD法により形成すると、それぞれのシリコン結晶は柱状に成長するため、結果的に結晶粒界は第1の電極とヘテロ接合部を直線的に結ぶように形成され、第1の電極からヘテロ接合部に電子が容易に供給されやすくなる。なお、ここでは多結晶シリコン領域として説明しているが、多結晶シリコンの代わりに単結晶シリコンや別の材料を用いた場合であっても、結晶結果の存在や所定の熱処理プロセスによって同様の現象が生じる可能性がある。   However, in the conventional semiconductor device, conduction electrons serving as majority carriers are supplied from the first electrode to the heterojunction through the crystal grain boundary due to the presence of the crystal grain boundary in the polycrystalline silicon region, and during reverse operation. Since leakage current is generated, there is a limit to the improvement of withstand voltage. If electrons are supplied to the heterojunction portion, the original reverse characteristics of the heterojunction diode composed of the P-type hetero semiconductor region 4 and the N-type drift region 2 cannot be obtained. Leakage current characteristics. In particular, when a polycrystalline silicon layer is actually formed on a silicon carbide substrate by LPCVD, each silicon crystal grows in a columnar shape. As a result, the crystal grain boundary linearly connects the first electrode and the heterojunction portion. Thus, electrons are easily supplied from the first electrode to the heterojunction portion. Here, although described as a polycrystalline silicon region, even if single crystal silicon or another material is used instead of polycrystalline silicon, the same phenomenon is caused by the existence of crystal results and a predetermined heat treatment process. May occur.

これに対して、本実施形態の半導体装置では、ヘテロ半導体領域4を介してヘテロ接合部5とコンタクト部8の間を流れる電流経路の距離が絶縁領域3の存在によって少なくともヘテロ半導体領域4の膜厚よりも長くなっているので、ヘテロ半導体領域4が多結晶シリコンにより形成されている場合であっても、コンタクト部8とヘテロ接合部5を直線的に結ぶ結晶粒界が形成されず、結晶粒界を介して第1の電極7からヘテロ接合部5に供給される電子の量を制限することができる。従って、本実施形態の半導体装置によれば、逆方向動作時の漏れ電流を低減することができる。   On the other hand, in the semiconductor device of this embodiment, the distance of the current path flowing between the heterojunction portion 5 and the contact portion 8 via the hetero semiconductor region 4 is at least a film of the hetero semiconductor region 4 due to the presence of the insulating region 3. Since it is longer than the thickness, even when the hetero semiconductor region 4 is formed of polycrystalline silicon, a crystal grain boundary that linearly connects the contact portion 8 and the hetero junction portion 5 is not formed, and the crystal The amount of electrons supplied from the first electrode 7 to the heterojunction portion 5 through the grain boundary can be limited. Therefore, according to the semiconductor device of the present embodiment, it is possible to reduce the leakage current during reverse operation.

なお、ヘテロ半導体領域4における電流経路の距離は、結晶粒界を介して第1の電極7から供給される電子の実効的な拡散距離より長くすることが望ましい。このような構成によれば、ヘテロ接合部5に電子が供給されることを防ぐことができるので、ショットキー接合ダイオードと異なるヘテロ接合ダイオードが本来有する漏れ電流特性を実現することができる。   Note that the distance of the current path in the hetero semiconductor region 4 is desirably longer than the effective diffusion distance of electrons supplied from the first electrode 7 via the crystal grain boundary. According to such a configuration, it is possible to prevent electrons from being supplied to the heterojunction portion 5, thereby realizing the leakage current characteristics inherent in a heterojunction diode different from a Schottky junction diode.

また、本実施形態では、ヘテロ半導体領域4の材料として多結晶シリコンを用いたが、多結晶シリコンの代わりに単結晶シリコンや別の材料を用いた場合であっても、結晶欠陥の存在や所定の熱処理プロセスによって第1の電極7から電子が供給されるので、絶縁領域3はヘテロ接合部5への電子の拡散を抑制し、漏れ電流を低減することができる。   In the present embodiment, polycrystalline silicon is used as the material of the hetero semiconductor region 4. However, even if single crystal silicon or another material is used instead of polycrystalline silicon, the presence of crystal defects or predetermined Since electrons are supplied from the first electrode 7 by this heat treatment process, the insulating region 3 can suppress the diffusion of electrons to the heterojunction portion 5 and reduce the leakage current.

また、図2に示すように、絶縁領域3がドリフト領域2に接しないように絶縁領域3をヘテロ半導体領域4中に形成するようにしてもよい。このような構成によれば、ヘテロ接合部5の有効面積を大きくすることができるので、逆方向動作時の漏れ電流を低減すると共に、順方向動作時の接合起因のオン抵抗を低減することができる。   In addition, as shown in FIG. 2, the insulating region 3 may be formed in the hetero semiconductor region 4 so that the insulating region 3 does not contact the drift region 2. According to such a configuration, since the effective area of the heterojunction portion 5 can be increased, it is possible to reduce the leakage current during the reverse operation and reduce the on-resistance caused by the junction during the forward operation. it can.

また、図3に示すように、ヘテロ半導体領域4中のドリフト領域2に接する位置と接しない位置それぞれに絶縁領域3を形成する等して、絶縁領域3をヘテロ半導体領域4中の各層に複数形成するようにしてもよい。このような構成によれば、限られた領域の中で、ヘテロ半導体領域4を介してヘテロ接合部5とコンタクト部8の間を流れる電流経路の距離をより長くすることができるので、より高い密度でヘテロ接合ダイオードを形成し、集積度を向上させることができる。   In addition, as shown in FIG. 3, a plurality of insulating regions 3 are formed in each layer in the hetero semiconductor region 4 by forming the insulating regions 3 at positions not in contact with the drift region 2 in the hetero semiconductor region 4. You may make it form. According to such a configuration, the distance of the current path that flows between the heterojunction portion 5 and the contact portion 8 through the hetero semiconductor region 4 in the limited region can be further increased, so that it is higher. Heterojunction diodes can be formed at a high density, and the degree of integration can be improved.

また、図4に示すように、コンタクト部8に接するヘテロ半導体領域4近傍の膜厚が小さく、且つ、ヘテロ接合部5に接するヘテロ半導体領域4近傍の膜厚が大きくなるように、絶縁領域3を斜めに形成するようにしてもよい。このような構成によれば、ヘテロ半導体領域4中の電流経路における抵抗の増加を抑えつつ、第1の電極7から電子が供給されるヘテロ半導体領域4周辺において、電子が拡散する結晶粒界の経路を減らすることができる。つまり、所定のオン抵抗を維持しつつ、漏れ電流をより抑えることができる。またこの場合、図5に示すように、絶縁領域3を層状に複数形成することによって、製造時のばらつきを容易に抑えることができる。   Further, as shown in FIG. 4, the insulating region 3 is formed so that the film thickness in the vicinity of the hetero semiconductor region 4 in contact with the contact portion 8 is small and the film thickness in the vicinity of the hetero semiconductor region 4 in contact with the hetero junction portion 5 is large. May be formed obliquely. According to such a configuration, while suppressing an increase in resistance in the current path in the hetero semiconductor region 4, a crystal grain boundary where electrons diffuse around the hetero semiconductor region 4 to which electrons are supplied from the first electrode 7. The route can be reduced. That is, the leakage current can be further suppressed while maintaining a predetermined on-resistance. Further, in this case, as shown in FIG. 5, variations in manufacturing can be easily suppressed by forming a plurality of insulating regions 3 in layers.

また、図1〜図5に示す半導体装置では、ヘテロ半導体領域4は単一の導電型及び不純物密度であったが、図6や図7に示すように、ヘテロ半導体領域4とは導電型又は不純物密度が異なる第2のヘテロ半導体領域10を設けてもよい。この場合、第2のヘテロ半導体領域10は、P型又はN型のどちらであってもよく、不純物密度もヘテロ半導体領域4より大きくても小さくてもよい。   In the semiconductor device shown in FIGS. 1 to 5, the hetero semiconductor region 4 has a single conductivity type and impurity density. However, as shown in FIGS. A second hetero semiconductor region 10 having a different impurity density may be provided. In this case, the second hetero semiconductor region 10 may be either P-type or N-type, and the impurity density may be larger or smaller than the hetero semiconductor region 4.

また、図1〜図7に示す半導体装置はヘテロ接合ダイオードを形成する単純な構成であったが、ヘテロ接合ダイオードの最外周部に耐圧構造が形成されていてもよい。具体的には、ヘテロ半導体領域4の端部がSiOからなる層間絶縁膜に乗り上げていてもよいし、ドリフト領域2中に電界緩和領域,ガードリング,及びドリフト領域2を堀り込んだメサ構造を有していてもよい。 In addition, although the semiconductor device illustrated in FIGS. 1 to 7 has a simple configuration in which a heterojunction diode is formed, a breakdown voltage structure may be formed in the outermost peripheral portion of the heterojunction diode. Specifically, the end of the hetero semiconductor region 4 may run on an interlayer insulating film made of SiO 2 , or a mesa in which the electric field relaxation region, the guard ring, and the drift region 2 are dug in the drift region 2. You may have a structure.

[実施例2]
次に、図8を参照して、本発明の第2の実施形態となる半導体装置の構成について説明する。
[Example 2]
Next, the configuration of the semiconductor device according to the second embodiment of the present invention will be described with reference to FIG.

〔半導体装置の構成〕
本実施形態の半導体装置では、上記第1の実施形態となる半導体装置における絶縁領域3の代わりに、ドリフト領域2中にP型のウェル領域11が形成されている。
[Configuration of semiconductor device]
In the semiconductor device of the present embodiment, a P-type well region 11 is formed in the drift region 2 instead of the insulating region 3 in the semiconductor device according to the first embodiment.

〔半導体装置の動作〕
次に、第1の電極7及び第2の電極9をそれぞれアノード及びカソードとすることにより縦型のダイオードとして動作する場合の半導体装置の動作を順方向動作及び逆方向動作に分けて説明する。
[Operation of semiconductor device]
Next, the operation of the semiconductor device in the case of operating as a vertical diode by using the first electrode 7 and the second electrode 9 as an anode and a cathode, respectively, will be described separately for a forward operation and a reverse operation.

〔順方向動作〕
始めに、上記半導体装置の順方向動作について説明する。
[Forward operation]
First, the forward operation of the semiconductor device will be described.

第2の電極9を接地電位とし、第1の電極7に正電位を印加した場合、ヘテロ接合ダイオードは順方向特性を示し、低オン抵抗で電流が流れる。これは、この場合、ウェル領域11とドリフト領域2との間に形成されるPN接合ダイオードにとっても順バイアス状態となるが、内蔵電位が約3[V]であることからウェル領域11とドリフト領域2との間に電流が流れないためである。   When the second electrode 9 is set to the ground potential and a positive potential is applied to the first electrode 7, the heterojunction diode exhibits forward characteristics and a current flows with a low on-resistance. In this case, the PN junction diode formed between the well region 11 and the drift region 2 is also in a forward bias state. However, since the built-in potential is about 3 [V], the well region 11 and the drift region are This is because no current flows between the two.

〔逆方向動作〕
次に、上記半導体装置の逆方向動作について説明する。
[Reverse operation]
Next, the reverse operation of the semiconductor device will be described.

第1の電極7を接地電位とし、第2の電極9に正電位を印加した場合、ヘテロ接合ダイオードは逆方向特性を示し、遮断状態となる。これは、ウェル領域11とドリフト領域2との間に形成されるPN接合ダイオードにとっても逆バイアス状態となり、ヘテロ半導体領域4とドリフト領域2間のヘテロ接合よりもさらに漏れ電流が小さいためである。さらに、第2の電極9の正電位を大きくしていくと、ウェル領域11とドリフト領域2とのPN接合間に空乏層が広がり、互いに対面するウェル領域11に挟まれたドリフト領域2が全域空乏化すると、ヘテロ接合部5における電界が遮蔽され、漏れ電流の発生をさらに減らすことができる。   When the first electrode 7 is set to the ground potential and a positive potential is applied to the second electrode 9, the heterojunction diode exhibits reverse characteristics and enters a cut-off state. This is because the PN junction diode formed between the well region 11 and the drift region 2 is also in a reverse bias state, and the leakage current is smaller than that of the heterojunction between the hetero semiconductor region 4 and the drift region 2. Further, when the positive potential of the second electrode 9 is increased, a depletion layer spreads between the PN junctions of the well region 11 and the drift region 2, and the drift region 2 sandwiched between the well regions 11 facing each other becomes the entire region. When depletion occurs, the electric field at the heterojunction portion 5 is shielded, and the generation of leakage current can be further reduced.

なお、本実施形態は、バリア領域としてウェル領域11を用いたものであるが、図9に示すように絶縁領域3とウェル領域11を併用してもよい。また、絶縁領域3とウェル領域11を併用した場合には、図10に示すように層間絶縁膜6がなくとも本発明に係る半導体装置による技術的効果を得ることができる。いずれの場合であっても、バリア領域を設けることにより、ヘテロ半導体領域4を介してヘテロ接合部5とコンタクト部8の間を流れる電流経路の距離が少なくともヘテロ半導体領域4の膜厚よりも長くなっていればよい。また、本実施形態では、半導体として活性化したP型のウェル領域11として説明したが、半導体として不活性の高抵抗領域であってもよいし、電気的に絶縁された領域であってもよい。   In this embodiment, the well region 11 is used as the barrier region. However, the insulating region 3 and the well region 11 may be used in combination as shown in FIG. Further, when the insulating region 3 and the well region 11 are used in combination, the technical effect of the semiconductor device according to the present invention can be obtained without the interlayer insulating film 6 as shown in FIG. In any case, by providing the barrier region, the distance of the current path flowing between the heterojunction portion 5 and the contact portion 8 through the hetero semiconductor region 4 is at least longer than the film thickness of the hetero semiconductor region 4. It only has to be. In the present embodiment, the P-type well region 11 activated as a semiconductor has been described. However, the semiconductor may be an inactive high-resistance region or an electrically insulated region. .

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。例えば、上記実施形態では、基板材料は炭化珪素であるとしたが、基板材料はシリコン,シリコンゲルマニウム,窒化ガリウム,ダイヤモンド等のその他の半導体材料であってもよい。また、炭化珪素のポリタイプは4Hタイプであるとしたが、6H,3C等のその他のポリタイプであってもよい。また、半導体装置は、第2の電極9と第1の電極7とをドリフト領域2を挟んで対向するように配置し、両電極間に流れる電流を縦方向に流す、いわゆる縦型構造のダイオード又はトランジスタとして説明してきたが、第2の電極9と第1の電極7とを同一主面上に配置し、電流を横方向に流す、いわゆる横型構造のダイオード又はトランジスタであってもよい。また、ヘテロ半導体領域4及び第2のヘテロ半導体領域10に用いる材料として多結晶シリコンを用いたが、炭化珪素とヘテロ接合を形成する材料であれば、単結晶シリコン,アモルファスシリコン等のその他のシリコン材料、ゲルマニウムやシリコンゲルマニウム等のその他の半導体材料、6H,3C等の炭化珪素のその他のポリタイプ等の材料であってもよい。また、ドリフト領域2としてN型の炭化珪素を、ヘテロ半導体領域4としてP型の多結晶シリコンを用いているが、N型の炭化珪素とP型の多結晶シリコン、P型の炭化珪素とP型の多結晶シリコン、P型の炭化珪素とN型の多結晶シリコン等、その他の組み合わせであってもよい。このように、この実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although embodiment which applied the invention made by the present inventors was described, this invention is not limited by the description and drawing which make a part of indication of this invention by this embodiment. For example, in the above embodiment, the substrate material is silicon carbide, but the substrate material may be other semiconductor materials such as silicon, silicon germanium, gallium nitride, and diamond. In addition, although the polytype of silicon carbide is the 4H type, other polytypes such as 6H and 3C may be used. Further, the semiconductor device is a so-called vertical structure diode in which the second electrode 9 and the first electrode 7 are arranged so as to face each other with the drift region 2 interposed therebetween, and a current flowing between the two electrodes flows in the vertical direction. Alternatively, a transistor having a so-called lateral structure in which the second electrode 9 and the first electrode 7 are arranged on the same main surface and a current flows in the lateral direction may be used. Further, although polycrystalline silicon is used as the material used for the hetero semiconductor region 4 and the second hetero semiconductor region 10, other silicon such as single crystal silicon and amorphous silicon can be used as long as it is a material that forms a heterojunction with silicon carbide. The material may be other semiconductor materials such as germanium and silicon germanium, and other polytypes of silicon carbide such as 6H and 3C. Further, N-type silicon carbide is used as the drift region 2 and P-type polycrystalline silicon is used as the hetero semiconductor region 4, but N-type silicon carbide and P-type polycrystalline silicon, P-type silicon carbide and P-type polycrystalline silicon are used. Other combinations such as type polycrystalline silicon, P type silicon carbide and N type polycrystalline silicon may be used. As described above, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

本発明の第1の実施形態となる半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device used as the 1st Embodiment of this invention. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 図1に示す半導体装置の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the semiconductor device shown in FIG. 本発明の第2の実施形態となる半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device used as the 2nd Embodiment of this invention. 図8に示す半導体装置の応用例の構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of an application example of the semiconductor device illustrated in FIG. 8. 図8に示す半導体装置の応用例の構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of an application example of the semiconductor device illustrated in FIG. 8.

符号の説明Explanation of symbols

1:基板領域
2:ドリフト領域
3:絶縁領域
4:ヘテロ半導体領域
5:ヘテロ接合界面
6:層間絶縁膜
7:第1の電極
8:コンタクト部
9:第2の電極
1: substrate region 2: drift region 3: insulating region 4: hetero semiconductor region 5: heterojunction interface 6: interlayer insulating film 7: first electrode 8: contact portion 9: second electrode

Claims (8)

第1導電型の半導体基体と、当該半導体基体の一主面に接すると共に、半導体基体のバンドギャップ幅とは異なるバンドギャップ幅を有するヘテロ半導体領域と、当該ヘテロ半導体領域に接続された第1の電極と、前記半導体基体に接続された第2の電極とを有する半導体装置であって、
前記半導体基体と前記ヘテロ半導体領域間のヘテロ接合部と前記第1の電極とヘテロ半導体領域が接するコンタクト部との間を流れる電流経路の距離を少なくともヘテロ半導体領域の膜厚より長くするバリア領域を有することを特徴とする半導体装置。
A semiconductor substrate of a first conductivity type, a hetero semiconductor region in contact with one main surface of the semiconductor substrate and having a band gap width different from the band gap width of the semiconductor substrate, and a first semiconductor connected to the hetero semiconductor region A semiconductor device having an electrode and a second electrode connected to the semiconductor substrate,
A barrier region in which a distance of a current path flowing between a heterojunction portion between the semiconductor substrate and the hetero semiconductor region and a contact portion where the first electrode and the hetero semiconductor region are in contact is longer than a thickness of the hetero semiconductor region; A semiconductor device comprising:
請求項1に記載の半導体装置であって、前記電流経路の距離が、少なくとも前記第1の電極から供給される電子の実効拡散距離より長いことを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a distance of the current path is longer than at least an effective diffusion distance of electrons supplied from the first electrode. 請求項1又は請求項2に記載の半導体装置であって、前記バリア領域として機能する領域の少なくとも一部が、少なくとも前記ヘテロ半導体領域に接するように形成された絶縁膜からなることを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein at least a part of the region functioning as the barrier region is formed of an insulating film formed so as to be in contact with at least the hetero semiconductor region. Semiconductor device. 請求項1乃至請求項3のうち、いずれか1項に記載の半導体装置であって、前記バリア領域が、前記ヘテロ接合部と前記コンタクト部に接しないように配置されていることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein the barrier region is disposed so as not to contact the heterojunction portion and the contact portion. 5. Semiconductor device. 請求項1乃至請求項4のうち、いずれか1項に記載の半導体装置であって、前記バリア領域として機能する領域の少なくとも一部が、前記半導体基体に形成された第2導電型のウェル領域からなることを特徴とする半導体装置。   5. The semiconductor device according to claim 1, wherein at least a part of a region functioning as the barrier region is a second conductivity type well region formed in the semiconductor substrate. 6. A semiconductor device comprising: 請求項1乃至請求項5のうち、いずれか1項に記載の半導体装置であって、前記ヘテロ半導体領域の少なくとも一部の導電型が第2導電型であることを特徴とする半導体装置。   6. The semiconductor device according to claim 1, wherein at least a part of a conductivity type of the hetero semiconductor region is a second conductivity type. 請求項1乃至請求項6のうち、いずれか1項に記載の半導体装置であって、前記半導体基体は炭化珪素、窒化ガリウム、及びダイヤモンドのうちのいずれかにより形成されていることを特徴とする半導体装置。   7. The semiconductor device according to claim 1, wherein the semiconductor substrate is formed of any one of silicon carbide, gallium nitride, and diamond. Semiconductor device. 請求項1乃至請求項7のうち、いずれか1項に記載の半導体装置であって、前記ヘテロ半導体領域が、単結晶シリコン、多結晶シリコン、アモルファスシリコン、ゲルマニウム、及びシリコンゲルマニウムのうちのいずれかにより形成されていることを特徴とする半導体装置。   8. The semiconductor device according to claim 1, wherein the hetero semiconductor region is any one of single crystal silicon, polycrystalline silicon, amorphous silicon, germanium, and silicon germanium. A semiconductor device formed by the method described above.
JP2006122197A 2005-09-12 2006-04-26 Semiconductor device Active JP5114865B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006122197A JP5114865B2 (en) 2006-04-26 2006-04-26 Semiconductor device
KR1020087008540A KR101012532B1 (en) 2005-09-12 2006-08-22 Semiconductor device and method of manufacturing the same
CN200680033530XA CN101263606B (en) 2005-09-12 2006-08-22 Semiconductor device and its manufacturing method
PCT/JP2006/316806 WO2007032197A2 (en) 2005-09-12 2006-08-22 Semiconductor device and method of manufacturing the same
US12/065,847 US8164116B2 (en) 2005-09-12 2006-08-22 Semiconductor device with hetero semiconductor region and method of manufacturing the same
EP06796840.4A EP1935028B1 (en) 2005-09-12 2006-08-22 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122197A JP5114865B2 (en) 2006-04-26 2006-04-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2007294740A true JP2007294740A (en) 2007-11-08
JP5114865B2 JP5114865B2 (en) 2013-01-09

Family

ID=38765044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122197A Active JP5114865B2 (en) 2005-09-12 2006-04-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5114865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082765A (en) * 2019-11-21 2021-05-27 住友金属鉱山株式会社 Silicon carbide polycrystalline film, and manufacturing method and deposition apparatus therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078215A (en) * 2001-09-03 2003-03-14 Nec Corp Iii nitride semiconductor device and its manufacturing method
JP2004022878A (en) * 2002-06-18 2004-01-22 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing process
JP2004165667A (en) * 2002-11-11 2004-06-10 Korea Electronics Telecommun Semiconductor optical device
JP2005116947A (en) * 2003-10-10 2005-04-28 Oki Electric Ind Co Ltd Semiconductor device
JP2005259797A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078215A (en) * 2001-09-03 2003-03-14 Nec Corp Iii nitride semiconductor device and its manufacturing method
JP2004022878A (en) * 2002-06-18 2004-01-22 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing process
JP2004165667A (en) * 2002-11-11 2004-06-10 Korea Electronics Telecommun Semiconductor optical device
JP2005116947A (en) * 2003-10-10 2005-04-28 Oki Electric Ind Co Ltd Semiconductor device
JP2005259797A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082765A (en) * 2019-11-21 2021-05-27 住友金属鉱山株式会社 Silicon carbide polycrystalline film, and manufacturing method and deposition apparatus therefor
JP7400389B2 (en) 2019-11-21 2023-12-19 住友金属鉱山株式会社 Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus

Also Published As

Publication number Publication date
JP5114865B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US7781786B2 (en) Semiconductor device having a heterojunction diode and manufacturing method thereof
US11631765B2 (en) Method of manufacturing insulated gate semiconductor device with injection suppression structure
JP5449094B2 (en) Semiconductor device
JP5900698B2 (en) Semiconductor device
JP2019071313A (en) Semiconductor device
JP2005183563A (en) Semiconductor device
JP6802454B2 (en) Semiconductor devices and their manufacturing methods
JP2005259766A (en) Semiconductor device
JP5216183B2 (en) Semiconductor device
JP4742539B2 (en) Semiconductor device
JP5092244B2 (en) Semiconductor device
JP5865860B2 (en) Semiconductor device
JP2004327891A (en) Semiconductor device
JP6048126B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5114865B2 (en) Semiconductor device
TWI688100B (en) Wide band gap semiconductor device
JP3879697B2 (en) Semiconductor device
JP6293380B1 (en) Semiconductor device
JP3885738B2 (en) Silicon carbide semiconductor device
JP2017028149A (en) Semiconductor device
JP5494848B2 (en) Semiconductor device
JP2017028150A (en) Semiconductor device
JP4586775B2 (en) Silicon carbide semiconductor device
JP2007288030A (en) Semiconductor device
JP2004319815A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5114865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3