JPH0364480B2 - - Google Patents

Info

Publication number
JPH0364480B2
JPH0364480B2 JP20494086A JP20494086A JPH0364480B2 JP H0364480 B2 JPH0364480 B2 JP H0364480B2 JP 20494086 A JP20494086 A JP 20494086A JP 20494086 A JP20494086 A JP 20494086A JP H0364480 B2 JPH0364480 B2 JP H0364480B2
Authority
JP
Japan
Prior art keywords
single crystal
sic
substrate
silicon carbide
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20494086A
Other languages
Japanese (ja)
Other versions
JPS6360199A (en
Inventor
Masaki Furukawa
Akira Suzuki
Mitsuhiro Shigeta
Atsuko Uemoto
Yoshihisa Fujii
Akitsugu Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20494086A priority Critical patent/JPS6360199A/en
Publication of JPS6360199A publication Critical patent/JPS6360199A/en
Publication of JPH0364480B2 publication Critical patent/JPH0364480B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <技術分野> 本発明は炭化珪素(SiC)の単結晶基板を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a method for manufacturing a silicon carbide (SiC) single crystal substrate.

<従来技術> SiCには多くの結晶構造(polytype・多形と称
される)が存在し、結晶構造により2.2乃至3.3エ
レクトロンボルト(eV)の禁制帯幅を有する。
またSiCは、熱的、化学的、機械的に極めて安定
で、放射線損傷にも強く、更にワイドギヤツプ半
導体としてはめずらしく、p型、n型共安定に存
在する材料である。従つて高温動作素子、大電力
用素子、高信頼性半導体素子、耐放射線素子等の
半導体材料として有望視されている。又従来の半
導体材料を用いた素子では困難な環境下でも使用
可能となり、半導体デバイスの応用範囲を著しく
拡大し得る材料である。さらに、その広いエネル
ギーギヤツプを利用して短波長可視光及び近紫外
光の光電変換素子材料としても適用できる半導体
材料である。他のワイドギヤツプ半導体が一般に
重金属をその主成分に含有し、このために公害と
資源の問題を伴なうのに対して、炭化珪素はこれ
らの両問題から解放さてれている点からも電子材
料として有望視されるものである。
<Prior Art> SiC has many crystal structures (referred to as polytypes) and has a forbidden band width of 2.2 to 3.3 electron volts (eV) depending on the crystal structure.
In addition, SiC is extremely stable thermally, chemically, and mechanically, and is resistant to radiation damage. Furthermore, it is a rare wide-gap semiconductor material that exists in both p-type and n-type co-stability. Therefore, it is seen as a promising semiconductor material for high-temperature operating devices, high-power devices, high-reliability semiconductor devices, radiation-resistant devices, and the like. Furthermore, it is a material that can be used even in environments difficult for elements using conventional semiconductor materials, and can significantly expand the range of applications of semiconductor devices. Furthermore, it is a semiconductor material that can be used as a photoelectric conversion element material for short wavelength visible light and near ultraviolet light by utilizing its wide energy gap. Unlike other wide-gap semiconductors, which generally contain heavy metals as their main components and are associated with pollution and resource problems, silicon carbide is free from both of these problems, making it an excellent electronic material. This is seen as promising.

このように多くの利点、可能性を有する材料で
あるにもかかわらず実用化が阻まれているのは、
生産性を考慮した工業的規模での量産に必要とな
る高品質の大面積SiC基板を得る上で、再現性の
ある結晶成長技術が確立されていないところにそ
の原因がある。
Despite this material having many advantages and possibilities, practical application has been hindered due to the following reasons:
The reason for this is that reproducible crystal growth technology has not been established to obtain high-quality, large-area SiC substrates required for mass production on an industrial scale with productivity in mind.

従来、研究室規模でSiC単結晶基板を得る方法
としては、黒鉛坩堝中でSiC粉末を2200℃〜2600
℃で昇華させ、さらに再結晶させてSiC基板をい
わゆる昇華再結晶法(レーリー法と称される)、
珪素又は珪素に鉄、コバルト、白金等の不純物を
混入したり混合物を黒鉛坩堝で溶融してSiC基板
を得るいわゆる溶液法、研摩材料を工業的に得る
ために一般に用いられているアチエソン法により
偶発的に得られるSiC基板を用いる方法等があ
る。
Conventionally, the method for obtaining SiC single crystal substrates on a laboratory scale is to heat SiC powder in a graphite crucible at 2200°C to 2600°C.
The SiC substrate is sublimated at ℃ and further recrystallized using the so-called sublimation recrystallization method (referred to as the Rayleigh method).
The so-called solution method, in which SiC substrates are obtained by mixing impurities such as iron, cobalt, platinum, etc. into silicon or silicon, or by melting the mixture in a graphite crucible, and the Acheson method, which is generally used industrially to obtain abrasive materials, are used. There are methods that use SiC substrates that can be obtained commercially.

しかしながら上記昇華再結晶法、溶液法では多
数の再結晶を得ることはできるが、多くの結晶核
が結晶成長初期に発生する為に大型のSiC単結晶
基板を得ることが困難であり、又幾種類かの結晶
構造(polytype)のSiCが混在し、単一結晶構造
で大型のSiC単結晶をより再現性よく得る方法と
しては不完全なものである。又、アチエソン法に
より偶発的に得られるSiC基板は半導体材料とし
て使用するには純度及び結晶性の点で問題があ
り、又比較的大型のものが得られても偶発的に得
られるものであり、SiC基板を工業的に得る方法
としては適当でない。
However, although it is possible to obtain a large number of recrystallizations using the sublimation recrystallization method and the solution method, it is difficult to obtain a large SiC single crystal substrate because many crystal nuclei are generated at the initial stage of crystal growth, and it is difficult to obtain a large SiC single crystal substrate. SiC of various polytypes coexist, making it an incomplete method for obtaining large SiC single crystals with a single crystal structure with good reproducibility. In addition, SiC substrates obtained accidentally by the Acheson method have problems in terms of purity and crystallinity when used as semiconductor materials, and even if relatively large ones can be obtained, they are obtained accidentally. , it is not suitable as a method for industrially obtaining SiC substrates.

一方、近年、半導体技術の向上に伴ない、良質
で大型の単結晶基板として入手できる珪素(Si)
の異質基板上に、気相成長法(CVD法)を用い
たヘテロエピタキシヤル技術により3C形SiC(立
方晶形に属する結晶構造を有するもので、そのエ
ネルギーギヤツプは〜2.2eV)単結晶薄膜が得ら
れるようになつた。CVD法は工業的規模での量
産性に優れた製造技術であり、大面積で高品質の
SiC単結晶膜を再現性良くSi基板上に成長させる
技術として有望である。通常、珪素原料として、
SiH4,SiCl4,SiH2Cl2,(CH33SiCl,
(CH32SiCl2また、炭素原料としてCCl4,CH4
C3H8,C2H6、キヤリアガスとして水素、アルゴ
ン等を用いて、Si基板温度を1200℃〜1400℃に設
定し3C形SiC単結晶薄膜をエピタキシヤル成長さ
せている。
On the other hand, in recent years, with the improvement of semiconductor technology, silicon (Si) has become available as a high-quality, large-sized single crystal substrate.
A single crystal thin film of 3C type SiC (having a crystal structure belonging to the cubic crystal structure, with an energy gap of ~2.2 eV) is grown on a heterogeneous substrate using a heteroepitaxial technique using a vapor phase growth method (CVD method). is now available. The CVD method is a manufacturing technology that excels in mass production on an industrial scale, and allows for large-area, high-quality production.
This is a promising technology for growing SiC single crystal films on Si substrates with good reproducibility. Usually, as a silicon raw material,
SiH 4 , SiCl 4 , SiH 2 Cl 2 , (CH 3 ) 3 SiCl,
(CH 3 ) 2 SiCl 2 In addition, CCl 4 , CH 4 ,
Using C 3 H 8 , C 2 H 6 , hydrogen, argon, etc. as a carrier gas, the Si substrate temperature is set at 1200° C. to 1400° C., and a 3C type SiC single crystal thin film is epitaxially grown.

しかしながら、Siは異質基板であるため、SiC
とはなじみ(ぬれ)が悪く、またSiとSiCは格子
定数が20%も相違するため、Si基板上に直接に
SiCを単結晶成長させようとしても層状成長によ
る単結晶膜は得られずデンドライト構造を示す多
結晶になるかあるいはごく薄い単結晶膜が得られ
たとしても厚くなるにつれて結晶の品質が劣化
し、多結晶化する傾向にある。
However, since Si is a foreign substrate, SiC
Si and SiC have poor compatibility (wetting) with each other, and the lattice constants of Si and SiC differ by 20%, so it cannot be directly applied to the Si substrate.
Even if you try to grow SiC as a single crystal, you will not be able to obtain a single crystal film through layered growth, but instead it will become a polycrystalline film with a dendrite structure, or even if you can obtain a very thin single crystal film, the quality of the crystal will deteriorate as it gets thicker. It tends to become polycrystalline.

上記CVD法を改良したものの1つとして、最
近二温連続CVD法でSi単結晶基板上に良質で大
面積のSiC単結晶を成長させる方法が開発されて
いる(特願昭58−76842号)。また、他の方法とし
てはSi単結晶基板表面を一旦炭化水素ガスで炭化
した後、CVD法により炭化珪素単結晶を成長す
る方法であり、すでに公知の技術となつている
(Appl.phys.Lett42(5)、1March 1983P460〜
P462)。
As one of the improvements to the above CVD method, a method has recently been developed to grow high-quality, large-area SiC single crystals on Si single crystal substrates using two-temperature continuous CVD method (Japanese Patent Application No. 76842/1982). . Another method is to carbonize the surface of a Si single crystal substrate with hydrocarbon gas and then grow a silicon carbide single crystal using the CVD method, which is already a well-known technique (Appl.phys.Lett42 (5), 1March 1983P460~
P462).

しかしながら、上記いずれのCVD法もSi基板
上にSiC層を成長させているため、SiとSiCの熱
膨張率が2倍程度相違することに起因して結晶欠
陥を多く含むSiC単結晶になる。SiC単結晶を素
子製作用として用いるためには、結晶欠陥の少な
い結晶が必要となつてくる。
However, in any of the above CVD methods, a SiC layer is grown on a Si substrate, resulting in a SiC single crystal containing many crystal defects due to the difference in thermal expansion coefficients of Si and SiC by about twice. In order to use SiC single crystal for device fabrication, a crystal with few crystal defects is required.

<発明の目的> 本発明は上述の問題点に鑑み、SiC単結晶の
CVD成長において、成長用下地基板としてSiCと
熱膨張率の近いSOS(シリコン・オン・サフアイ
ヤSilicon on Sapphire)を利用することにより
格子欠陥の少ないSiC単結晶を得ることのできる
新規なSiC単結晶の製造方法を提供することを目
的とする。
<Object of the invention> In view of the above-mentioned problems, the present invention has been made to
In CVD growth, by using SOS (Silicon on Sapphire), which has a coefficient of thermal expansion similar to that of SiC, as the base substrate for growth, it is possible to obtain a SiC single crystal with few lattice defects. The purpose is to provide a manufacturing method.

<実施例> SOS基板上のSi単結晶表面を一旦プロパン
(C3H8)等の炭化水素ガスで炭化して炭化珪素薄
膜を表面に形成した後、原料ガスとしてモノシラ
ン(SiH4)とプロパン(C3H8)を用いたCVD法
で炭化珪素単結晶を成長させる方法を例にとつて
以下本発明の1実施例について説明する。
<Example> After carbonizing the Si single crystal surface on an SOS substrate with a hydrocarbon gas such as propane (C 3 H 8 ) to form a silicon carbide thin film on the surface, monosilane (SiH 4 ) and propane were used as raw material gases. An embodiment of the present invention will be described below, taking as an example a method of growing a silicon carbide single crystal by CVD using (C 3 H 8 ).

添付図面は本発明の1実施例に用いられる成長
装置の構成図である。水冷式横型二重石英管1内
に黒鉛製試料台2が載置された石英製支持台3を
設置し、反応管1の外胴部に巻回されたワークコ
イル4に高周波電流を流してこの試料台2を誘導
加熱する。試料台2は水平に設置してもよく、適
当に傾斜させてもよい。反応管1の片端にはガス
流入口となる枝管5が設けられ、二重石英管1の
外側の石英管には枝管6,7を介して冷却水が供
給される。反応管1の他端はステンレス製フラン
ジ8で閉塞されかつフランジ周縁に配設された止
め板9、ボルト10、ナツト11、ローリング1
2にてシールされている。フランジ8の中央には
ガス出口となる枝管13が設けられている。この
成長装置を用いて以下の様な結晶成長を行なつ
た。
The accompanying drawing is a block diagram of a growth apparatus used in one embodiment of the present invention. A quartz support stand 3 on which a graphite sample stand 2 is placed is installed inside a water-cooled horizontal double quartz tube 1, and a high-frequency current is passed through a work coil 4 wound around the outer body of the reaction tube 1. This sample stage 2 is heated by induction. The sample stage 2 may be installed horizontally or may be appropriately inclined. A branch pipe 5 serving as a gas inlet is provided at one end of the reaction tube 1, and cooling water is supplied to the quartz tube outside the double quartz tube 1 via branch pipes 6 and 7. The other end of the reaction tube 1 is closed with a stainless steel flange 8, and a stop plate 9, a bolt 10, a nut 11, and a rolling 1 are arranged around the flange.
It is sealed at 2. A branch pipe 13 serving as a gas outlet is provided at the center of the flange 8. Using this growth apparatus, the following crystal growth was performed.

試料台2にSOS基板14を載置する。キヤリア
ガスとして水素(H2)ガスを毎分3.0、SOS上
の珪素表面を炭化珪素化するための炭化用の原料
ガスとしてプロパン(C3H8)ガスを毎分1.0c.c.程
度流し、ワークコイル4に高周波電流を流して黒
鉛製試料台2を加熱し、SOS基板14の温度を約
1350℃まで加熱し、SOS上の珪素単結晶表面に炭
化珪素単結晶薄膜を形成する。次に、プロパンの
供給を断ち、プロパンとモノシラン(SiH4)ガ
スの流量を毎分0.4〜0.9c.c.に調節し、1時間流す
ことで、上記薄膜上に約3μmの炭化珪素単結晶薄
膜が形成できる。その結果、電子顕微鏡での観察
により格子欠陥の少ない表面平坦な炭化珪素単結
晶薄膜がSOS基板14全面に得られた。
The SOS board 14 is placed on the sample stage 2. Hydrogen (H 2 ) gas was flowed at a rate of 3.0 cc/min as a carrier gas, and propane (C 3 H 8 ) gas was flowed at a rate of 1.0 cc/min as a raw material gas for carbonization to convert the silicon surface on the SOS into silicon carbide. A high-frequency current is applied to the graphite sample stage 2 to heat it, and the temperature of the SOS board 14 is approximately
Heating to 1350°C forms a silicon carbide single crystal thin film on the silicon single crystal surface on the SOS. Next, the supply of propane was cut off, the flow rate of propane and monosilane (SiH 4 ) gas was adjusted to 0.4 to 0.9 cc per minute, and the flow was continued for 1 hour to form a silicon carbide single crystal thin film of approximately 3 μm on the above thin film. can. As a result, a silicon carbide single crystal thin film with a flat surface and few lattice defects was obtained on the entire surface of the SOS substrate 14 by observation using an electron microscope.

格子欠陥が減少した原因としては、SOSを下地
基板として使うことで熱膨張率の相違により発生
していた格子欠陥が減少した結果、成長した単結
晶膜に格子欠陥が少なくなつたと考えられる。
The reason for the decrease in lattice defects is thought to be that by using SOS as the base substrate, the lattice defects that were generated due to the difference in thermal expansion coefficient were reduced, resulting in fewer lattice defects in the grown single crystal film.

以上の実施例においては成長法として常圧
CVD法を用いたが減圧CVD法を用いてもよい。
In the above examples, normal pressure is used as the growth method.
Although the CVD method was used, a reduced pressure CVD method may also be used.

<発明の効果> 本発明によれば、SOS基板上に格子欠陥の少な
い高品質で大面積の炭化珪素単結晶を得ることが
でき量産形態に適するため、炭化珪素材料を用い
た半導体を工業的規模で実用化することが可能と
なる。
<Effects of the Invention> According to the present invention, a high-quality, large-area silicon carbide single crystal with few lattice defects can be obtained on an SOS substrate and is suitable for mass production. It becomes possible to put it into practical use on a large scale.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の1実施例の説明に供する成
長装置の構成図である。 1……反応管、2……試料台、3……支持台、
4……ワークコイル、5,6,7,13……枝
管、8……フランジ、14……SOS基板。
The accompanying drawing is a configuration diagram of a growth apparatus used to explain one embodiment of the present invention. 1...Reaction tube, 2...Sample stand, 3...Support stand,
4... Work coil, 5, 6, 7, 13... Branch pipe, 8... Flange, 14... SOS board.

Claims (1)

【特許請求の範囲】[Claims] 1 気相成長法で炭化珪素単結晶薄膜を成長させ
る際の下地基板としてシリコン・オン・サフアイ
ア基板を用いることを特徴とする炭化珪素単結晶
の製造方法。
1. A method for producing a silicon carbide single crystal, characterized in that a silicon-on-sapphire substrate is used as a base substrate when growing a silicon carbide single crystal thin film by a vapor phase growth method.
JP20494086A 1986-08-30 1986-08-30 Production of silicon carbide single crystal Granted JPS6360199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20494086A JPS6360199A (en) 1986-08-30 1986-08-30 Production of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20494086A JPS6360199A (en) 1986-08-30 1986-08-30 Production of silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPS6360199A JPS6360199A (en) 1988-03-16
JPH0364480B2 true JPH0364480B2 (en) 1991-10-07

Family

ID=16498865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20494086A Granted JPS6360199A (en) 1986-08-30 1986-08-30 Production of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPS6360199A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416738B1 (en) * 1996-12-30 2004-04-21 삼성전기주식회사 APPARATUS FOR FABRICATING ZnSe SINGLE CRYSTAL BY VAPOR CRYSTAL GROWTH METHOD
JP3631366B2 (en) * 1998-03-11 2005-03-23 株式会社神戸製鋼所 Single crystal diamond synthesis substrate
JP5051875B2 (en) * 2006-12-25 2012-10-17 東京エレクトロン株式会社 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JPS6360199A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US5037502A (en) Process for producing a single-crystal substrate of silicon carbide
US4865659A (en) Heteroepitaxial growth of SiC on Si
JPH0321519B2 (en)
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120514B2 (en)
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPS61243000A (en) Production of substrate of silicon carbide single crystal
JPH0364480B2 (en)
JPS63283014A (en) Silicon carbide semiconductor element
JPS6230699A (en) Production of silicon carbide single crystal substrate
JPH0327515B2 (en)
JPS61291495A (en) Production of silicon carbide single crystal base
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6152119B2 (en)
JPS6115150B2 (en)
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JPS5830280B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120515B2 (en)
JPS60264399A (en) Production of single crystal of silicon carbide
JPS609658B2 (en) Method for manufacturing silicon carbide substrate
JPS6272599A (en) Production of silicon carbide single crystal substrate
JPH0443879B2 (en)
JPS6360200A (en) Production of silicon carbide single crystal