JPS6120514B2 - - Google Patents

Info

Publication number
JPS6120514B2
JPS6120514B2 JP1020079A JP1020079A JPS6120514B2 JP S6120514 B2 JPS6120514 B2 JP S6120514B2 JP 1020079 A JP1020079 A JP 1020079A JP 1020079 A JP1020079 A JP 1020079A JP S6120514 B2 JPS6120514 B2 JP S6120514B2
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
layer
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1020079A
Other languages
Japanese (ja)
Other versions
JPS55104999A (en
Inventor
Toshiki Inooku
Takeshi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1020079A priority Critical patent/JPS55104999A/en
Publication of JPS55104999A publication Critical patent/JPS55104999A/en
Publication of JPS6120514B2 publication Critical patent/JPS6120514B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は炭化珪素(SiC)結晶を製造する方法
に関するもので、特にエピタキシヤル成長に液相
法を導入し、基板上に炭化珪素を成長させるとと
もに液相成長期間中に同時に補強材となる炭化珪
素成長層を形成する新規な結晶成長技術に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon carbide (SiC) crystals, in particular, by introducing a liquid phase method into epitaxial growth, growing silicon carbide on a substrate, and growing silicon carbide on a substrate during the liquid phase growth period. This invention relates to a new crystal growth technology that simultaneously forms a silicon carbide growth layer that serves as a reinforcing material.

炭化珪素には多くの結晶構造(poly type・多
形と称される)が存在し、結晶構造により2.4乃
至3.3エレクトロンボルト(eV)の禁制帯幅を有
する。また炭化珪素は、熱的、化学的、機械的に
極めて安定で、放射線損傷にも強く、またワイド
ギヤツプ半導体としてはめずらしく、p型、n型
安定に存在する材料であり、従つて高温動作素
子、大電力用素子、高信頼性半導体素子、耐放射
線素子等の半導体材料として有望視されているも
のである。更に従来の半導体材料を用いた素子で
は困難な環境下でも使用可能となり、半導体デバ
イスの応用範囲を著しく拡大し得る材料である。
その他、そのエネルギーギヤツプの値から考察す
るに可視短波長と近紫外光間の光電変換素子材料
としても興味ある半導体材料であり、他のワイド
ギヤツプ半導体が一般に重金属をその主成分に含
有し、このために公害と資源の問題を伴なうのに
対して、炭化珪素はこれらの両問題から解放され
ている点に於いても将来電子材料としての実用化
が期待されるものである。
Silicon carbide has many crystal structures (referred to as polytypes) and has a forbidden band width of 2.4 to 3.3 electron volts (eV) depending on the crystal structure. In addition, silicon carbide is extremely stable thermally, chemically, and mechanically, and is resistant to radiation damage. It is also a material that exists stably in p-type and n-type, which is rare for wide-gap semiconductors. It is seen as a promising semiconductor material for high-power devices, high-reliability semiconductor devices, radiation-resistant devices, etc. Furthermore, it is a material that can be used even in environments difficult for elements using conventional semiconductor materials, and can significantly expand the range of applications of semiconductor devices.
In addition, considering its energy gap value, it is an interesting semiconductor material as a photoelectric conversion element material between visible short wavelength and near ultraviolet light, and other wide gap semiconductors generally contain heavy metals as their main components. This brings with it problems of pollution and resources, whereas silicon carbide is free from both of these problems and is therefore expected to be put to practical use as an electronic material in the future.

このように多くの利点、可能性を有する材料で
あるにもかかわらず実用化が阻まれているのは、
生産性を考慮した工業的規模での重産に必要とな
る高品質の大面積基板を得るための再現性のある
結晶成長技術が確立されていないところにその原
因がある。
Despite this material having many advantages and possibilities, practical application has been hindered due to the following reasons:
The reason for this is that reproducible crystal growth technology for obtaining high-quality, large-area substrates required for heavy production on an industrial scale with productivity in mind has not been established.

従来、研究室規模でSiC基板を得る方法として
は、黒鉛坩堝中でSiC粉末を2200℃〜2600℃で昇
華させ、さらに再結晶させてSiC基板を得るいわ
ゆる昇華再結晶法(レーリー法と称される)、珪
素又は珪素に鉄、コバルト、白金等の不純物を混
入した混合物を黒鋭坩堝で溶融してSiC基板を得
るいわゆる溶液法、研磨材料を工業的に得るため
に一般に用いられているアチエソン法により偶発
的に得られるSiC基板を用いる方法等がある。し
かしながら上記昇華再結晶法、溶液法では多数の
再結晶を得ることはできるが、多くの結晶核が結
晶成長初期に発生する為に大型のSiC基板を得る
ことが困難であり、又幾種類かの結晶構造(poly
type)のSiCが混在し、単一結晶構造で大型の
SiC単結晶をより再現性よく得る方法としては不
完全なものである。又、アチエソン法により偶発
的に得られるSiC基板は半導体材料として使用す
るには純度及び結晶性の点で問題があり、又比較
的大型のものが得られても偶発的に得られるもの
であり、SiC基板を工業的に得る方法としては適
当でない。
Conventionally, the method for obtaining SiC substrates on a laboratory scale is the so-called sublimation recrystallization method (referred to as the Rayleigh method), in which SiC powder is sublimated in a graphite crucible at 2200°C to 2600°C, and then recrystallized to obtain a SiC substrate. ), the so-called solution method to obtain a SiC substrate by melting silicon or a mixture of silicon with impurities such as iron, cobalt, platinum, etc. in a black-earth crucible, and Acheson, which is generally used to obtain polishing materials industrially. There are methods such as using a SiC substrate accidentally obtained by a method. However, although it is possible to obtain a large number of recrystallizations using the sublimation recrystallization method and solution method, it is difficult to obtain large SiC substrates because many crystal nuclei are generated at the initial stage of crystal growth, and there are several types of SiC substrates. The crystal structure of (poly
type) SiC is mixed, and it has a single crystal structure and a large size.
This is an incomplete method for obtaining SiC single crystals with better reproducibility. Furthermore, SiC substrates obtained accidentally by the Acheson method have problems in terms of purity and crystallinity when used as semiconductor materials, and even if relatively large ones can be obtained, they are obtained accidentally. , it is not suitable as a method for industrially obtaining SiC substrates.

一方、近年の半導体技術の向上に伴ない、比較
的良質で大型の単結晶基板として入手できるSiを
用いた珪素異質基板上に、ヘテロエピタキシヤル
技術により3C形SiC(立方晶形に属する結晶構造
を有するもので、そのエネルギーギヤツプは〜
2.4eV)単結晶薄膜が得られるようになつた。珪
素基板上へのヘテロエピタキシヤル成長法として
は(1)珪素原料としてSiH4,SiCl4,(CH33SiCl,
(CH32SiCl2、また炭素原料としてCCl4、炭化水
素ガス(C2H2,C2H6,CH4,C3H3等)、キヤリ
アガスとして水素、アルゴン等を用いて、Si基板
温度を1200℃〜1400℃に設定し、気相成長技術
(CVD技術)により、3C形SiC単結晶薄膜を得る
方法、(2)Si基板表面にグラフアイト、炭化水素の
熱分解により生ずるカーボンを1200℃〜1400℃程
度の温度で拡散させ、Si基板表面をSiCに変換さ
せて3C形SiC単結晶薄膜を得る方法、(3)Si蒸気を
直流又は交流グロー放電により活性化されたアル
ゴン、炭化水素ガス中を通過させてSi基板上に
SiC単結晶薄膜を蒸着させる方法(蒸着法)等が
ある。しかしながら上記(1),(2),(3)等のSi異質基
板上へのヘテロエピタキシヤル技術により得られ
た3C形SiC薄膜単結晶の厚さは1〜10μm程度の
薄いものであり、又一般にはその結晶の完成性に
於いても良好なものとはいい難い。この理由は、
Si基板と3C形SiC結晶の格子定数の差が大きい為
に特にSiC基板とエピタキシヤル3C形SiC界面近
傍に多くのミスフイツト転位が発生し、その影響
がエピタキシヤル層内部にまで及んでいること、
及びSi基板とSiC結晶の熱膨張係数の差により成
長温度から室温に冷却する過程でSiCエピタキシ
ヤル層中に歪が蓄積されるためと考えられる。又
仮にこのような方法で大面積かつ良質の3C形SiC
(エネルギーギヤツプEgは2.4eV)が得られたと
しても更にエネルギーギヤツプの大きい結晶構造
のSiC、例えば6H(Egは〜3.02eV)4H(Egは〜
3.26eV)、8H(Egは〜2.8eV)等のα形SiCをエ
ピタキシヤル成長法で得ようとすると、その成長
温度は一般には1600℃以上の高温となり、Si基板
及び前述したSi基板上へSiC薄膜を成長させた基
板(3C形SiC/Si構造)等はSiの融点が1410℃で
あるのでα形SiCヘテロエピタキシヤル成長用基
板として採用することはできなくなる。
On the other hand, with the improvement of semiconductor technology in recent years, 3C-type SiC (crystal structure belonging to the cubic crystal structure) has been created using heteroepitaxial technology on a silicon heterogeneous substrate using Si, which is available as a relatively high-quality, large-sized single-crystal substrate. The energy gap is ~
2.4eV) single crystal thin films can now be obtained. As a heteroepitaxial growth method on a silicon substrate, (1) SiH 4 , SiCl 4 , (CH 3 ) 3 SiCl,
Using (CH 3 ) 2 SiCl 2 , CCl 4 as a carbon raw material, hydrocarbon gas (C 2 H 2 , C 2 H 6 , CH 4 , C 3 H 3, etc.), hydrogen, argon, etc. as a carrier gas, Si A method of obtaining a 3C type SiC single crystal thin film by vapor phase growth technology (CVD technology) with the substrate temperature set at 1200°C to 1400°C. (2) Graphite on the Si substrate surface, carbon produced by thermal decomposition of hydrocarbons. (3) argon activated by direct current or alternating current glow discharge of Si vapor, Passed through hydrocarbon gas and onto Si substrate
There is a method of vapor depositing a SiC single crystal thin film (vapor deposition method), etc. However, the thickness of the 3C type SiC thin film single crystal obtained by heteroepitaxial technology on Si heterogeneous substrates such as (1), (2), and (3) above is as thin as 1 to 10 μm; In general, it is difficult to say that the quality of the crystal is good. The reason for this is
Due to the large difference in lattice constant between the Si substrate and the 3C type SiC crystal, many misfit dislocations occur especially near the interface between the SiC substrate and the epitaxial 3C type SiC, and the influence extends to the inside of the epitaxial layer.
This is also thought to be because strain is accumulated in the SiC epitaxial layer during the cooling process from the growth temperature to room temperature due to the difference in thermal expansion coefficient between the Si substrate and the SiC crystal. Also, if such a method were used to produce large-area and high-quality 3C type SiC,
(Eg is 2.4 eV), SiC has a crystal structure with an even larger energy gap, such as 6H (Eg is ~3.02 eV) and 4H (Eg is ~3.02 eV).
3.26eV), 8H (Eg is ~2.8eV), etc., by epitaxial growth, the growth temperature is generally higher than 1600℃, and the growth temperature is generally higher than 1600℃. A substrate on which a SiC thin film is grown (3C type SiC/Si structure) etc. cannot be used as a substrate for α type SiC heteroepitaxial growth because the melting point of Si is 1410°C.

本発明は上記現状に鑑み、気相成長法と液相成
長法を組み合せることにより、SiC結晶の形状、
大きさ、成長層厚等を制御することのできる新規
有用な炭化珪素結晶層の製造方法を提供すること
を目的とするものである。
In view of the above-mentioned current situation, the present invention combines the vapor phase growth method and the liquid phase growth method to improve the shape of SiC crystals.
It is an object of the present invention to provide a new and useful method for manufacturing a silicon carbide crystal layer that can control the size, growth layer thickness, etc.

以下、本発明の基本的構成について第1図A,
Bとともに説明する。
The basic configuration of the present invention will be explained below with reference to FIG.
This will be explained together with B.

珪素基板2上に炭化珪素層(以下1次層と称
す)4を形成する。形成方法は通常気相化学析
出法を用いるが、熱交換または化学変換による
炭化法を用いたり、分子線エピタキシーやその
他の蒸着法を利用してもよく、これらの組み合
せでも可能である。膜厚後述の珪素基板熔融工
程で割れない厚さが必要で、珪素基板の大きさ
にもよるが、少なくとも5〜10μm程度の厚み
を有することが望ましい。
A silicon carbide layer (hereinafter referred to as a primary layer) 4 is formed on a silicon substrate 2 . The formation method usually uses a vapor phase chemical precipitation method, but a carbonization method by heat exchange or chemical conversion, molecular beam epitaxy or other vapor deposition method may also be used, or a combination of these methods is also possible. Film Thickness It is necessary that the film has a thickness that will not break during the silicon substrate melting process described later, and although it depends on the size of the silicon substrate, it is desirable to have a thickness of at least about 5 to 10 μm.

炭化珪素の1次層4を形成した珪素基板2
を、炭化珪素表面層6を有する試料台10上に
載置して炭素及び珪素の原料を含む雰囲気中に
於いて試料台10を加熱し、珪素基板2を熔融
して珪素融液12とする。試料台10を炭化珪
素一次層4より高温に保持しながらこの状態を
一定時間維持し、炭化珪素一次層4の表側に気
相から炭化珪素析出層8を堆積させ、裏側に珪
素融液12から炭化珪素二次層14を析出させ
る。炭化珪素析出層8はでき上り状態の基板に
於いては補強の役割りもするものであるから主
として炭化珪素であれば、炭素及び珪素が混在
するような品質のものであつてもかまわない。
珪素融液12が一部気相に蒸発し、珪素原料と
なることをも考えられ高品質の炭化珪素結晶を
気相から析出させることは困難であるが、炭化
珪素析出層8は高品質を必要としないため上記
の如き材質のもので十分である。
Silicon substrate 2 on which primary layer 4 of silicon carbide is formed
is placed on a sample stage 10 having a silicon carbide surface layer 6, and the sample stage 10 is heated in an atmosphere containing carbon and silicon raw materials to melt the silicon substrate 2 and form a silicon melt 12. . This state is maintained for a certain period of time while the sample stage 10 is held at a higher temperature than the silicon carbide primary layer 4, and a silicon carbide precipitated layer 8 is deposited from the gas phase on the front side of the silicon carbide primary layer 4, and a silicon carbide precipitated layer 8 is deposited from the silicon melt 12 on the back side. A silicon carbide secondary layer 14 is deposited. Since the silicon carbide precipitated layer 8 also plays a reinforcing role in the finished substrate, it may be of a quality in which carbon and silicon are mixed as long as it is mainly silicon carbide.
It is difficult to precipitate high-quality silicon carbide crystals from the gas phase because a portion of the silicon melt 12 may evaporate into the gas phase and become a silicon raw material. Since it is not necessary, materials such as those mentioned above are sufficient.

一方、1次層4の裏側に析出した炭化珪素二
次層14は試料台表面の炭化珪素が珪素融液1
2中に溶解し、低温側の炭化珪素一次層4上に
析出したものと思われる。
On the other hand, the silicon carbide secondary layer 14 deposited on the back side of the primary layer 4 is such that the silicon carbide on the surface of the sample stage is the silicon melt 1.
It is believed that the particles were dissolved in the silicon carbide 2 and precipitated on the silicon carbide primary layer 4 on the low temperature side.

一般に液相成長結晶は気相成長結晶に比して結
晶の完全性に優れている。ところが通常の液相成
長では偶発的に発生する自然発生核を利用する
か、あらかじめ他の方法で作製された基板結晶
(種結晶)を用いるので制御された大きさの結晶
を得るための液相成長ができない。これに対し本
発明では珪素基板2上に形成した1次層4上に液
相成長させるものであり珪素基板は完全結晶性を
有する種々の大きさ、方位のものが容易に入手で
きるので有利である。また、一般に珪素基板上に
炭化珪素をヘテロエピタキシヤル成長するに際し
て1μm程度の薄膜であれば単結晶となり得る
が、それより更に厚膜化しようとすれば多結晶化
することが知られている。本発明の1次層4に於
いて次の炭化珪素二次層14成長のための種結晶
になるのは、成長層表面ではなく、裏面すなわち
珪素基板2に接している側である。従つてたとえ
炭化珪素一次層4が多結晶化しても、珪素基板2
上に初期に成長した部分が単結晶のまま保持され
れば炭化珪素二次層14の析出に際しては支障は
生じない。
In general, liquid phase grown crystals have superior crystal integrity compared to vapor phase grown crystals. However, in normal liquid phase growth, spontaneously generated nuclei are used, or substrate crystals (seed crystals) prepared in advance by other methods are used. unable to grow. In contrast, in the present invention, liquid phase growth is performed on the primary layer 4 formed on the silicon substrate 2, and silicon substrates are advantageous because they are easily available in various sizes and orientations with perfect crystallinity. be. Furthermore, it is generally known that when silicon carbide is heteroepitaxially grown on a silicon substrate, a thin film of about 1 μm can become a single crystal, but if the film is made thicker than that, it becomes polycrystalline. In the primary layer 4 of the present invention, the seed crystal for growing the next silicon carbide secondary layer 14 is not the surface of the growth layer, but the back surface, that is, the side in contact with the silicon substrate 2. Therefore, even if silicon carbide primary layer 4 becomes polycrystalline, silicon substrate 2
If the initially grown portion is maintained as a single crystal, no problem will occur during precipitation of silicon carbide secondary layer 14.

現在の半導体電子工業の主流であるプレーナー
技術を用いるに際してはウエハー状結晶の主面が
良好な単結晶であればよく、その厚さは数μmで
よい。本発明による炭化珪素ウエハーに於いては
ダイオード、トランジスタなどデバイスとして機
能する部分を液相成長結晶部分に作ればよく、そ
の他の部分即ち炭化珪素一次層及び析出層は補強
用として作用すれば足りる。
When using planar technology, which is the mainstream of the current semiconductor electronics industry, the main surface of the wafer-shaped crystal only needs to be a good single crystal, and its thickness may be several micrometers. In the silicon carbide wafer according to the present invention, portions that function as devices such as diodes and transistors may be formed in the liquid phase grown crystal portion, and other portions, that is, the silicon carbide primary layer and the precipitated layer, may serve as reinforcement.

本発明の特徴か、液相成長期間中を利用してこ
の期間に炭化珪素析出層を補強材として折出成長
させる点にあるので液相成長期間中の全期間に亘
つて炭素及び珪素原料を供給する必要はなく、そ
の期間の任意部分に必要に応じて供給し、意図す
る層厚を得ればよい。基板全体の面積にもよるが
通常全体の厚さを50乃至400μmにすると扱いや
すい。
A feature of the present invention is that the silicon carbide precipitated layer is deposited and grown as a reinforcing material during the liquid phase growth period, so carbon and silicon raw materials are used throughout the liquid phase growth period. It is not necessary to supply it, and it is sufficient to supply it as needed at any part of the period to obtain the intended layer thickness. Although it depends on the area of the entire substrate, it is usually easier to handle if the overall thickness is 50 to 400 μm.

以下、本発明を実施例に従つて更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 第2図は本実施例に使用される反応装置の一例
を示す。水冷式縦形二重石英反応管22内に黒鉛
製支持棒24により支持された炭化珪素被覆黒鉛
試料台26を置き反応管22の外胴部に巻回され
たワークコイル28に高周波電流をして、この試
料台26を誘導加熱する。反応管22の下端はス
テンレス鋼製のフランジ30とO−リングでシー
ルされている。フランジ30上にはガスの出口と
なる継手32及び支柱台34が設けられている。
支柱台34に石英製の支柱36が保持され、支柱
36に上記支持棒24が継ぎ足される。出口側の
継手32には排気用管が接続され、廃ガス処理装
置(図示しない)に導かれている。反応管22の
上端側にはガス流入口となる枝管38が設けら
れ、搬送ガスが反応管22内へ供給される。試料
台26上には下地基板となる珪素基板2が載置さ
れている。
Example FIG. 2 shows an example of a reaction apparatus used in this example. A silicon carbide-coated graphite sample stage 26 supported by a graphite support rod 24 is placed inside a water-cooled vertical double quartz reaction tube 22, and a high-frequency current is applied to a work coil 28 wound around the outer body of the reaction tube 22. , this sample stage 26 is heated by induction. The lower end of the reaction tube 22 is sealed with a stainless steel flange 30 and an O-ring. A joint 32 serving as a gas outlet and a support stand 34 are provided on the flange 30.
A column 36 made of quartz is held on the column base 34, and the support rod 24 is attached to the column 36. An exhaust pipe is connected to the joint 32 on the outlet side and led to a waste gas treatment device (not shown). A branch pipe 38 serving as a gas inlet is provided at the upper end of the reaction tube 22, and a carrier gas is supplied into the reaction tube 22. A silicon substrate 2 serving as a base substrate is placed on the sample stage 26 .

次に本実施例の炭化珪素成長方法について第3
図A,B,C,Dを参照しながら説明する。
Next, a third section regarding the silicon carbide growth method of this example will be explained.
This will be explained with reference to Figures A, B, C, and D.

(a) 反応管22を排気して水素で置換し、公知の
塩化水素・水素混合ガスで試料台26上に載置
された珪素基板2の表面をエツチング除去する
(第3図A参照) (b) 珪素基板2の温度を珪素の融点以下の温度、
好ましくは1100乃至1200℃に設定し、一般的な
気相成長法で炭化珪素を珪素基板2上に成長さ
せる。搬送ガスにはアルゴン(Ar)ヘリウム
(He)などの稀ガス又は水素ガス(H2)が用い
られる。珪素原料としては、四塩化珪素
(SiCl4)、二塩化シラン(SiH2Cl2)、シラン
(SiH4)などが、また炭素原料としては四塩化
炭素(CCl4)やプロパン(C3H3)、メタン
(CH4)をはじめとする炭化水素が用いられる。
本実施例では流量1/分の水素ガスを搬送ガ
スとし二塩化シラン(SiH2Cl2)及びプロパン
(C3H3)を原料ガスとする。濃度は原子比で二
塩化シランを1×10-4、プロパンを3×10-4
設定し、40分間の成長で約10μm厚の3C形炭
化珪素一次層4を形成した。珪素基板2の側面
にも炭化珪素層16が同時に形成されている。
(a) The reaction tube 22 is evacuated and replaced with hydrogen, and the surface of the silicon substrate 2 placed on the sample stage 26 is etched away using a known hydrogen chloride/hydrogen mixed gas (see Figure 3A). b) The temperature of the silicon substrate 2 is below the melting point of silicon,
Preferably, the temperature is set at 1100 to 1200° C., and silicon carbide is grown on silicon substrate 2 using a general vapor phase growth method. A rare gas such as argon (Ar), helium (He), or hydrogen gas (H 2 ) is used as the carrier gas. Silicon raw materials include silicon tetrachloride (SiCl 4 ), silane dichloride (SiH 2 Cl 2 ), and silane (SiH 4 ), and carbon raw materials include carbon tetrachloride (CCl 4 ) and propane (C 3 H 3 ) . ), methane (CH 4 ), and other hydrocarbons.
In this embodiment, hydrogen gas at a flow rate of 1/min is used as a carrier gas, and silane dichloride (SiH 2 Cl 2 ) and propane (C 3 H 3 ) are used as source gases. The concentrations were set at an atomic ratio of 1×10 −4 for dichlorosilane and 3×10 −4 for propane, and a 3C type silicon carbide primary layer 4 having a thickness of about 10 μm was formed by growth for 40 minutes. A silicon carbide layer 16 is also formed on the side surface of silicon substrate 2 at the same time.

(b) 原料ガスの送り込みを停止し、流量1/分
の水素だけを流しながらワークコイル28に流
す高周波出力を増して試料台26の温度を1500
℃程度に昇温し、珪素基板2を熔融する。熔融
後1450℃乃至1650℃程度の一定温度に設定して
この状態を維持する。本実施例では試料台表面
に於いて1500℃になるように設定した。その後
濃度1×10-3のプロパンと2×10-3の二塩化シ
ランとを搬送ガスの水素に添加し炭化珪素析出
層8形成の原料とする。この状態で2時間成長
させたところ炭化珪素一次層4上面に60μmの
炭化珪素析出層8が、下面に10μm厚の炭化珪
素二次層14が夫々析出成長した。
(b) Stop feeding the raw material gas, increase the high frequency output to the work coil 28 while flowing only hydrogen at a flow rate of 1/min, and raise the temperature of the sample stage 26 to 1500.
The temperature is raised to about .degree. C. and the silicon substrate 2 is melted. After melting, the temperature is set at a constant temperature of about 1450°C to 1650°C and this state is maintained. In this example, the temperature on the surface of the sample stage was set to 1500°C. Thereafter, propane at a concentration of 1×10 −3 and dichlorosilane at a concentration of 2×10 −3 are added to the hydrogen of the carrier gas to serve as raw materials for forming the silicon carbide precipitation layer 8 . When grown in this state for 2 hours, a 60 μm thick silicon carbide precipitated layer 8 was precipitated and grown on the upper surface of the silicon carbide primary layer 4, and a 10 μm thick silicon carbide secondary layer 14 was precipitated and grown on the lower surface.

加熱方式は高周波加熱なので試料台26がヒ
ーターになり試料台26の表面と炭化珪素一次
層4との間には自然に温度差ができ、液相成長
したものである。
Since the heating method is high frequency heating, the sample stage 26 acts as a heater, and a temperature difference is naturally created between the surface of the sample stage 26 and the silicon carbide primary layer 4, resulting in liquid phase growth.

側面の炭化珪素層16は1次層4と試料台2
6との間隔をとるためのスペーサとして作用
し、1次層4が試料台26に対して傾くのを防
止する効果を有する。
The silicon carbide layer 16 on the side surface is connected to the primary layer 4 and the sample stage 2.
6, and has the effect of preventing the primary layer 4 from tilting with respect to the sample stage 26.

(d) 高周波出力を停止して降温し、試料台全体を
弗酸硝酸混液に浸漬して珪素をエツチング除去
し試料台から取り外す。
(d) Stop the high-frequency output, lower the temperature, immerse the entire sample stand in a hydrofluoric acid/nitric acid mixture to etch away the silicon, and remove it from the sample stand.

以上により炭化珪素結晶層を得ることができ
る。
Through the above steps, a silicon carbide crystal layer can be obtained.

本発明は以上の如く液相法をエピタキシヤル成
長に導入することにより結晶性の良好な炭化珪素
結晶層を再現性よく量産することができ、また得
られる結晶層の大きさを制御することも可能であ
る。更に液相成長基板が補強されるため結晶形
状、方位等の変動がない等種々の優れた効果を奏
する。
As described above, the present invention makes it possible to mass-produce a silicon carbide crystal layer with good crystallinity with good reproducibility by introducing a liquid phase method into epitaxial growth, and also makes it possible to control the size of the obtained crystal layer. It is possible. Furthermore, since the liquid phase growth substrate is reinforced, there are various excellent effects such as no fluctuation in crystal shape, orientation, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明の概念を説明するための
模式図、第2図は本発明の実施例に供する反応装
置の要部断面を示す斜視図、第3図A,B,C,
Dは本発明の一実施例の製造工程を説明する断面
図である。 2……珪素基板、4……炭化珪素一次層、6…
…試料台の炭化珪素表面層、8……炭化珪素析出
層、10……試料台、12……珪素融液、14…
…炭化珪素2次層。
Figures 1A and B are schematic diagrams for explaining the concept of the present invention, Figure 2 is a perspective view showing a cross section of essential parts of a reactor used in an embodiment of the present invention, Figures 3A, B, C,
D is a sectional view illustrating the manufacturing process of an embodiment of the present invention. 2...Silicon substrate, 4...Silicon carbide primary layer, 6...
...Silicon carbide surface layer of sample stand, 8...Silicon carbide precipitation layer, 10...Sample stand, 12...Silicon melt, 14...
...Silicon carbide secondary layer.

Claims (1)

【特許請求の範囲】[Claims] 1 珪素基板上に第1の炭化珪素層を形成する工
程と、炭化珪素表面層をもつ試料台上で前記珪素
基板を熔融し、珪素融液とするとともに前記試料
台の炭化珪素表面層を前記第1の炭化珪素層より
高温に保持することにより前記第1の炭化珪素層
の前記珪素融液接触面上に第2の炭化珪素を形成
するとともに、この工程の一部又は全期間に於い
て雰囲気中に炭素及び珪素の原料を供給して前記
第1の炭化珪素層の表面上に第3の炭化珪素層を
形成する工程とを具備して成ることを特徴とする
炭化珪素結晶の製造方法。
1. Forming a first silicon carbide layer on a silicon substrate, melting the silicon substrate on a sample stand having a silicon carbide surface layer to form a silicon melt, and melting the silicon carbide surface layer of the sample stand as described above. A second silicon carbide is formed on the silicon melt contact surface of the first silicon carbide layer by holding the silicon carbide layer at a higher temperature than the first silicon carbide layer, and during a part or all of this process. A method for producing a silicon carbide crystal, comprising the step of supplying raw materials of carbon and silicon in an atmosphere to form a third silicon carbide layer on the surface of the first silicon carbide layer. .
JP1020079A 1979-01-29 1979-01-29 Production of silicon carbide crystal layer Granted JPS55104999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020079A JPS55104999A (en) 1979-01-29 1979-01-29 Production of silicon carbide crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020079A JPS55104999A (en) 1979-01-29 1979-01-29 Production of silicon carbide crystal layer

Publications (2)

Publication Number Publication Date
JPS55104999A JPS55104999A (en) 1980-08-11
JPS6120514B2 true JPS6120514B2 (en) 1986-05-22

Family

ID=11743625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020079A Granted JPS55104999A (en) 1979-01-29 1979-01-29 Production of silicon carbide crystal layer

Country Status (1)

Country Link
JP (1) JPS55104999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180111U (en) * 1985-04-27 1986-11-10
JPS61206614U (en) * 1985-06-14 1986-12-27

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162035A (en) * 1982-03-23 1983-09-26 Hoxan Corp Preparation of polycrystalline silicon wafer
JPS59203799A (en) * 1983-04-28 1984-11-17 Sharp Corp Preparation of substrate made of silicon carbide single crystal
JPS60140756A (en) * 1983-12-27 1985-07-25 Sharp Corp Manufacture of silicon carbide bipolar transistor
DE4234508C2 (en) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Method for producing a wafer with a monocrystalline silicon carbide layer
FR2833619A1 (en) * 2001-12-17 2003-06-20 Commissariat Energie Atomique Fabrication of crystalline semiconductor substrates involves using a molten layer of a second material for diffusion of atoms into a first material
JP5120758B2 (en) * 2008-10-08 2013-01-16 東海カーボン株式会社 Method for producing silicon carbide single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180111U (en) * 1985-04-27 1986-11-10
JPS61206614U (en) * 1985-06-14 1986-12-27

Also Published As

Publication number Publication date
JPS55104999A (en) 1980-08-11

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
US4865659A (en) Heteroepitaxial growth of SiC on Si
JPH0321519B2 (en)
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120514B2 (en)
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPS6152119B2 (en)
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS63283014A (en) Silicon carbide semiconductor element
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6115150B2 (en)
JPS5830280B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120515B2 (en)
JPS61291495A (en) Production of silicon carbide single crystal base
JPS6230699A (en) Production of silicon carbide single crystal substrate
JPS5812238B2 (en) Method for manufacturing silicon carbide crystal layer
JPS5812237B2 (en) Method for manufacturing silicon carbide crystal layer
JPH0364480B2 (en)
JPH0327515B2 (en)
JPS6152120B2 (en)
JPS5842160B2 (en) Method for manufacturing silicon carbide crystal layer
JPS609658B2 (en) Method for manufacturing silicon carbide substrate
JPS623117B2 (en)
JPS60264399A (en) Production of single crystal of silicon carbide