JP5494848B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5494848B2
JP5494848B2 JP2013018447A JP2013018447A JP5494848B2 JP 5494848 B2 JP5494848 B2 JP 5494848B2 JP 2013018447 A JP2013018447 A JP 2013018447A JP 2013018447 A JP2013018447 A JP 2013018447A JP 5494848 B2 JP5494848 B2 JP 5494848B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
hetero semiconductor
hetero
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013018447A
Other languages
Japanese (ja)
Other versions
JP2013080970A (en
Inventor
林  哲也
星  正勝
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013018447A priority Critical patent/JP5494848B2/en
Publication of JP2013080970A publication Critical patent/JP2013080970A/en
Application granted granted Critical
Publication of JP5494848B2 publication Critical patent/JP5494848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、ヘテロ接合を有する半導体装置に関する。   The present invention relates to a semiconductor device having a heterojunction.

本発明の背景となる従来技術として、本出願人が出願した下記特許文献1がある。   As a prior art as the background of the present invention, there is the following Patent Document 1 filed by the present applicant.

従来技術は、N型の炭化珪素基板領域上にN型のエピタキシャル領域が形成された半導体基体の一主面に、N型の多結晶シリコン領域が接するように形成されており、エピタキシャル領域とN型の多結晶シリコン領域とはヘテロ接合をしている。また、このヘテロ接合の端部に接するようにP型の電界緩和領域が形成されている。さらに、N型炭化珪素基板領域の裏面には裏面電極が、多結晶シリコン領域の表面には表面電極が形成されている。 The prior art is formed such that an N-type polycrystalline silicon region is in contact with one main surface of a semiconductor substrate in which an N -type epitaxial region is formed on an N + -type silicon carbide substrate region. And the N-type polycrystalline silicon region are in a heterojunction. A P-type electric field relaxation region is formed so as to be in contact with the end portion of the heterojunction. Further, a back electrode is formed on the back surface of the N + -type silicon carbide substrate region, and a front electrode is formed on the surface of the polycrystalline silicon region.

上記のような構成の従来技術において、裏面電極をカソード、表面電極をアノードとすると、例えばカソードを接地してアノードに正電位を印加した場合は、ダイオードの順方向特性に相当する導通特性が得られる。逆にアノードに負電位を印加した場合は、ダイオードの逆方向特性に相当する素子特性が得られており、さらにP型の電界緩和領域をヘテロ接合の端部に接するように形成することによって、ヘテロ接合の端部にエピタキシャル領域から拡がる電界が集中しないように電界を緩和している。   In the conventional technology having the above configuration, when the back electrode is a cathode and the front electrode is an anode, for example, when a positive potential is applied to the anode with the cathode grounded, a conduction characteristic corresponding to the forward characteristic of the diode is obtained. It is done. On the contrary, when a negative potential is applied to the anode, element characteristics corresponding to the reverse characteristics of the diode are obtained, and further, by forming a P-type electric field relaxation region so as to be in contact with the end of the heterojunction, The electric field is relaxed so that the electric field spreading from the epitaxial region does not concentrate at the end of the heterojunction.

この従来技術においては、多結晶シリコン領域の不純物濃度や導電型を変えることにより、例えば所定の逆方向特性(それに応じた順方向特性)を有するダイオードを任意に調整できるため、ショットキー接合によるダイオードに比べて、必要に応じて最適な耐圧系に調整できるという利点を持つ。   In this prior art, by changing the impurity concentration and conductivity type of the polycrystalline silicon region, for example, a diode having a predetermined reverse characteristic (forward characteristic corresponding thereto) can be arbitrarily adjusted. Compared to the above, there is an advantage that it can be adjusted to an optimum withstand voltage system as required.

特開2003−318413号公報JP 2003-318413 A

多結晶シリコン領域とエピタキシャル領域との間で得られる逆方向特性すなわち耐圧を、1次元の接合面で得られる理想的な耐圧に近づけるためは、多面的な形状効果による耐圧低下を極力抑える必要があり、多結晶シリコン領域端部に形成された電界緩和領域の不純物濃度を小さくすることが有効である。   In order to bring the reverse characteristics obtained between the polycrystalline silicon region and the epitaxial region, that is, the withstand voltage close to the ideal withstand voltage obtained at the one-dimensional joint surface, it is necessary to suppress the withstand voltage drop due to the multifaceted shape effect as much as possible. It is effective to reduce the impurity concentration of the electric field relaxation region formed at the end of the polycrystalline silicon region.

しかしながら、従来構造においては、電界緩和領域の不純物濃度を小さくしてエピタキシャル領域と電界緩和領域との間で保持できる耐圧を高めようとすると、電界緩和領域全域に空乏層が広がり、ヘテロ接合の端部がエピタキシャル領域に広がっていた電界にさらされるため、その端部におけるリーク電流が増大してしまう。すなわち、従来構造においては、電界緩和領域によってエピタキシャル領域の耐圧性能を向上する効果と、多結晶シリコン領域端部で生じる漏れ電流を防止する効果は相反する関係にあった。   However, in the conventional structure, if the impurity concentration in the electric field relaxation region is decreased to increase the breakdown voltage that can be maintained between the epitaxial region and the electric field relaxation region, a depletion layer spreads over the entire electric field relaxation region, and the heterojunction ends. Since the portion is exposed to the electric field spreading in the epitaxial region, the leakage current at the end portion increases. That is, in the conventional structure, the effect of improving the breakdown voltage performance of the epitaxial region by the electric field relaxation region and the effect of preventing the leakage current generated at the end portion of the polycrystalline silicon region have a conflicting relationship.

本発明は、上記のような従来技術の問題を解決するためになされたものであり、第一の半導体領域の耐圧性能を向上する効果と、該第一の半導体領域とヘテロ接合を形成する第二の半導体領域端部で生じる漏れ電流を防止する効果を両立することが可能な半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and has an effect of improving the breakdown voltage performance of the first semiconductor region and a first method of forming a heterojunction with the first semiconductor region. An object of the present invention is to provide a semiconductor device capable of achieving both the effects of preventing leakage current generated at the end of the second semiconductor region.

上記課題を解決するために、本発明の一態様によれば、第一導電型の半導体基体と、半導体基体とはバンドギャップが異なる半導体材料からなり、半導体基体の一主面とヘテロ接合する第二導電型のヘテロ半導体領域とを有する半導体装置において、へテロ接合面の外周部の半導体基体中に設けられる第二導電型の電界緩和領域と、電界緩和領域に全体を覆われ、かつへテロ接合面の端部に接し、電界緩和領域の不純物濃度よりも高濃度である第二導電型のパンチスルー防止領域とを有し、へテロ半導体領域とパンチスルー防止領域がオーミック接続している半導体装置が提供される。   In order to solve the above-described problem, according to one aspect of the present invention, the first conductive type semiconductor substrate and the semiconductor substrate are made of a semiconductor material having a different band gap and are heterojunctioned with one main surface of the semiconductor substrate. In a semiconductor device having a two-conductivity-type hetero semiconductor region, a second-conductivity-type electric field relaxation region provided in the semiconductor substrate at the outer peripheral portion of the heterojunction surface, and the electric field relaxation region are entirely covered and are hetero A semiconductor having a second conductivity type punch-through prevention region that is in contact with the end of the bonding surface and having a higher concentration than the impurity concentration of the electric field relaxation region, and the hetero semiconductor region and the punch-through prevention region are in ohmic contact An apparatus is provided.

本発明によれば、第一の半導体領域の耐圧性能を向上する効果と、該第一の半導体領域とヘテロ接合を形成する第二の半導体領域端部で生じる漏れ電流を防止する効果を両立することが可能な半導体装置を提供することができる。   According to the present invention, both the effect of improving the breakdown voltage performance of the first semiconductor region and the effect of preventing leakage current generated at the end of the second semiconductor region forming a heterojunction with the first semiconductor region are achieved. It is possible to provide a semiconductor device that can be used.

本発明の第1の実施の形態を示す断面図である。It is sectional drawing which shows the 1st Embodiment of this invention. 本発明の第1の実施の形態を有するチップ表面図である。It is a chip | tip surface view which has the 1st Embodiment of this invention. 本発明の第1の別の実施の形態を示す断面図である。It is sectional drawing which shows the 1st another embodiment of this invention. 本発明の第1のさらに別の実施の形態を示す断面図である。It is sectional drawing which shows the 1st further another embodiment of this invention. 本発明の第1のさらに別の実施の形態を示す断面図である。It is sectional drawing which shows the 1st further another embodiment of this invention. 本発明の第2の実施の形態を示す断面図である。It is sectional drawing which shows the 2nd Embodiment of this invention. 本発明の第2の別の実施の形態を示す断面図である。It is sectional drawing which shows the 2nd another embodiment of this invention. 本発明の第3の実施の形態を示す断面図である。It is sectional drawing which shows the 3rd Embodiment of this invention. 本発明の第3のさらに別の実施の形態を示す断面図である。It is sectional drawing which shows the 3rd further another embodiment of this invention.

以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.

(第1の実施の形態)
図1は本発明による半導体装置の第1の実施の形態の断面構造を示し、図2はそのチップ表面を示している。図1に示す構造は、例えば図2に示すような半導体チップにおいて、線分A−A’の半導体チップの外周端部の周辺構造として形成される。本実施の形態においては、炭化珪素を基板材料とした半導体装置を一例として説明する。
(First embodiment)
FIG. 1 shows a cross-sectional structure of a first embodiment of a semiconductor device according to the present invention, and FIG. 2 shows a chip surface thereof. The structure shown in FIG. 1 is formed as a peripheral structure of an outer peripheral end portion of a semiconductor chip of line segment AA ′ in a semiconductor chip as shown in FIG. 2, for example. In this embodiment, a semiconductor device using silicon carbide as a substrate material will be described as an example.

例えば炭化珪素のポリタイプが4HタイプのN型である基板領域1上にN型のエピタキシャル領域2が形成されている。基板領域1としては、例えば抵抗率が数mから数10mΩcm、厚さが200〜400μm程度のものを用いる。エピタキシャル領域2としては、例えばN型の不純物濃度が1×1015〜1×1018cm−3、厚みが数〜数10μmのものを用いる。なお、本実施の形態では、一例として基板領域1上にエピタキシャル領域2を形成した半導体基体100で説明するが、抵抗率の大きさに関わらず、基板領域1のみで形成された半導体基体100を使用してもかまわない。 For example, an N type epitaxial region 2 is formed on a substrate region 1 of silicon carbide whose polytype is 4H type N + type. As the substrate region 1, for example, a substrate having a resistivity of several meters to several tens of mΩcm and a thickness of about 200 to 400 μm is used. As the epitaxial region 2, for example, an N-type impurity concentration of 1 × 10 15 to 1 × 10 18 cm −3 and a thickness of several to several tens of μm are used. In the present embodiment, the semiconductor substrate 100 in which the epitaxial region 2 is formed on the substrate region 1 will be described as an example. However, the semiconductor substrate 100 formed only in the substrate region 1 is used regardless of the resistivity. You can use it.

エピタキシャル領域2の基板領域1との接合面に対向する主面に接するように、第二の半導体層の一例として炭化珪素よりもバンドギャップの小さい第一のヘテロ半導体領域3が堆積されている。この第一のヘテロ半導体領域3には不純物が導入されており、ここではP型でかつ高不純物濃度にドープされている。エピタキシャル領域2と第一のヘテロ半導体領域3の接合部は、炭化珪素と多結晶シリコンのバンドギャップが異なる材料によるヘテロ接合からなっており、その接合界面にはエネルギー障壁が存在している。なお、図2においては、エピタキシャル領域2中に形成される各領域の位置関係を判りやすくするために、第一のヘテロ半導体領域3およびその上に積層される表面金属電極8は省略した構造を示している。   A first hetero semiconductor region 3 having a band gap smaller than that of silicon carbide is deposited as an example of the second semiconductor layer so as to be in contact with the main surface of the epitaxial region 2 facing the bonding surface with the substrate region 1. Impurities are introduced into the first hetero semiconductor region 3, which is P-type and doped at a high impurity concentration. The junction between the epitaxial region 2 and the first hetero semiconductor region 3 is formed of a hetero junction made of materials having different band gaps between silicon carbide and polycrystalline silicon, and an energy barrier exists at the junction interface. In FIG. 2, the first hetero semiconductor region 3 and the surface metal electrode 8 stacked on the first hetero semiconductor region 3 are omitted in order to facilitate understanding of the positional relationship between the regions formed in the epitaxial region 2. Show.

また、本実施の形態においては、エピタキシャル領域2と第一のヘテロ半導体領域3の接合部の外周端部に接するように、P型のパンチスルー防止領域4と、このパンチスルー防止領域4よりは不純物濃度が小さいP型の電界緩和領域5とが形成されている。また、本実施の形態においては、第一のヘテロ半導体領域3とパンチスルー防止領域4とが共に高不純物濃度で形成されており、互いにオーミック接続している。また、本実施の形態においては、図2からも判るように、パンチスルー領域4並びに電界緩和領域5は環状に形成されている。なお、図1においては、パンチスルー防止領域4とエピタキシャル領域2とが接しない場合を例示しているが、パンチスルー防止領域4の一部がエピタキシャル領域2と接していても良い。また、電界緩和領域5の外周には、例えばP型のガードリング領域6が形成されている。本実施の形態においては、ガードリング領域6は2本のフローティングリングによって構成された場合を示しているが、特に何本で構成されていてもかまわないし、無くてもかまわない。また、ガードリング領域6の深さについても、電界緩和領域5と同等の場合を示しているが、電界緩和領域5に比べて、深くても浅くてもかまわない。ただし、ガードリング領域6を形成する場合、パンチスルー防止領域4と電界緩和領域5のいずれか、もしくは両方と同時に形成することで、製造工程を簡略化することが可能となる。 In the present embodiment, the P + -type punch-through prevention region 4 and the punch-through prevention region 4 are in contact with the outer peripheral end of the junction between the epitaxial region 2 and the first hetero semiconductor region 3. Is formed with a P type electric field relaxation region 5 having a low impurity concentration. In the present embodiment, the first hetero semiconductor region 3 and the punch-through prevention region 4 are both formed at a high impurity concentration and are ohmically connected to each other. In the present embodiment, as can be seen from FIG. 2, the punch-through region 4 and the electric field relaxation region 5 are formed in an annular shape. 1 illustrates a case where the punch-through prevention region 4 and the epitaxial region 2 are not in contact with each other, but a part of the punch-through prevention region 4 may be in contact with the epitaxial region 2. Further, for example, a P-type guard ring region 6 is formed on the outer periphery of the electric field relaxation region 5. In the present embodiment, the guard ring region 6 is constituted by two floating rings. However, the guard ring region 6 may be constituted by any number or may be omitted. Further, the depth of the guard ring region 6 is also equivalent to that of the electric field relaxation region 5, but may be deeper or shallower than the electric field relaxation region 5. However, when the guard ring region 6 is formed, the manufacturing process can be simplified by forming either the punch-through prevention region 4 and / or the electric field relaxation region 5 at the same time.

また、本実施の形態においては基板領域1の裏面側には裏面金属電極7が形成されている。裏面金属電極7は基板領域1とオーミック接続されており、金属材料としては、例えばTi(チタン)とその上にNi(ニッケル)を堆積したもの等を用いることができる。   In the present embodiment, a back metal electrode 7 is formed on the back side of the substrate region 1. The back surface metal electrode 7 is ohmically connected to the substrate region 1. As the metal material, for example, Ti (titanium) and Ni (nickel) deposited thereon can be used.

また、第一のヘテロ半導体領域3表面には表面金属電極8が形成されている。表面金属電極8は第一のヘテロ半導体領域3とオーミック接続されており、金属材料としては、例えばTi(チタン)とその上にAl(アルミ)を堆積したもの等を用いることができる。   A surface metal electrode 8 is formed on the surface of the first hetero semiconductor region 3. The surface metal electrode 8 is ohmically connected to the first hetero semiconductor region 3, and as the metal material, for example, Ti (titanium) and Al (aluminum) deposited thereon can be used.

また、図1においては、第一のヘテロ半導体領域3の端部が層間絶縁膜9に乗り上げるように形成されているが、例えば図3に示すように、特に層間絶縁膜9が形成されていなくてもかまわない。   Further, in FIG. 1, the end of the first hetero semiconductor region 3 is formed so as to run over the interlayer insulating film 9. However, as shown in FIG. 3, for example, the interlayer insulating film 9 is not particularly formed. It doesn't matter.

このように、本実施の形態では表面金属電極8をアノード、裏面金属電極7をカソードとした縦型のダイオードを構成する場合について説明する。   As described above, in the present embodiment, a description will be given of a case where a vertical diode having the front surface metal electrode 8 as an anode and the back surface metal electrode 7 as a cathode is configured.

次に、本実施の形態の動作について説明する。   Next, the operation of the present embodiment will be described.

まず、裏面金属電極7を接地電位とし、表面金属電極8に正電位を印加すると、ダイオードは順方向特性を示し、ショットキー接合ダイオードのごとく動作する。つまり、ヘテロ接合部からエピタキシャル領域2並びに第一のヘテロ半導体領域3にそれぞれ広がる内蔵電位の和から決まる電圧降下で電流を流すことができる。例えば本実施の形態においては、ヘテロ接合部からエピタキシャル領域2並びに第一のヘテロ半導体領域3にそれぞれ広がる内蔵電位の和が約1.3Vであり、それに応じた電圧降下で順方向電流が流れる。このとき、電界緩和領域5とエピタキシャル領域2との間にも順バイアスが印加されているが、ともに炭化珪素からなるPN接合の内蔵電位が約3Vとヘテロ接合部より高いので、PN接合は動作しない。つまり、本実施の形態においては、順方向動作時においてはモノポーラ型のダイオードとして動作する。   First, when the back surface metal electrode 7 is set to the ground potential and a positive potential is applied to the front surface metal electrode 8, the diode exhibits forward characteristics and operates like a Schottky junction diode. That is, the current can flow with a voltage drop determined by the sum of the built-in potentials extending from the heterojunction portion to the epitaxial region 2 and the first hetero semiconductor region 3. For example, in the present embodiment, the sum of the built-in potentials extending from the heterojunction portion to the epitaxial region 2 and the first hetero semiconductor region 3 is about 1.3 V, and a forward current flows with a voltage drop corresponding thereto. At this time, a forward bias is also applied between the electric field relaxation region 5 and the epitaxial region 2, but since the built-in potential of the PN junction made of silicon carbide is about 3V higher than the heterojunction portion, the PN junction operates. do not do. That is, in the present embodiment, it operates as a monopolar diode during forward operation.

次に、表面金属電極8を接地電位とし、裏面金属電極7に正電位を印加すると、ダイオードは逆方向特性を示し、遮断状態となる。つまり、裏面金属電極7に印加された電位に応じて、エピタキシャル領域2と第一のヘテロ半導体領域3とのヘテロ接合部、並びにエピタキシャル領域2と電界緩和領域5とのPN接合部から空乏層が伸張する。このとき、本実施の形態においては、電界緩和領域5の不純物濃度を小さくしているため、エピタキシャル領域2側だけでなく、電界緩和領域5側にも空乏層が伸びるため、電界緩和領域5とエピタキシャル領域2との接合部で最大電界となる外周端部の曲率が緩和され、平坦部での耐圧により近づけることができる。   Next, when the front surface metal electrode 8 is set to the ground potential and a positive potential is applied to the back surface metal electrode 7, the diode exhibits reverse characteristics and enters a cut-off state. That is, a depletion layer is formed from the heterojunction between the epitaxial region 2 and the first hetero semiconductor region 3 and the PN junction between the epitaxial region 2 and the electric field relaxation region 5 according to the potential applied to the back surface metal electrode 7. Stretch. At this time, in this embodiment, since the impurity concentration of the electric field relaxation region 5 is reduced, the depletion layer extends not only on the epitaxial region 2 side but also on the electric field relaxation region 5 side. The curvature of the outer peripheral end portion that becomes the maximum electric field at the junction with the epitaxial region 2 is relaxed, and can be made closer to the breakdown voltage at the flat portion.

このとき、従来構造では、本実施の形態のように電界緩和領域5の不純物濃度を小さくした場合、電界緩和領域5が全域空乏化すると、第一のヘテロ半導体領域3に空乏層が到達し、第一のヘテロ半導体領域3の端部での漏れ電流が流れ出す。特に、本実施の形態のように、第一のヘテロ半導体領域3として、結晶粒のかたまりである多結晶シリコンを用いた場合、外周端部において電界にさらされてしまうと、単一金属のショットキー金属や単結晶のシリコンなどに比べて、漏れ電流が急激に増大してしまう。しかし、本実施の形態においては、第一のヘテロ半導体領域3に接するように、パンチスルー防止領域4が形成されているため、空乏層の到達を防ぐことができる。つまり、本実施の形態においては、エピタキシャル領域2での耐圧を向上させつつ、第一のヘテロ半導体領域3の端部でのリーク電流の増大を防ぐことができるため、従来に比べて高い耐圧(遮断性)を実現することができる。   At this time, in the conventional structure, when the impurity concentration of the electric field relaxation region 5 is reduced as in the present embodiment, when the entire electric field relaxation region 5 is depleted, the depletion layer reaches the first hetero semiconductor region 3, Leakage current starts flowing at the end of the first hetero semiconductor region 3. In particular, when polycrystalline silicon that is a cluster of crystal grains is used as the first hetero semiconductor region 3 as in the present embodiment, if it is exposed to an electric field at the outer peripheral edge, a single metal shot Compared with key metals and single crystal silicon, the leakage current increases rapidly. However, in this embodiment, since the punch-through prevention region 4 is formed so as to be in contact with the first hetero semiconductor region 3, it is possible to prevent the depletion layer from reaching. That is, in the present embodiment, it is possible to prevent an increase in leakage current at the end portion of the first hetero semiconductor region 3 while improving the breakdown voltage in the epitaxial region 2, so that a higher breakdown voltage ( (Blocking property) can be realized.

さらに、本実施の形態においては、裏面金属電極7にさらに高い電位が印加され、エピタキシャル領域2と電界緩和領域5との間でアバランシェ降伏が生じた際に、生じた正孔はパンチスルー防止領域4を介してオーミック接続した第一のヘテロ半導体領域3に低抵抗で速やかに排出される。つまり、環状に形成されたパンチスルー防止領域4の外周全域でほぼ均一にアバランシェ降伏が起こるので、アバランシェ降伏電流の集中が起こりにくく、アバランシェ耐量を向上することができる。   Furthermore, in the present embodiment, when a higher potential is applied to the back surface metal electrode 7 and an avalanche breakdown occurs between the epitaxial region 2 and the electric field relaxation region 5, the generated holes are removed from the punch-through prevention region. The first hetero semiconductor region 3 that is ohmic-connected through 4 is quickly discharged with low resistance. That is, since the avalanche breakdown occurs almost uniformly in the entire outer periphery of the punch-through prevention region 4 formed in an annular shape, the concentration of avalanche breakdown current hardly occurs and the avalanche resistance can be improved.

このように、本実施の形態のような構造にすることによって、順方向特性は従来技術と同様の効果を有するのに加えて、逆方向特性の耐圧を向上することができる。なお、図1においては、図2のヘテロ半導体素子の中央部に形成されるヘテロダイオードが、外周部と同じP型高不純物濃度の第一のヘテロ半導体領域3で形成されている場合で説明してきたが、図4に示すように例えばN型の第二のヘテロ半導体領域10が形成されていても良い。つまり、第二のヘテロ半導体領域10は第一のヘテロ半導体領域3と導電型もしくは不純物濃度が異なっていても良い。   As described above, with the structure as in the present embodiment, the forward characteristics have the same effect as the conventional technique, and the breakdown voltage of the reverse characteristics can be improved. In FIG. 1, the case where the hetero diode formed in the central portion of the hetero semiconductor element of FIG. 2 is formed of the first hetero semiconductor region 3 having the same P-type high impurity concentration as the outer peripheral portion has been described. However, as shown in FIG. 4, for example, an N-type second hetero semiconductor region 10 may be formed. That is, the second hetero semiconductor region 10 may be different in conductivity type or impurity concentration from the first hetero semiconductor region 3.

以上、本実施の形態ではパンチスルー防止領域4をヘテロ半導体素子の外周部に用いる場合を例に説明してきたが、例えば、図5に示すように、ヘテロ半導体素子の外周部以外にも、第一のヘテロ半導体領域3もしくは第二のヘテロ半導体領域(10)の端部が形成された部分に接するように、パンチスルー防止領域4を形成することで、第一のヘテロ半導体領域3もしくは第二のヘテロ半導体領域(10)の端部における遮断性能を向上することが可能である。   As described above, in the present embodiment, the case where the punch-through prevention region 4 is used in the outer peripheral portion of the hetero semiconductor element has been described as an example. For example, as shown in FIG. By forming the punch-through prevention region 4 so as to be in contact with the end portion of one hetero semiconductor region 3 or the second hetero semiconductor region (10), the first hetero semiconductor region 3 or the second hetero semiconductor region 3 or the second hetero semiconductor region 3 or the second hetero semiconductor region 3 is formed. It is possible to improve the cutoff performance at the end of the hetero semiconductor region (10).

(第2の実施の形態)
図6は本発明による半導体装置の第2の実施の形態を示している。図6は第1の実施の形態の図1に対応した断面図である。本実施の形態においては、図1と同様の動作をする部分の説明は省略し、異なる特徴について詳しく説明する。
(Second Embodiment)
FIG. 6 shows a second embodiment of the semiconductor device according to the present invention. FIG. 6 is a cross-sectional view corresponding to FIG. 1 of the first embodiment. In the present embodiment, the description of the same operation as in FIG. 1 is omitted, and different features will be described in detail.

図6は図1で示したヘテロ接合ダイオードのヘテロ接合界面の一部に、ゲート絶縁膜11を介してゲート電極12を形成した、所謂トランジスタを構成している。図6に示すように、本実施の形態においてはエピタキシャル領域2に溝を形成した構成としているが、溝を形成しないいわゆるプレーナ型の構成でもかまわない。   FIG. 6 shows a so-called transistor in which a gate electrode 12 is formed on a part of the heterojunction interface of the heterojunction diode shown in FIG. As shown in FIG. 6, in this embodiment, a groove is formed in the epitaxial region 2, but a so-called planar type structure in which no groove is formed may be used.

次に、本実施の形態の動作について説明する。   Next, the operation of the present embodiment will be described.

本実施の形態においては、例えば表面金属電極8を接地し、裏面金属電極7に正電位を印加して使用する。   In the present embodiment, for example, the front surface metal electrode 8 is grounded, and a positive potential is applied to the back surface metal electrode 7 for use.

まず、ゲート電極12を例えば接地電位もしくは負電位とした場合、遮断状態を保持する。すなわち、第一のヘテロ半導体領域3とエピタキシャル領域2とのヘテロ接合界面には、それぞれ伝導電子に対するエネルギー障壁が形成されているためである。このとき、本実施の形態においては、第1の実施の形態で説明したように、第一のヘテロ半導体領域3の端部における漏れ電流特性が発生しないように、パンチスルー防止領域4を形成し、かつエピタキシャル領域2の平坦部の耐圧に近づけるように、電界緩和領域5が低不純物濃度で形成されているため、より高い遮断性を保持できる。   First, when the gate electrode 12 is set to a ground potential or a negative potential, for example, the cutoff state is maintained. That is, energy barriers for conduction electrons are formed at the heterojunction interface between the first hetero semiconductor region 3 and the epitaxial region 2. At this time, in the present embodiment, as described in the first embodiment, the punch-through prevention region 4 is formed so that the leakage current characteristic at the end of the first hetero semiconductor region 3 does not occur. In addition, since the electric field relaxation region 5 is formed with a low impurity concentration so as to approach the breakdown voltage of the flat portion of the epitaxial region 2, it is possible to maintain higher blocking performance.

次に、遮断状態から導通状態へと転じるべくゲート電極12に正電位を印加した場合、ゲート絶縁膜11を介して第一のヘテロ半導体領域3とエピタキシャル領域2が接するヘテロ接合界面までゲート電界が及ぶため、ゲート電極12近傍の第一のヘテロ半導体領域3並びにエピタキシャル領域2には伝導電子の反転層が形成される。すなわち、ゲート電極12近傍の第一のヘテロ半導体領域3とエピタキシャル領域2との接合界面における第一のヘテロ半導体領域3側のポテンシャルが押し下げられ、かつ、エピタキシャル領域2側のエネルギー障壁が急峻になることからエネルギー障壁中を伝導電子が導通することが可能となる。図6においては一例として、ゲート絶縁膜11に接するように第一のヘテロ半導体領域3を形成しているが、図7に示すように、ゲート絶縁膜11と第一のヘテロ半導体領域3との間に、第二のヘテロ半導体領域10を介していても良い。第二のヘテロ半導体領域10の導電型並びに不純物濃度はいずれでも良いが、例えばN型の高不純物濃度とすれば、電流が導通するチャネル部がより蓄積しやすく、駆動力が向上する。   Next, when a positive potential is applied to the gate electrode 12 to change from the cutoff state to the conduction state, the gate electric field is applied to the heterojunction interface where the first hetero semiconductor region 3 and the epitaxial region 2 are in contact via the gate insulating film 11. Therefore, an inversion layer of conduction electrons is formed in the first hetero semiconductor region 3 and the epitaxial region 2 in the vicinity of the gate electrode 12. That is, the potential on the first hetero semiconductor region 3 side at the junction interface between the first hetero semiconductor region 3 near the gate electrode 12 and the epitaxial region 2 is pushed down, and the energy barrier on the epitaxial region 2 side becomes steep. Therefore, conduction electrons can be conducted through the energy barrier. In FIG. 6, as an example, the first hetero semiconductor region 3 is formed so as to be in contact with the gate insulating film 11, but as illustrated in FIG. 7, the gate insulating film 11 and the first hetero semiconductor region 3 are separated from each other. The second hetero semiconductor region 10 may be interposed therebetween. The conductivity type and impurity concentration of the second hetero semiconductor region 10 may be any. However, for example, when the N-type high impurity concentration is used, the channel portion through which current is conducted is more easily accumulated and the driving force is improved.

次に、導通状態から遮断状態に移行すべく、再びゲート電極12を接地電位とすると、第一のヘテロ半導体領域3並びにエピタキシャル領域2のヘテロ接合界面に形成されていた伝導電子の反転状態が解除され、エネルギー障壁中のトンネリングが止まる。そして、第一のヘテロ半導体領域3からエピタキシャル領域2への伝導電子の流れが止まり、さらにエピタキシャル領域2中にあった伝導電子は炭化珪素基板1に流れ、枯渇すると、エピタキシャル領域2側にはヘテロ接合部から空乏層が広がり遮断状態となる。   Next, when the gate electrode 12 is set to the ground potential again to shift from the conductive state to the cut-off state, the inversion state of the conduction electrons formed at the heterojunction interface of the first hetero semiconductor region 3 and the epitaxial region 2 is released. And tunneling in the energy barrier stops. Then, the flow of conduction electrons from the first hetero semiconductor region 3 to the epitaxial region 2 stops, and further, the conduction electrons in the epitaxial region 2 flow to the silicon carbide substrate 1 and when they are depleted, the epitaxial region 2 side becomes heterogeneous. A depletion layer spreads from the junction and enters a cut-off state.

また、本実施の形態においては、従来構造と同様に、例えば表面金属電極8を接地し、裏面金属電極7に負電位が印加された逆方向導通(還流動作)も可能である。   In the present embodiment, similarly to the conventional structure, for example, reverse conduction (reflux operation) in which the front surface metal electrode 8 is grounded and a negative potential is applied to the rear surface metal electrode 7 is also possible.

例えば表面金属電極8並びにゲート電極12を接地電位とし、裏面金属電極7に所定の正電位が印加されると、伝導電子に対するエネルギー障壁は消滅し、エピタキシャル領域2側から第一のヘテロ半導体領域3側に伝導電子が流れ、逆導通状態となる。このとき、正孔の注入はなく、伝導電子のみで導通するため、逆導通状態から遮断状態に移行する際の逆回復電流による損失も小さい。なお、上述したゲート電極12を接地にせずに制御電極として使用する場合も可能である。   For example, when the front surface metal electrode 8 and the gate electrode 12 are set to the ground potential and a predetermined positive potential is applied to the back surface metal electrode 7, the energy barrier to the conduction electrons disappears, and the first hetero semiconductor region 3 from the epitaxial region 2 side disappears. Conduction electrons flow to the side, and a reverse conduction state is established. At this time, since there is no injection of holes and conduction is made only with conduction electrons, loss due to reverse recovery current when shifting from the reverse conduction state to the cutoff state is small. Note that the above-described gate electrode 12 may be used as a control electrode without being grounded.

(第3の実施の形態)
図8は本発明による半導体装置の第3の実施の形態を示している。図8は第2の実施の形態の図6に対応した断面図である。本実施の形態においては、図6と同様の動作をする部分の説明は省略し、異なる特徴について詳しく説明する。
(Third embodiment)
FIG. 8 shows a third embodiment of the semiconductor device according to the present invention. FIG. 8 is a cross-sectional view corresponding to FIG. 6 of the second embodiment. In the present embodiment, the description of the same operation as in FIG. 6 is omitted, and different features will be described in detail.

第2の実施の形態においては、一例としてヘテロ接合部をゲート駆動するスイッチの一部に、第2の実施の形態で説明した漏れ電流を低減する構成を使用した場合を説明してきたが、図8のようにヘテロ接合部をスイッチ素子の一部に内蔵された還流ダイオードとして使用しても良い。図8は炭化珪素からなるMOSFETにヘテロダイオードを内蔵した構成をしている。つまり、炭化珪素からなる第一導電型の基板領域21並びにエピタキシャル領域22からなる半導体基体100に、第二導電型のベース領域23と第一導電型のソース領域24が形成されており、エピタキシャル領域22並びにベース領域23並びにソース領域24に接するようにゲート絶縁膜25を介してゲート電極26が形成されている。また、ベース領域23とソース領域24はソース電極27に接続されており、基板領域21はドレイン電極28に接続されている。さらに、エピタキシャル領域22とはバンドギャップが異なり、例えば多結晶シリコンからなる第一のヘテロ半導体領域29がエピタキシャル領域22とヘテロ接合を形成するように配置されている。なお、第一のヘテロ半導体領域29はソース電極27に接続されている。さらに、本実施の形態においては、第一のヘテロ半導体領域29の端部に接するようにパンチスルー防止領域30と電界緩和領域31が形成されている。なお、図8においては、電界緩和領域31とベース領域23を同時に形成し、共通化した構造を示しているが、別構造であっても良い。このように、MOSFETの内蔵還流ダイオードとしてヘテロ接合を形成した場合においてもパンチスルー防止領域30を形成することによって、漏れ電流を防止することができる。したがって、第2の実施の形態と同様に、遮断状態におけるヘテロ接合部での漏れ電流を低減することができるため、遮断性が高い半導体装置を提供することができる。   In the second embodiment, as an example, the case where the configuration for reducing the leakage current described in the second embodiment is used for a part of the switch for driving the gate of the heterojunction has been described. As shown in FIG. 8, the heterojunction may be used as a freewheeling diode built in a part of the switch element. FIG. 8 shows a structure in which a hetero diode is built in a MOSFET made of silicon carbide. That is, the second conductivity type base region 23 and the first conductivity type source region 24 are formed in the semiconductor substrate 100 composed of the first conductivity type substrate region 21 and the epitaxial region 22 made of silicon carbide. A gate electrode 26 is formed through a gate insulating film 25 so as to be in contact with the base 22, the base region 23, and the source region 24. The base region 23 and the source region 24 are connected to the source electrode 27, and the substrate region 21 is connected to the drain electrode 28. Further, the band gap is different from that of the epitaxial region 22, and the first hetero semiconductor region 29 made of, for example, polycrystalline silicon is arranged so as to form a hetero junction with the epitaxial region 22. Note that the first hetero semiconductor region 29 is connected to the source electrode 27. Further, in the present embodiment, the punch-through prevention region 30 and the electric field relaxation region 31 are formed so as to be in contact with the end portion of the first hetero semiconductor region 29. In FIG. 8, the electric field relaxation region 31 and the base region 23 are formed at the same time and a common structure is shown, but another structure may be used. Thus, even when a heterojunction is formed as a built-in free-wheeling diode of a MOSFET, leakage current can be prevented by forming the punch-through prevention region 30. Therefore, as in the second embodiment, since the leakage current at the heterojunction portion in the cut-off state can be reduced, a semiconductor device with high cut-off performance can be provided.

以上のように、いずれにしても、トランジスタを構成する各部において、少なくとも一部でも本実施の形態で説明した例えば多結晶シリコンからなる第一のヘテロ半導体領域29の端部にパンチスルー防止領域30が含まれていれば、漏れ電流低減の効果をもたらすことが可能である。   As described above, in any case, in each part constituting the transistor, at least a part of the first hetero semiconductor region 29 made of, for example, polycrystalline silicon described in the present embodiment is at least partly described. Is included, it is possible to bring about an effect of reducing leakage current.

なお、図8においては、ヘテロ半導体素子の中央部に形成されるヘテロダイオードが、外周部と同じP型高不純物濃度の第一のヘテロ半導体領域29で形成されている場合で説明してきたが、図9に示すように例えばN型の第二のヘテロ半導体領域32が形成されていても良い。つまり、第二のヘテロ半導体領域32は第一のヘテロ半導体領域29と導電型もしくは不純物濃度が異なっていても良い。   In FIG. 8, the hetero diode formed in the central portion of the hetero semiconductor element has been described as being formed by the first hetero semiconductor region 29 having the same P-type high impurity concentration as the outer peripheral portion. As shown in FIG. 9, for example, an N-type second hetero semiconductor region 32 may be formed. That is, the second hetero semiconductor region 32 may be different in conductivity type or impurity concentration from the first hetero semiconductor region 29.

以上説明したように第1の実施の形態から第3の実施の形態では、エピタキシャル領域2(もしくは22)と、該エピタキシャル領域2(もしくは22)とはバンドギャップの異なる第一のヘテロ半導体領域3(もしくは29)からなるヘテロ接合を有し、エピタキシャル領域2(もしくは22)と第一のヘテロ半導体領域3(もしくは29)との接合面の端部に接するように、エピタキシャル領域2(もしくは22)中に第二導電型のパンチスルー防止領域4(もしくは30)を介して第二導電型の電界緩和領域5(もしくは31)を有し、少なくともパンチスルー防止領域4(もしくは30)は電界緩和領域5(もしくは31)よりも不純物濃度が同等以上になっている。このような構成によりエピタキシャル領域2(もしくは22)の耐圧性能を向上する効果と、多結晶シリコン領域からなる第一のヘテロ半導体領域3(もしくは29)の端部で生じる漏れ電流を防止する効果を両立することが可能であり、遮断時の特性を向上することができる。   As described above, in the first to third embodiments, the epitaxial region 2 (or 22) and the first hetero semiconductor region 3 having a different band gap from the epitaxial region 2 (or 22). The epitaxial region 2 (or 22) has a heterojunction made of (or 29) and is in contact with the end of the junction surface between the epitaxial region 2 (or 22) and the first hetero semiconductor region 3 (or 29). It has a second conductivity type electric field relaxation region 5 (or 31) through a second conductivity type punch through prevention region 4 (or 30), and at least the punch through prevention region 4 (or 30) is an electric field relaxation region. The impurity concentration is equal to or higher than 5 (or 31). With such a configuration, there is an effect of improving the breakdown voltage performance of the epitaxial region 2 (or 22) and an effect of preventing leakage current generated at the end of the first hetero semiconductor region 3 (or 29) made of the polycrystalline silicon region. It is possible to achieve both, and the characteristics at the time of interruption can be improved.

また、少なくともエピタキシャル領域2(もしくは22)と接する第一のヘテロ半導体領域3(もしくは29)の端部が第二導電型になっている。このような構成によりエピタキシャル領域2(もしくは22)でアバランシェ降伏が起こった場合、生じた少数キャリアをパンチスルー防止領域4(もしくは30)並びに第一のヘテロ半導体領域3(もしくは29)を通して、速やかに排出できるため、アバランシェ耐量が向上する。   Further, at least an end portion of the first hetero semiconductor region 3 (or 29) in contact with the epitaxial region 2 (or 22) is of the second conductivity type. When an avalanche breakdown occurs in the epitaxial region 2 (or 22) by such a configuration, the generated minority carriers are promptly passed through the punch-through prevention region 4 (or 30) and the first hetero semiconductor region 3 (or 29). Since it can be discharged, the avalanche resistance is improved.

また、少なくともエピタキシャル領域2(もしくは22)と接する第一のヘテロ半導体領域3(もしくは29)の端部が、パンチスルー防止領域4(もしくは30)とオーミック接続している。このような構成によりエピタキシャル領域2(もしくは22)でアバランシェ降伏が起こった場合、生じた少数キャリアをパンチスルー防止領域4(もしくは30)並びに第一のヘテロ半導体領域3(もしくは29)を通して、さらに速やかに排出できるため、さらにアバランシェ耐量が向上する。   Further, at least an end portion of the first hetero semiconductor region 3 (or 29) in contact with the epitaxial region 2 (or 22) is in ohmic contact with the punch-through prevention region 4 (or 30). When an avalanche breakdown occurs in the epitaxial region 2 (or 22) by such a configuration, the generated minority carriers are further promptly passed through the punch-through prevention region 4 (or 30) and the first hetero semiconductor region 3 (or 29). Therefore, the avalanche resistance is further improved.

また、エピタキシャル領域2(もしくは22)を含んでなる半導体基体100と、半導体基体100の一主面に接して該半導体基体100とはバンドギャップの異なる第二のヘテロ半導体領域10(図4)とを有し、半導体基体100と第二のヘテロ半導体領域10との接合端部の少なくとも最外周部近傍において、第一のヘテロ半導体領域3(もしくは29)並びにパンチスルー防止領域4(もしくは30)並びに電界緩和領域5(もしくは31)がそれぞれ形成されている。このような構成により前述の構成をヘテロ半導体素子の外周部に適用することによって、具体的な構造として前述の効果が得られる。   Also, a semiconductor substrate 100 including the epitaxial region 2 (or 22), and a second hetero semiconductor region 10 (FIG. 4) in contact with one main surface of the semiconductor substrate 100 and having a different band gap from the semiconductor substrate 100 The first hetero semiconductor region 3 (or 29), the punch-through prevention region 4 (or 30) and at least the vicinity of the outermost peripheral portion of the junction end between the semiconductor substrate 100 and the second hetero semiconductor region 10 and Electric field relaxation regions 5 (or 31) are respectively formed. By applying the above-described configuration to the outer peripheral portion of the hetero semiconductor element with such a configuration, the above-described effects can be obtained as a specific structure.

また、第2および第3の実施の形態では、第一のヘテロ半導体領域3(もしくは29)(もしくは図4の第二のヘテロ半導体領域10)と半導体基体100との接合部の一部にゲート絶縁膜11または25を介してゲート電極12または26が形成されている。このような構成により前述の構成を三端子ヘテロ半導体素子の外周部に適用することによって、具体的な構造として前述の効果が得られる。   In the second and third embodiments, a gate is formed at a part of the junction between the first hetero semiconductor region 3 (or 29) (or the second hetero semiconductor region 10 in FIG. 4) and the semiconductor substrate 100. A gate electrode 12 or 26 is formed via the insulating film 11 or 25. By applying the above-described configuration to the outer peripheral portion of the three-terminal hetero semiconductor element with such a configuration, the above-described effects can be obtained as a specific structure.

また、第3の実施の形態では、エピタキシャル領域22を含んでなる半導体基体100と、該半導体基体100の所定領域に、第二導電型のベース領域23並びに第一導電型のソース領域24とを有し、少なくとも半導体基体100並びにソース領域24に接するようにゲート絶縁膜25を介してゲート電極26を有し、半導体基体100と第一のヘテロ半導体領域29との接合端部の少なくとも最外周部近傍において、パンチスルー防止領域30並びに電界緩和領域31がそれぞれ形成されている。このような構成により前述の構成を三端子半導体素子の内蔵ダイオードとして適用することによって、具体的な構造として前述の効果が得られる。   In the third embodiment, the semiconductor substrate 100 including the epitaxial region 22, and the second conductivity type base region 23 and the first conductivity type source region 24 are provided in a predetermined region of the semiconductor substrate 100. A gate electrode 26 through a gate insulating film 25 so as to be in contact with at least the semiconductor substrate 100 and the source region 24, and at least an outermost peripheral portion of a junction end portion between the semiconductor substrate 100 and the first hetero semiconductor region 29. In the vicinity, a punch-through prevention region 30 and an electric field relaxation region 31 are formed. By applying the above-described configuration as a built-in diode of a three-terminal semiconductor element with such a configuration, the above-described effects can be obtained as a specific structure.

また、第3の実施の形態では、エピタキシャル領域22を含んでなる半導体基体100と、該半導体基体100の所定領域に、第二導電型のベース領域23並びに第一導電型のソース領域24とを有し、少なくとも半導体基体100並びにソース領域24に接するようにゲート絶縁膜25を介してゲート電極26を有し、半導体基体100に接して該半導体基体100とはバンドギャップの異なる第二のヘテロ半導体領域32(図9)を有し、半導体基体100と第二のヘテロ半導体領域10との接合端部の少なくとも最外周部近傍において、第一のヘテロ半導体領域29並びにパンチスルー防止領域30並びに電界緩和領域31がそれぞれ形成されている。このような構成により前述の構成を三端子半導体素子の内蔵ダイオードとして適用することによって、具体的な構造として前述の効果が得られる。   In the third embodiment, the semiconductor substrate 100 including the epitaxial region 22, and the second conductivity type base region 23 and the first conductivity type source region 24 are provided in a predetermined region of the semiconductor substrate 100. A second hetero semiconductor having a gate electrode 26 through a gate insulating film 25 so as to be in contact with at least the semiconductor substrate 100 and the source region 24 and having a band gap different from that of the semiconductor substrate 100 The first hetero semiconductor region 29, the punch-through prevention region 30, and the electric field relaxation are provided at least in the vicinity of the outermost peripheral portion of the junction end between the semiconductor substrate 100 and the second hetero semiconductor region 10. Regions 31 are respectively formed. By applying the above-described configuration as a built-in diode of a three-terminal semiconductor element with such a configuration, the above-described effects can be obtained as a specific structure.

また、第1から第3の実施の形態では、エピタキシャル領域2(もしくは22)が炭化珪素からなっている。このような構成により一般的な材料で容易に実現可能である。   In the first to third embodiments, epitaxial region 2 (or 22) is made of silicon carbide. Such a configuration can be easily realized with a general material.

さらに、第一のヘテロ半導体領域3(もしくは29)、第二のヘテロ半導体領域10が単結晶シリコン、アモルファスシリコン、多結晶シリコンの少なくともいずれかからなっている。このような構成により一般的な材料かつプロセスで容易に実現可能である。   Further, the first hetero semiconductor region 3 (or 29) and the second hetero semiconductor region 10 are made of at least one of single crystal silicon, amorphous silicon, and polycrystalline silicon. Such a configuration can be easily realized by a general material and process.

なお、上記実施の形態のエピタキシャル領域2、22が特許請求の範囲の第一の半導体領域に、第一のヘテロ半導体領域3、29が第二の半導体領域に、第二のヘテロ半導体領域10がヘテロ半導体領域に相当する。   The epitaxial regions 2 and 22 of the above-described embodiment are the first semiconductor region of the claims, the first hetero semiconductor regions 3 and 29 are the second semiconductor region, and the second hetero semiconductor region 10 is the second semiconductor region 10. It corresponds to a hetero semiconductor region.

なお、第1の実施の形態から第3の実施の形態においては、炭化珪素を基板材料とした半導体装置を一例として説明したが、基板材料はシリコン、シリコンゲルマン、窒化ガリウム、ダイヤモンドなどその他の半導体材料でもかまわない。また、全ての実施の形態において、炭化珪素のポリタイプとして4Hタイプを用いて説明したが、6H、3C等その他のポリタイプでも構わない。また、全ての実施の形態において、裏面金属電極7(もしくはドレイン電極28)と表面金属電極8(もしくはソース電極27)とをエピタキシャル領域2(もしくはエピタキシャル領域22)を挟んで対向するように配置し、両者間の電流を縦方向に流す所謂縦型構造で説明してきたが、例えば裏面金属電極7(もしくはドレイン電極28)と表面金属電極8(もしくはソース電極27)とを同一主面上に配置し、両者間の電流を横方向に流す所謂横型構造であってもかまわない。また、第一のヘテロ半導体領域3、29、第二のヘテロ半導体領域10に用いる材料として多結晶シリコンを用いた例で説明したが、炭化珪素とヘテロ接合を形成する半導体材料(例えば、単結晶シリコン、ゲルマニウム、シリコンゲルマンなど)であれば、各々別々の材料でも、どの材料でもかまわない。また、一例として、エピタキシャル領域2、22としてN型の炭化珪素を、第一のヘテロ半導体領域3、29としてP型の多結晶シリコンを用いて説明しているが、N型の炭化珪素とN型の多結晶シリコン、P型の炭化珪素とN型の多結晶シリコン、P型の炭化珪素とP型の多結晶シリコンという組み合わせでもよい。   In the first to third embodiments, the semiconductor device using silicon carbide as the substrate material has been described as an example. However, the substrate material may be other semiconductors such as silicon, silicon germane, gallium nitride, and diamond. Materials can be used. In all the embodiments, the 4H type is used as the polytype of silicon carbide, but other polytypes such as 6H and 3C may be used. In all the embodiments, the back surface metal electrode 7 (or the drain electrode 28) and the front surface metal electrode 8 (or the source electrode 27) are arranged to face each other with the epitaxial region 2 (or the epitaxial region 22) interposed therebetween. The so-called vertical structure in which the current between them is passed in the vertical direction has been described. For example, the back surface metal electrode 7 (or drain electrode 28) and the front surface metal electrode 8 (or source electrode 27) are arranged on the same main surface. However, a so-called horizontal structure in which a current between the two flows in the horizontal direction may be used. Moreover, although the example using polycrystalline silicon as the material used for the first hetero semiconductor regions 3 and 29 and the second hetero semiconductor region 10 has been described, a semiconductor material that forms a heterojunction with silicon carbide (for example, a single crystal) As long as it is silicon, germanium, silicon germane, etc., each material may be a separate material. Further, as an example, the description has been given using N-type silicon carbide as the epitaxial regions 2 and 22 and P-type polycrystalline silicon as the first hetero semiconductor regions 3 and 29. However, N-type silicon carbide and N Combinations of type polycrystalline silicon, P type silicon carbide and N type polycrystalline silicon, P type silicon carbide and P type polycrystalline silicon may be used.

さらに本発明の主旨を逸脱しない範囲での変形を含むことは言うまでもない。   Further, it goes without saying that modifications are included within the scope not departing from the gist of the present invention.

なお、以上説明した実施の形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施の形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described in order to facilitate understanding of the present invention, and is not described in order to limit the present invention. Therefore, each element disclosed in the above embodiment includes all design changes and equivalents belonging to the technical scope of the present invention.

1…基板領域
2…エピタキシャル領域
3…第一のヘテロ半導体領域
4…パンチスルー防止領域
5…電界緩和領域
6…ガードリング領域
7…裏面金属電極
8…表面金属電極
9…層間絶縁膜
10…第二のヘテロ半導体領域
11…ゲート絶縁膜
12…ゲート電極
21…基板領域
22…エピタキシャル領域
23…ベース領域
24…ソース領域
25…ゲート絶縁膜
26…ゲート電極
27…ソース電極
28…ドレイン電極
29…第一のヘテロ半導体領域
30…パンチスルー防止領域
31…電界緩和領域(ベース領域23と共通)
32…第二のヘテロ半導体領域
100…半導体基体
DESCRIPTION OF SYMBOLS 1 ... Substrate region 2 ... Epitaxial region 3 ... 1st hetero semiconductor region 4 ... Punch through prevention region 5 ... Electric field relaxation region 6 ... Guard ring region 7 ... Back surface metal electrode 8 ... Front surface metal electrode 9 ... Interlayer insulation film 10 ... First Second hetero semiconductor region 11 ... gate insulating film 12 ... gate electrode 21 ... substrate region 22 ... epitaxial region 23 ... base region 24 ... source region 25 ... gate insulating film 26 ... gate electrode 27 ... source electrode 28 ... drain electrode 29 ... th One hetero semiconductor region 30 ... punch-through prevention region 31 ... electric field relaxation region (common with the base region 23)
32 ... Second hetero semiconductor region 100 ... Semiconductor substrate

Claims (5)

第一導電型の半導体基体と、
前記半導体基体とはバンドギャップが異なる半導体材料からなり、前記半導体基体の一主面とヘテロ接合する第二導電型のヘテロ半導体領域とを有する半導体装置において、
前記へテロ接合面の外周部の前記半導体基体中に設けられる第二導電型の電界緩和領域と、
前記電界緩和領域に全体を覆われ、かつ前記へテロ接合面の端部に接し、前記電界緩和領域の不純物濃度よりも高濃度である第二導電型のパンチスルー防止領域とを有し、
前記へテロ半導体領域とパンチスルー防止領域がオーミック接続していることを特徴とする半導体装置。
A first conductivity type semiconductor substrate;
A semiconductor device comprising a semiconductor material having a band gap different from that of the semiconductor substrate, and having a second conductivity type hetero semiconductor region heterojunction with one main surface of the semiconductor substrate.
An electric field relaxation region of a second conductivity type provided in the semiconductor substrate at the outer peripheral portion of the heterojunction surface;
A punch-through prevention region of a second conductivity type that is entirely covered with the electric field relaxation region, is in contact with an end of the heterojunction surface, and has a higher concentration than the impurity concentration of the electric field relaxation region;
A semiconductor device, wherein the hetero semiconductor region and the punch-through prevention region are in ohmic contact.
前記へテロ半導体領域は、第一導電型の部位と第二導電型の部位を有し、少なくとも前記パンチスルー防止領域と接する部位では第二導電型であることを特徴とする請求項1記載の半導体装置。   2. The hetero semiconductor region according to claim 1, wherein the hetero semiconductor region has a first conductivity type portion and a second conductivity type portion, and at least a portion in contact with the punch-through prevention region is the second conductivity type. Semiconductor device. 前記電界緩和領域の外周の前記半導体基体中に設けられる第二導電型のガードリング領域を有することを特徴とする請求項1又は2記載の半導体装置。   3. The semiconductor device according to claim 1, further comprising a second conductivity type guard ring region provided in the semiconductor substrate on an outer periphery of the electric field relaxation region. 前記半導体基体が炭化珪素からなることを特徴とする請求項1ないし3のいずれかに記載の半導体装置。   4. The semiconductor device according to claim 1, wherein the semiconductor substrate is made of silicon carbide. 前記へテロ半導体領域が単結晶シリコン、アモルファスシリコン、多結晶シリコンの少なくともいずれかからなることを特徴とする請求項1ないし4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the hetero semiconductor region is made of at least one of single crystal silicon, amorphous silicon, and polycrystalline silicon.
JP2013018447A 2013-02-01 2013-02-01 Semiconductor device Expired - Lifetime JP5494848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018447A JP5494848B2 (en) 2013-02-01 2013-02-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018447A JP5494848B2 (en) 2013-02-01 2013-02-01 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004117549A Division JP5216183B2 (en) 2003-07-30 2004-04-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2013080970A JP2013080970A (en) 2013-05-02
JP5494848B2 true JP5494848B2 (en) 2014-05-21

Family

ID=48527057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018447A Expired - Lifetime JP5494848B2 (en) 2013-02-01 2013-02-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5494848B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620125B2 (en) * 1989-03-28 1994-03-16 サンケン電気株式会社 Semiconductor device
JP3708057B2 (en) * 2001-07-17 2005-10-19 株式会社東芝 High voltage semiconductor device
JP4282972B2 (en) * 2002-02-19 2009-06-24 日産自動車株式会社 High voltage diode

Also Published As

Publication number Publication date
JP2013080970A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP6666224B2 (en) Semiconductor device
JP5560519B2 (en) Semiconductor device and manufacturing method thereof
JP5452914B2 (en) Silicon carbide junction barrier Schottky diode with suppressed minority carrier injection
JP5900698B2 (en) Semiconductor device
JP6649183B2 (en) Semiconductor device
JP5940500B2 (en) Semiconductor device and manufacturing method thereof
KR101416361B1 (en) Shottky barrier diode and method for manufacturing the same
JP6833848B2 (en) Area-efficient floating field ring termination
US10062750B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2016208030A (en) Semiconductor element and manufacturing method for the same
JP2016174029A (en) Semiconductor device
US20160027866A1 (en) Semiconductor device
JP2005011846A (en) Semiconductor device
JP5216183B2 (en) Semiconductor device
JP7030665B2 (en) Semiconductor device
KR101427948B1 (en) Schottky barrier diode and method for manufacturing the same
JP2018010988A (en) Semiconductor device and method of manufacturing the same
KR101490937B1 (en) Schottky barrier diode and method for manufacturing the same
JP5865860B2 (en) Semiconductor device
JP4742539B2 (en) Semiconductor device
JP4211642B2 (en) Semiconductor device
JP6400202B2 (en) Power semiconductor device
JP7196265B2 (en) semiconductor equipment
JP5494848B2 (en) Semiconductor device
JP2016162776A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term