JPH0442898A - Crystal growth of compound semiconductor - Google Patents

Crystal growth of compound semiconductor

Info

Publication number
JPH0442898A
JPH0442898A JP14446990A JP14446990A JPH0442898A JP H0442898 A JPH0442898 A JP H0442898A JP 14446990 A JP14446990 A JP 14446990A JP 14446990 A JP14446990 A JP 14446990A JP H0442898 A JPH0442898 A JP H0442898A
Authority
JP
Japan
Prior art keywords
plane
crystal
compound semiconductor
substrate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14446990A
Other languages
Japanese (ja)
Other versions
JP2870989B2 (en
Inventor
Mitsuru Shimazu
充 嶋津
Hiroya Kimura
浩也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14446990A priority Critical patent/JP2870989B2/en
Publication of JPH0442898A publication Critical patent/JPH0442898A/en
Application granted granted Critical
Publication of JP2870989B2 publication Critical patent/JP2870989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain zincblende group III-V compound-semiconductor single crystal with flat crystal surface even if doped with >=10<19>cm<-3> of Mg element by regulating the slope of a substrate under specified conditions. CONSTITUTION:In the crystal growth of Mg element-doped zincblende group III-V compound-semiconductor single crystal by organometal vapor growth process, a substrate having the same crystal structure as that of said semiconductor is put to crystal growth in a tilted state at a degree of >=0.5 from (100)plane to the adjacent (111)A or (111)B plane. Said compound semiconductor suitable for the above crystal growth is.e.g. of GaAs, AlGaAs, InP, GaInAs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マグネシウム元素をドープした閃亜鉛鉱型m
−v族化合物半導体を有機金属気相成長法で結晶成長さ
せる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a zinc blende type m
-Relates to a method for growing crystals of group V compound semiconductors by metal-organic vapor phase epitaxy.

(従来の技術) 有機金属気相成長法(OMVPE法)は、有機金属化合
物と金属水素化物を、反応炉中で熱分解させることによ
り、基板上に薄膜の単結晶を成長させる方法である。こ
の方法は、超薄膜の多層構造の形成が容易であり、量産
性も高いので、化合物半導体を用いたヘテロ接合デバイ
ス用基板の作製に用いられている。ヘテロ接合デバイス
の中でもHBT(ヘテロ・バイポーラ・トランジスタ)
は超高速で動作するため、盛んに開発されている。II
BTの構造は第3図に示すように、n−GaAsのコレ
クタ、pGaAsのベース、n−A lGaAsのエミ
ッタから構成されている。l’lBTの特性は、ベース
層のキャリア密度が高いほど、高い特性が得られる。従
来、OMVPE法ではp型ドーパントとしてZnが用い
られていたが、Znは拡散係数が大きいため、成長中に
ベース領域からエミッタ領域に拡散してしまい、急峻な
pn接合を得ることができないという問題があった。
(Prior Art) Organometallic vapor phase epitaxy (OMVPE) is a method of growing a thin single crystal film on a substrate by thermally decomposing an organometallic compound and a metal hydride in a reactor. This method facilitates the formation of an ultra-thin multilayer structure and is highly suitable for mass production, so it is used for manufacturing substrates for heterojunction devices using compound semiconductors. Among heterojunction devices, HBT (hetero bipolar transistor)
is being actively developed because it operates at extremely high speeds. II
As shown in FIG. 3, the structure of the BT is composed of an n-GaAs collector, a pGaAs base, and an n-AlGaAs emitter. The higher the carrier density of the base layer, the better the characteristics of l'lBT can be obtained. Conventionally, Zn has been used as a p-type dopant in the OMVPE method, but since Zn has a large diffusion coefficient, it diffuses from the base region to the emitter region during growth, making it impossible to obtain a steep p-n junction. was there.

MBE法では、lXl0”ci−’程度まで高密度にド
ーピングすることが可能で、かつ、拡散係数の小さなり
eが一般的に用いられているが、OMVPfi法では安
全件の問題から、Beを用いることは困難である。
In the MBE method, it is possible to dope at a high density of about l It is difficult to use.

そのため、znに比べて拡散係数が5桁小さいMgのド
ーピングが検討されている。Mgの原料としては、ビス
シクロペンタジェニルマグ不シウム(CptMg)又ハ
ビスメチルシクロペンタジエニルマグネシウム(LCp
Jg)が用いられる。これらの原料は、液体又は固体の
有機金属であり、キャリアガスである水素によって、化
合物半導体の原料である有機金属と金属水素化物と共に
反応管に導入され、基板上で熱分解され、結晶中に取り
込まれる。
Therefore, doping with Mg, which has a diffusion coefficient five orders of magnitude smaller than that of zn, is being considered. As a raw material for Mg, biscyclopentadienylmagnesium (CptMg) or habismethylcyclopentadienylmagnesium (LCp
Jg) is used. These raw materials are liquid or solid organic metals, and are introduced into a reaction tube together with organic metals and metal hydrides, which are the raw materials for compound semiconductors, using hydrogen as a carrier gas, and are thermally decomposed on the substrate, forming crystals. It is captured.

第4図は、有機金属気相成長法により、Mgドープ化合
物半導体結晶を成長させる装置の概念図である。予め、
反応管を減圧し、化合物半導体の■族原料は水素ガスに
よって反応管に導入され、■族原料は水素化物ガスの形
で導入される。これらの原料は、過熱された基板上で熱
分解され、基板上に化合物半導体結晶を成長する。この
化合物半導体中にp型の層を形成するには、予め排気管
に流していた口原料を含んだ水素ガスを、ノマルブAヲ
閉シ、バルブBを開(ことによって、反応管中に導入し
、所定の厚さのP層を成長しブ1、バルブBを閉じ、バ
ルブAを開いてMg原料ガスを反応管から排気管へ切り
替えることにより行われる。
FIG. 4 is a conceptual diagram of an apparatus for growing Mg-doped compound semiconductor crystals by metal organic vapor phase epitaxy. In advance,
The pressure in the reaction tube is reduced, and the Group 1 raw material of the compound semiconductor is introduced into the reaction tube by hydrogen gas, and the Group 1 raw material is introduced in the form of hydride gas. These raw materials are thermally decomposed on a heated substrate to grow compound semiconductor crystals on the substrate. In order to form a p-type layer in this compound semiconductor, hydrogen gas containing raw material, which had been previously flowed into the exhaust pipe, was introduced into the reaction tube by closing normal valve A and opening valve B. Then, a P layer of a predetermined thickness is grown, valves 1 and B are closed, and valve A is opened to switch the Mg source gas from the reaction pipe to the exhaust pipe.

(発明が解決しようとする課題) 上記のOMV’PE法でMgドープGaAs層を成長す
るときに、基板の(100)面から隣接する(110)
面へ2度傾けた基板上にMgドープGaAsを成長して
いるが、lXl0”c■−3以上のドーピングを行うと
結晶表面が劣化するという問題があった(例えば、Jo
ur+al orElectonics Materi
als、 Vol、 12. No、 3. p、 5
07〜524)。
(Problem to be Solved by the Invention) When growing an Mg-doped GaAs layer by the above OMV'PE method, the (110) layer adjacent to the (100) plane of the substrate
Mg-doped GaAs is grown on a substrate tilted at 2 degrees to the plane, but there is a problem that the crystal surface deteriorates when doping more than lXl0''c■-3 (for example, Jo
ur+al orElectronics Materi
als, Vol, 12. No, 3. p, 5
07-524).

本発明は、上記の問題を解消して、10”c+n−’以
上のマグネシウム元素をドーピングする場合においても
、結晶表面が平坦な閃亜鉛鉱型■−■族化合物半導体単
結晶を結晶成長可能な方法を提供しようとするものであ
る。
The present invention solves the above problems and makes it possible to grow a zincblende type ■-■ group compound semiconductor single crystal with a flat crystal surface even when doping with a magnesium element of 10"c+n-' or more. It is intended to provide a method.

(課題を解決するための手段) 本発明は、マグネシウム元素をドープした閃亜鉛鉱型■
−■族化合物半導体を有機金属気相成長法で結晶成長さ
せる方法において、同一結晶構造を有する基板を(10
0)面から隣接する(III)A面又は(111)8面
に0.5度以上傾けて結晶成長させることを特徴とする
化合物半導体の結晶成長方法である。なお、上記基板の
傾きの好ましい上限は、約10度である。
(Means for Solving the Problems) The present invention provides zinc blende doped with magnesium element.
- In a method of growing crystals of a group compound semiconductor by metal-organic vapor phase epitaxy, a substrate having the same crystal structure (10
This is a compound semiconductor crystal growth method characterized by growing a crystal at an angle of 0.5 degrees or more from the 0) plane to the adjacent (III)A plane or (111)8 plane. Note that the preferable upper limit of the inclination of the substrate is about 10 degrees.

本発明の結晶成長方法に好適な化合物半導体としては、
GaAs、 AlGaAs、 InP、 Ga1nAs
などを挙げることができる。
Compound semiconductors suitable for the crystal growth method of the present invention include:
GaAs, AlGaAs, InP, Ga1nAs
etc. can be mentioned.

(作用) OMVPE法においては、上記の文献に示されるように
、Mg原料の供給量の2乗に比例してドーピングされる
が、約2X10’″C1−3で飽和する。このように、
正孔密度が飽和する原因としては、通常の(110)面
又は(100)面から隣接する(+10)面へ傾けた基
板上に成長する方法では、2XIO”Cm−3以上の口
原子が結晶中に取り込まれても、結晶格子上に配置され
ずに晶格子間に位置し、正孔を供給するアクセプタとし
て機能しないためと考えられる。
(Function) In the OMVPE method, as shown in the above-mentioned literature, doping is carried out in proportion to the square of the supply amount of the Mg raw material, but it is saturated at about 2X10'''C1-3.In this way,
The reason why the hole density is saturated is that in the method of growing on a substrate tilted from the normal (110) plane or (100) plane to the adjacent (+10) plane, the hole atoms of 2XIO"Cm-3 or more are crystallized. This is thought to be because even if they are incorporated into the crystal lattice, they are not placed on the crystal lattice but are located between the crystal lattices and do not function as acceptors that supply holes.

そこで、本発明者らは、基板面を傾ける方位を隣接の(
Ill)面に変更し、傾ける角度も0.5度以上、好ま
しくは0.5〜IO度の範囲で調節したところ、l×1
0IIlcI11−3以上のMgドーピングを行っても
平坦なエピタキシャル表面を得ることができた。これは
、■族原子の格子位置にMg原子が位置しやすくなり、
格子間に位置するMg原子が減少するため、異常成長の
発生が抑制され、IXI(1”cm−3以上の、11g
ドーピングを行っても表面が劣化しないものと考えられ
る。
Therefore, the present inventors decided to change the direction in which the substrate surface is tilted to the adjacent (
Ill) surface and adjusted the inclination angle to 0.5 degrees or more, preferably in the range of 0.5 to IO degrees, and the result was 1 x 1
A flat epitaxial surface could be obtained even with Mg doping of 0IIlcI11-3 or higher. This makes it easier for Mg atoms to be located in the lattice positions of group ■ atoms,
Since the number of Mg atoms located in the interstitial space is reduced, the occurrence of abnormal growth is suppressed, and
It is considered that the surface does not deteriorate even if doping is performed.

(実施例1) 予め反応管内にAs原料のアルシン(^5H3)ガスを
流した状態で、(100)面から隣接した(III)A
面へ2度傾けたGaAs基板と、比較のために(100
)面から隣接した(+10)A面へ2度傾けたGaAs
基板を、同時に反応管内に設置し、温度650°Cまで
加熱した後、予め排気管へ流しておいたCpyMgを毎
分60m1で反応管内に導入した。10分後に、Ca原
料のTMGaを毎分7n+Iで反応管へ導入して、毎時
2μmの成長速度でGaAsの成長を始めた。90分後
、TMGaとCptMgを排気管に切り替え、基板温度
を室温に戻し成長を終了した。
(Example 1) With arsine (^5H3) gas as the As raw material flowing in the reaction tube in advance, adjacent (III) A from the (100) plane
For comparison, a GaAs substrate tilted 2 degrees to the plane (100
) plane tilted 2 degrees to the adjacent (+10) A plane
The substrate was placed in the reaction tube at the same time and heated to a temperature of 650° C., and then CpyMg, which had been flowed into the exhaust pipe in advance, was introduced into the reaction tube at a rate of 60 ml per minute. After 10 minutes, TMGa, which is a Ca raw material, was introduced into the reaction tube at a rate of 7n+I per minute, and the growth of GaAs was started at a growth rate of 2 μm per hour. After 90 minutes, TMGa and CptMg were switched to the exhaust pipe, and the substrate temperature was returned to room temperature to complete the growth.

第1図及び第2図は、上記実施例及び比較例の2種類の
GaAs基板上に成長したMgドープGaAsエピタキ
シャル層の表面をノマルスキイ式光学顕微鏡を用いて倍
率1000倍で撮影した結晶構造の顕微鏡写真である。
Figures 1 and 2 are micrographs showing the crystal structure of the surfaces of the Mg-doped GaAs epitaxial layers grown on the two types of GaAs substrates of the above examples and comparative examples, taken using a Nomarski optical microscope at a magnification of 1000 times. It's a photo.

第1図は、本発明とは関係のない表面欠陥による中央の
キズを除いて、エピタキシャル表面が鏡面であるのに対
し、第2図は、エピタキシャル表面が劣化していること
が分かる。
In FIG. 1, the epitaxial surface is a mirror surface except for a central scratch due to a surface defect unrelated to the present invention, whereas in FIG. 2, it can be seen that the epitaxial surface has deteriorated.

(実施例2) 実施例1の成長条件において、基板を(100)面から
隣接(III)A面へ7度傾け、その他の成長条件を同
じにしてMgドープGaAsエピタ牛シャル層を成長さ
せたところ、エピタキシャル表面は実施例1と同様に鏡
面であり、劣化は見られなかった。
(Example 2) Under the growth conditions of Example 1, the substrate was tilted by 7 degrees from the (100) plane to the adjacent (III)A plane, and an Mg-doped GaAs epitaxial layer was grown under the same growth conditions as in Example 1. However, the epitaxial surface was a mirror surface as in Example 1, and no deterioration was observed.

(発明の効果) 本発明は、上記の構成を採用し、基板の傾きを調節する
ことにより、1G”am−’以上のマグネシウム元素を
ドーピングする場合においても、結晶表面が平坦な閃亜
鉛鉱型■−■族化合物半導体単結晶を得ることができる
ようになった。
(Effects of the Invention) The present invention adopts the above structure and adjusts the inclination of the substrate to achieve a zinc blende type crystal with a flat crystal surface even when doping with magnesium element of 1 G"am-" or more. It has become possible to obtain single crystals of ■-■ group compound semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図並びに第2図は、本発明の実施例1並びに比較例
で得たGaAsエピタキシャル層の表面を撮影した結晶
構造の顕微鏡写真、第3図は、HBTの断面模式図、第
4図は、OMVPE装置の概念図である。 第1図 第2図
Figures 1 and 2 are micrographs of the crystal structure of the surface of the GaAs epitaxial layer obtained in Example 1 and Comparative Example of the present invention, Figure 3 is a schematic cross-sectional view of HBT, and Figure 4 is , is a conceptual diagram of an OMVPE device. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)マグネシウム元素をドープした閃亜鉛鉱型III−
V族化合物半導体を有機金属気相成長法で結晶成長させ
る方法において、同一結晶構造を有する基板を(100
)面から隣接する(111)A面又は(111)B面に
0.5度以上傾けて結晶成長させることを特徴とする化
合物半導体の結晶成長方法。
(1) Zinc blende type III doped with magnesium element
In a method for growing crystals of group V compound semiconductors by metal-organic vapor phase epitaxy, a substrate having the same crystal structure is grown (100
) A crystal growth method for a compound semiconductor, characterized in that the crystal is grown at an angle of 0.5 degrees or more from the (111)A plane or (111)B plane to the adjacent (111)A plane or (111)B plane.
(2)上記の化合物半導体がGaAs、AlGaAs、
InP及びGaInAsからなる群より選ばれる1種類
以上の化合物半導体である請求項(1)記載の化合物半
導体の結晶成長方法。
(2) The above compound semiconductor is GaAs, AlGaAs,
2. The method for growing compound semiconductor crystals according to claim 1, wherein the compound semiconductor is one or more compound semiconductors selected from the group consisting of InP and GaInAs.
JP14446990A 1990-06-04 1990-06-04 Compound semiconductor crystal growth method Expired - Lifetime JP2870989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14446990A JP2870989B2 (en) 1990-06-04 1990-06-04 Compound semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14446990A JP2870989B2 (en) 1990-06-04 1990-06-04 Compound semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPH0442898A true JPH0442898A (en) 1992-02-13
JP2870989B2 JP2870989B2 (en) 1999-03-17

Family

ID=15363010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14446990A Expired - Lifetime JP2870989B2 (en) 1990-06-04 1990-06-04 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP2870989B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016459A1 (en) * 1993-01-13 1994-07-21 Sumitomo Chemical Company, Limited Semiconductor expitaxial substrate
JPH076971A (en) * 1993-01-25 1995-01-10 Ohio Aerospace Inst Synthetic semiconductor and its controlled doping
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016459A1 (en) * 1993-01-13 1994-07-21 Sumitomo Chemical Company, Limited Semiconductor expitaxial substrate
JPH076971A (en) * 1993-01-25 1995-01-10 Ohio Aerospace Inst Synthetic semiconductor and its controlled doping
US5709745A (en) * 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof

Also Published As

Publication number Publication date
JP2870989B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JPH042699A (en) Growing of crystal
JPH06244112A (en) Method of growing compound semiconductor crystal
US11393683B2 (en) Methods for high growth rate deposition for forming different cells on a wafer
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH0442898A (en) Crystal growth of compound semiconductor
US5858818A (en) Formation of InGaSa p-n Junction by control of growth temperature
KR960004591B1 (en) Doped crystal growing method
JP3487393B2 (en) Method of forming heteroepitaxial semiconductor substrate, compound semiconductor device having such heteroepitaxial semiconductor substrate, and method of manufacturing the same
CN112735943B (en) Preparation method for growing nitrogen polar III nitride semiconductor film on silicon substrate
JPH02203520A (en) Growth of compound semiconductor crystal
JP2821563B2 (en) Compound crystal epitaxial growth method and doping method thereof
JP3107646U (en) Compound semiconductor epitaxial wafer
JP2936620B2 (en) Vapor phase growth of compound semiconductor crystals
JP3424315B2 (en) Vapor phase growth method of III-V compound mixed crystal semiconductor thin film
JP3430621B2 (en) III-V compound semiconductor crystal growth method
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH01100976A (en) Manufacture of semiconductor element
JPH02221192A (en) Vapor growth method for compound semiconductor
JP2861199B2 (en) Vapor phase growth of compound semiconductor crystals
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPH0265124A (en) Crystal growth of compound semiconductor
JPH03232220A (en) Vapor growth method for compound semiconductor crystal
JPH02203519A (en) Growth of compound semiconductor crystal
JPH04333220A (en) Inp substrate, inp semiconductor device and manufacture of inp substrate
JPH053160A (en) Growth method of chemical compound semiconductor crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12