JPS621358B2 - - Google Patents

Info

Publication number
JPS621358B2
JPS621358B2 JP10868580A JP10868580A JPS621358B2 JP S621358 B2 JPS621358 B2 JP S621358B2 JP 10868580 A JP10868580 A JP 10868580A JP 10868580 A JP10868580 A JP 10868580A JP S621358 B2 JPS621358 B2 JP S621358B2
Authority
JP
Japan
Prior art keywords
growth
melt
substrate
atmosphere
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10868580A
Other languages
Japanese (ja)
Other versions
JPS5734099A (en
Inventor
Jun Ishii
Wataru Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10868580A priority Critical patent/JPS5734099A/en
Publication of JPS5734099A publication Critical patent/JPS5734099A/en
Publication of JPS621358B2 publication Critical patent/JPS621358B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は、液相エピタキシヤル成長におい
て、成長用融液とその雰囲気の間に雰囲気分離材
を用いて液相エピタキシヤル成長させる方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of performing liquid phase epitaxial growth using an atmosphere separating material between a growth melt and its atmosphere.

液相エピタキシヤル成長方法は特に化合物半導
体の結晶成長によく適用されており、この方法で
得た結晶を用いてつくつたデバイスの特性は一般
に溶融法でつくつたいわゆるバルク結晶を用いて
つくつたデバイスの特性より優れている。液相エ
ピタキシヤル成長方法の従来のものに関し、まず
その中の傾斜法について詳細に説明する。説明の
便宜のためにGaAsのエピタキシヤル成長方法を
例にとつて説明する。
The liquid phase epitaxial growth method is particularly often applied to the crystal growth of compound semiconductors, and the characteristics of devices made using crystals obtained using this method are generally similar to those of devices made using so-called bulk crystals made by the melting method. Better. Regarding conventional liquid phase epitaxial growth methods, the tilting method among them will first be explained in detail. For convenience of explanation, a GaAs epitaxial growth method will be explained as an example.

第1図a,bは従来のもののエピタキシヤル成
長装置の概略断面図である。第1図で、1は成長
用融液、2はGaAs基板、3はポート、4は透明
石英管、5は電気炉である。第1図では電気炉の
制御系、ガス配管系、電気炉傾斜機構などは省略
されている。GaAsの液相エピタキシヤル成長は
次に述べる方法で実施される。前処理を行つて加
工層を除去した鏡面のGaAs基板2および成長開
始温度で飽和融液となるように所定量のGaと
GaAsとからなる成長用融液1を予め処理した高
純度グラツシーカーボンのボート3に入れ第1図
aに示すように設定する。石英管4の中は高純度
水素ガスがすでに流されており、電気炉5も所定
温度に加熱されている。したがつて、成長用融液
1とGaAs基板2を入れたボート3は高純度水素
中で加熱されて所定温度に達する。このときAs
の飽和したGa融液ができるとともにGaAs基板2
の表面から砒素が蒸発して低温部分に運び去られ
る。所定温度に到達したときに第1図bに示すよ
うに電気炉5を第1図aと傾斜が逆になるように
かたむける。この操作により、第1図bにみられ
るように成長用融液1がGaAs基板2と接触す
る。その後、温度を数度から10度程度上昇させ
て、GaAs基板2の表面を成長用融液1でエツチ
ングをする。GaAs基板表面を所望量エツチング
した後に電気炉5の温度をさげる。このとき
GaAs基板2の結晶上にGaAsがエピタキシヤル成
長する。所望の成長層厚が得られたとき再び電気
炉5をもとの状態、すなわち第1図aに示す状態
に傾斜させると、成長用融液1と所望量成長した
GaAsエピタキシヤルウエハが分離する。ボート
3を低温部分で冷却後に石英管4の外にとり出
す。上述した方法はエピタキシヤル成長層を一層
のみ基板上に成長させるには有用である。
FIGS. 1a and 1b are schematic cross-sectional views of a conventional epitaxial growth apparatus. In FIG. 1, 1 is a growth melt, 2 is a GaAs substrate, 3 is a port, 4 is a transparent quartz tube, and 5 is an electric furnace. In FIG. 1, the electric furnace control system, gas piping system, electric furnace tilting mechanism, etc. are omitted. Liquid phase epitaxial growth of GaAs is performed by the method described below. A mirror-finished GaAs substrate 2 from which the processing layer has been removed by pretreatment is used, and a predetermined amount of Ga is added to the substrate so that it becomes a saturated melt at the growth starting temperature.
A growth melt 1 made of GaAs is placed in a boat 3 made of high-purity glassy carbon that has been treated in advance and set as shown in FIG. 1a. High purity hydrogen gas is already flowing through the quartz tube 4, and the electric furnace 5 is also heated to a predetermined temperature. Therefore, the boat 3 containing the growth melt 1 and the GaAs substrate 2 is heated in high purity hydrogen to reach a predetermined temperature. At this time As
A saturated Ga melt is formed and the GaAs substrate 2 is formed.
Arsenic evaporates from the surface and is carried away to the cooler parts. When the predetermined temperature is reached, the electric furnace 5 is tilted so that its slope is opposite to that shown in FIG. 1a, as shown in FIG. 1b. By this operation, the growth melt 1 comes into contact with the GaAs substrate 2, as shown in FIG. 1b. Thereafter, the temperature is raised from several degrees to about 10 degrees, and the surface of the GaAs substrate 2 is etched with the growth melt 1. After etching the GaAs substrate surface by a desired amount, the temperature of the electric furnace 5 is lowered. At this time
GaAs is epitaxially grown on the crystal of GaAs substrate 2. When the desired growth layer thickness is obtained, the electric furnace 5 is tilted again to its original state, that is, the state shown in FIG.
The GaAs epitaxial wafer is separated. After the boat 3 is cooled in a low-temperature part, it is taken out of the quartz tube 4. The method described above is useful for growing only a single epitaxial growth layer on a substrate.

エピタキシヤル成長層を二層以上得るためには
第2図に示すようなスライドボート3′が用いら
れている。この場合第1図で説明したように電気
炉5を傾斜させる必要はない。GaAs基板2上に
エピタキシヤル成長層をたとえば第3図にその断
面を示すように二層得る場合について簡単に説明
する。第3図で、2はGaAs基板、6はp形GaAs
エピタキシヤル成長層、7はn形GaAsエピタキ
シヤル成長層である。
In order to obtain two or more epitaxially grown layers, a slide boat 3' as shown in FIG. 2 is used. In this case, there is no need to tilt the electric furnace 5 as explained in FIG. A case in which two epitaxially grown layers are formed on the GaAs substrate 2, for example, as shown in the cross section of FIG. 3, will be briefly described. In Figure 3, 2 is a GaAs substrate, 6 is a p-type GaAs
The epitaxial growth layer 7 is an n-type GaAs epitaxial growth layer.

第3図に示す断面構造のエピタキシヤルウエハ
を成長する場合、第2図に示すように前処理を行
つたGaAs基板2と成長用融液1,1′をスライド
ボート3′にまず設定する。このとき成長用融液
1はGaに所定量のGaAsとp形不純物が添加され
ており、成長用融液1′はGaに所望量のGaAsと
n形不純物が添加されている。GaAs基板2と成
長用融液1を設定したスライドボード3′を高純
度水素ガス中で昇温する。所定温度まで加熱した
ときにGaAs基板2上に成長用融液1を接触させ
る。温度を降下させるとGaAs基板2上にp形
GaAsが成長する。所望の成長層が得られたとき
にGaAs基板2上に接触している成長用融液1を
除去し、成長用融液1′を接触させる。これは
GaAs基板2と成長用融液1′を相対的に移動させ
ることにより行われる。この後も続けて温度を降
下させることにより成長用融液1′よりn形GaAs
が析出しエピタキシヤル成長する。所望の成長層
厚が得られたときに成長用融液1′を分離して常
温に冷却後成長結晶をとり出す。
When growing an epitaxial wafer having the cross-sectional structure shown in FIG. 3, a pretreated GaAs substrate 2 and a growth melt 1, 1' are first set in a slide boat 3' as shown in FIG. At this time, the growth melt 1 has Ga added with a predetermined amount of GaAs and a p-type impurity, and the growth melt 1' has Ga added with a desired amount of GaAs and an n-type impurity. A slide board 3' on which a GaAs substrate 2 and a growth melt 1 are set is heated in high-purity hydrogen gas. When heated to a predetermined temperature, the growth melt 1 is brought into contact with the GaAs substrate 2. When the temperature is lowered, the p-type is formed on the GaAs substrate 2.
GaAs grows. When the desired growth layer is obtained, the growth melt 1 in contact with the GaAs substrate 2 is removed, and the growth melt 1' is brought into contact with the GaAs substrate 2. this is
This is carried out by relatively moving the GaAs substrate 2 and the growth melt 1'. After this, by continuing to lower the temperature, the n-type GaAs is grown from the growth melt 1'.
precipitates and grows epitaxially. When the desired growth layer thickness is obtained, the growth melt 1' is separated, cooled to room temperature, and then the grown crystal is taken out.

上述したGaAsの成長温度は500℃から1000℃の
高温で実施されている。また、一般に化合物半導
体結晶の液相エピタキシヤル成長は上述したよう
に高純度水素ガス雰囲気中で行われている。この
ために化合物半導体結晶の蒸発しやすい元素、た
とえばGaAsのAs、GaPのP、InPのPなどが所
定温度まで上昇中に蒸発し、基板結晶が熱的に腐
蝕される。基板表面が熱腐蝕されるので、それを
低減するためにカバーをおいたり、蒸発しやすい
元素をその雰囲気中に導入したりする方法がとら
れている。また、結晶の成長を行う前に基板結晶
表面をエツチング除去する融液を設けることが行
われている。
The above-mentioned GaAs growth temperature is carried out at a high temperature of 500°C to 1000°C. Further, liquid phase epitaxial growth of compound semiconductor crystals is generally performed in a high purity hydrogen gas atmosphere as described above. For this reason, elements that easily evaporate in the compound semiconductor crystal, such as As in GaAs, P in GaP, and P in InP, evaporate while the temperature rises to a predetermined temperature, and the substrate crystal is thermally corroded. Since the surface of the substrate is subject to thermal corrosion, methods are used to reduce this by placing a cover on the substrate or introducing an element that easily evaporates into the atmosphere. Furthermore, before crystal growth, a melt is provided to etch away the substrate crystal surface.

この発明はかかる方法をとらないで、しかも高
純度水素ガス雰囲気を用いないで液相エピタキシ
ヤル成長を行う方法を提供するものである。以
下、この発明について説明する。
The present invention provides a method for performing liquid phase epitaxial growth without using such a method and without using a high-purity hydrogen gas atmosphere. This invention will be explained below.

この発明の一実施例を第4,5,6図を用いて
説明する。化合物半導体結晶のうちのInSbの結
晶成長を例にとつて以下説明する。第4,5,6
図はこの発明の一実施例によるエピタキシヤル成
長装置の断面概略図であり、第4〜6図の順番に
したがつて液相エピタキシヤル成長がすすめられ
る。
An embodiment of this invention will be explained using FIGS. 4, 5, and 6. The crystal growth of InSb among compound semiconductor crystals will be explained below as an example. 4th, 5th, 6th
The figure is a schematic cross-sectional view of an epitaxial growth apparatus according to an embodiment of the present invention, in which liquid phase epitaxial growth is carried out in the order shown in FIGS. 4-6.

第4図で、10はボート、11,12,13,
14はスライド部材、15,16,17は前記ス
ライド部材11,12,13にそれぞれ形成され
た導通孔、18,19,20,21,22は容器
で、それぞれ導通孔23,24,25,26,2
7を有する。28,29,30,31,32はそ
れぞれ成長用材料室、33,34,35は成長用
融液よりも比重の軽い雰囲気分離材、36,37
は成長用融液、38は基板結晶、39は雰囲気分
離材予備室である。第5,6図の同一符号は第4
図と同一もしくは相当部分を示す。
In Figure 4, 10 is a boat, 11, 12, 13,
14 is a slide member; 15, 16, 17 are through holes formed in the slide members 11, 12, 13, respectively; 18, 19, 20, 21, 22 are containers, with through holes 23, 24, 25, 26, respectively. ,2
It has 7. 28, 29, 30, 31, and 32 are growth material chambers, 33, 34, and 35 are atmosphere separation materials whose specific gravity is lighter than that of the growth melt, and 36, 37.
38 is a growth melt, 38 is a substrate crystal, and 39 is an atmosphere separation material preliminary chamber. The same reference numerals in Figures 5 and 6 are number 4.
Shows the same or equivalent parts as in the figure.

次にこれらの図によつて実際の液相エピタキシ
ヤル成長を行う工程を説明する。
Next, the process of actually performing liquid phase epitaxial growth will be explained with reference to these figures.

まず、第4図に示すように、成長用材料室29
の容器19に加工歪みを除去したInSbの基板結
晶38を設定し、次に雰囲気分離材34を入れ
る。次に、Inに所定量のInSbとp形不純物を添
加した成長用融液36を成長用材料室28の容器
18に入れたのちに雰囲気分離材33を入れる。
同様にInに所定量のInSbとn形不純物を添加し
た成長用融液37を成長用材料室31の容器21
に入れたのちに雰囲気分離材35を入れる。この
ように設定されたボートを250℃まで昇温する。
250℃になり、InSbと不純物が溶解し、In融液と
なつたときにスライド部材13を移動させて、ス
ライド部材13の導通孔16を容器19の導通孔
24と一致させ容器19内の雰囲気分離材34を
成長用材料室30に移す。その後スライド部材1
3を元の位置関係にもどす。次に、スライド部材
11を移動させて、前述と同様にスライド部材1
1の導通孔15と容器18の導通孔23と一致さ
せ、その容器内の成長用融液36と雰囲気分離材
33を容器19に移し、スライド部材11をもと
の位置にもどす。このときの断面概略図を第5図
に示す。
First, as shown in FIG. 4, the growth material chamber 29
An InSb substrate crystal 38 from which processing strain has been removed is placed in a container 19, and then an atmosphere separation material 34 is placed therein. Next, a growth melt 36 in which a predetermined amount of InSb and a p-type impurity are added to In is put into the container 18 of the growth material chamber 28, and then an atmosphere separating material 33 is put therein.
Similarly, a growth melt 37 in which a predetermined amount of InSb and n-type impurities are added to In is placed in the container 2 of the growth material chamber 31.
After that, the atmosphere separating material 35 is added. The boat set up in this way is heated to 250℃.
When the temperature reaches 250°C, InSb and impurities dissolve and become an In melt, the slide member 13 is moved to align the conduction hole 16 of the slide member 13 with the conduction hole 24 of the container 19, thereby reducing the atmosphere inside the container 19. The separation material 34 is transferred to the growth material chamber 30. Then slide member 1
Return 3 to its original position. Next, move the slide member 11 and move the slide member 11 in the same manner as described above.
The through hole 15 of No. 1 is aligned with the through hole 23 of the container 18, the growth melt 36 and the atmosphere separation material 33 in the container are transferred to the container 19, and the slide member 11 is returned to its original position. A schematic cross-sectional view at this time is shown in FIG.

このとき基板結晶38は成長用In融液と接触す
る。ただちに温度を250℃より徐冷する。徐冷中
にInSb基板結晶上にp形InSbがエピタキシヤル
成長する。所望の成長層膜厚が得られたときに徐
冷を中止し一定温度に保持し、スライド部材14
を用いて容器19を第5図で右側端まで移動させ
る。その後にスライド部材13の導通孔16を移
動後の容器19の導通孔24に一致させ、その容
器内の成長用融液36と雰囲気分離材33を図で
下側の容器22に移動させる。次に、スライド部
材13をもとの位置にもどす。直ちに別のスライ
ド部材12の導通孔17を成長用In融液の入つて
いる容器21の導通孔26と一致させ、その成長
用融液37をInSb基板結晶と接触させる。その
成長用融液37の上には雰囲気分離材35がおお
つている。その後にスライド部材12をもとの位
置にもどす。このときの断面概略図を第6図に示
す。
At this time, the substrate crystal 38 comes into contact with the In melt for growth. Immediately gradually cool the temperature from 250℃. During slow cooling, p-type InSb grows epitaxially on the InSb substrate crystal. When the desired growth layer thickness is obtained, the slow cooling is stopped and the temperature is maintained at a constant temperature, and the slide member 14
5 to move the container 19 to the right end in FIG. Thereafter, the conduction hole 16 of the slide member 13 is aligned with the conduction hole 24 of the moved container 19, and the growth melt 36 and atmosphere separation material 33 in the container are moved to the lower container 22 in the figure. Next, the slide member 13 is returned to its original position. Immediately, the conduction hole 17 of another slide member 12 is aligned with the conduction hole 26 of the container 21 containing the In melt for growth, and the growth melt 37 is brought into contact with the InSb substrate crystal. An atmosphere separation material 35 is placed on top of the growth melt 37. After that, the slide member 12 is returned to its original position. A schematic cross-sectional view at this time is shown in FIG.

第6図の状態で徐冷するとp形InSb成長層の
上にn形InSbがエピタキシヤル成長する。所望
の成長層厚が得られたときに再びスライド部材1
3を移動させ、そのスライド部材13の導通孔1
6を成長用融液の入つている容器19の導通孔2
4と一致させて成長用融液と成長結晶を分離す
る。容器22の体積をこえた成長用融液と雰囲気
分離材は予備室39にたまる。室温に冷却して成
長結晶をとり出して液相エピタキシヤル成長の全
工程を終る。
When the layer is slowly cooled in the state shown in FIG. 6, n-type InSb is epitaxially grown on the p-type InSb growth layer. When the desired growth layer thickness is obtained, slide member 1 is moved again.
3 to open the conduction hole 1 of the slide member 13.
6 is the through hole 2 of the container 19 containing the growth melt.
Separate the growth melt and the growth crystal in accordance with step 4. The growth melt and atmosphere separation material exceeding the volume of the container 22 accumulate in the preliminary chamber 39. The entire process of liquid phase epitaxial growth is completed by cooling to room temperature and taking out the grown crystal.

以上詳細に説明したように、この発明によれば
成長用融液、基板共にエピタキシヤル成長前に雰
囲気分離材でおおわれている。そのため、成長用
融液と成長結晶を分離後から室温に冷却している
間も成長結晶は雰囲気分離材にその表面がおおわ
れており、成長結晶が保護されていることにな
る。この発明による雰囲気分離材として、温度が
350℃程度より低い場合にはステアリン酸などが
用いられる。また、ボートは高純度グラツシーカ
ーボンなどでつくることができる。そのため大気
との気密性が悪い高純度カーボンでボートをつく
つた場合には、その全体を雰囲気分離材で包囲で
きる容器を追加することで、大気の影響は容易に
さけられる。このように、この発明によれば高純
度ガスを使用することなく、しかも基板結晶の熱
腐蝕を防止して良質の薄膜成長層を簡単に得るこ
とができる。また、この発明によれば、雰囲気分
離材の選択により他の材料に適用することができ
るとともに、ボート構造の変更によつて多数枚の
基板上に所望数の成長層を順次成長することも容
易に行える等の利点が得られる。
As described in detail above, according to the present invention, both the growth melt and the substrate are covered with an atmosphere separating material before epitaxial growth. Therefore, even after the growth melt and the growing crystal are separated and while they are being cooled to room temperature, the surface of the growing crystal is covered with the atmosphere separation material, and the growing crystal is protected. As an atmosphere separating material according to this invention, the temperature
If the temperature is lower than about 350°C, stearic acid or the like is used. Boats can also be made from high-purity glassy carbon. Therefore, if a boat is made of high-purity carbon that is not airtight with the atmosphere, the influence of the atmosphere can be easily avoided by adding a container that can be completely surrounded by an atmosphere separating material. As described above, according to the present invention, a high-quality thin film growth layer can be easily obtained without using high-purity gas, while preventing thermal corrosion of the substrate crystal. Further, according to the present invention, it is possible to apply it to other materials by selecting the atmosphere separating material, and it is also easy to sequentially grow a desired number of growth layers on a large number of substrates by changing the boat structure. This provides advantages such as the ability to perform

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの傾斜法による液相エピタ
キシヤル成長装置の断面概略図、第2図は従来の
もののスライドボートによるものの断面概略図、
第3図は基板上に二層成長させたものの断面概略
図、第4図、第5図、第6図はこの発明の一実施
例に用いる液相エピタキシヤル成長装置の断面概
略図である。 図中、10はボート、11,12,13,14
はスライド部材、15,16,17は導通孔、1
8,19,20,21,22は容器、23,2
4,25,26,27は導通孔、28,29,3
0,31,32は成長用材料室、33,34,3
5は雰囲気分離材、36,37は成長用融液、3
8は基板結晶、39は雰囲気分離材予備室を示
す。
Fig. 1 is a schematic cross-sectional view of a liquid phase epitaxial growth apparatus using a conventional tilt method, and Fig. 2 is a schematic cross-sectional view of a conventional liquid phase epitaxial growth apparatus using a slide boat.
FIG. 3 is a schematic cross-sectional view of two layers grown on a substrate, and FIGS. 4, 5, and 6 are schematic cross-sectional views of a liquid phase epitaxial growth apparatus used in an embodiment of the present invention. In the figure, 10 is a boat, 11, 12, 13, 14
1 is a slide member, 15, 16, 17 are conduction holes, 1
8, 19, 20, 21, 22 are containers, 23, 2
4, 25, 26, 27 are conduction holes, 28, 29, 3
0, 31, 32 are growth material chambers, 33, 34, 3
5 is an atmosphere separation material, 36 and 37 are growth melts, 3
Reference numeral 8 indicates a substrate crystal, and reference numeral 39 indicates an atmosphere separation material preliminary chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 液相エピタキシヤル成長において、所望の成
長用融液をその成長用融液と雰囲気を分離せしめ
る成長用融液より比重の軽い雰囲気分離材でおお
いながら、かつ基板を前記雰囲気分離材中に浸漬
させながら成長用融液をつくる工程と、前記成長
用融液と基板を接触せしめ前記基板上に所望結晶
を成長させる工程と、この工程に引き続き前記成
長用融液と結晶を成長させた基板とを分離せしめ
る工程とを含むことを特徴とする液相エピタキシ
ヤル成長方法。
1. In liquid phase epitaxial growth, a desired growth melt is covered with an atmosphere separation material having a lighter specific gravity than the growth melt, which separates the growth melt from the atmosphere, and the substrate is immersed in the atmosphere separation material. a step of bringing the growth melt into contact with a substrate to grow a desired crystal on the substrate; and a step of making the growth melt and the substrate on which the crystal has grown subsequent to this step; A method for liquid phase epitaxial growth, comprising the step of separating.
JP10868580A 1980-08-06 1980-08-06 Epitaxial growth of liquid phase Granted JPS5734099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10868580A JPS5734099A (en) 1980-08-06 1980-08-06 Epitaxial growth of liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10868580A JPS5734099A (en) 1980-08-06 1980-08-06 Epitaxial growth of liquid phase

Publications (2)

Publication Number Publication Date
JPS5734099A JPS5734099A (en) 1982-02-24
JPS621358B2 true JPS621358B2 (en) 1987-01-13

Family

ID=14491056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10868580A Granted JPS5734099A (en) 1980-08-06 1980-08-06 Epitaxial growth of liquid phase

Country Status (1)

Country Link
JP (1) JPS5734099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283399A (en) * 1985-10-04 1987-04-16 Mitsubishi Electric Corp Boat for liquid phase epitaxial growth
JP3258163B2 (en) * 1994-02-23 2002-02-18 富士電機株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS5734099A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US3093517A (en) Intermetallic semiconductor body formation
US3632431A (en) Method of crystallizing a binary semiconductor compound
US6872248B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
US3484302A (en) Method of growing semiconductor crystals
EP0244987B1 (en) A process for growing a multi-component crystal
US4642142A (en) Process for making mercury cadmium telluride
Seidensticker Kinetic effects in temperature gradient zone melting
US4512825A (en) Recovery of fragile layers produced on substrates by chemical vapor deposition
US3762968A (en) Method of forming region of a desired conductivity type in the surface of a semiconductor body
US4654110A (en) Total immersion crystal growth
JPS621358B2 (en)
US3697330A (en) Liquid epitaxy method and apparatus
US4824520A (en) Liquid encapsulated crystal growth
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
US4263064A (en) Method of liquid phase epitaxial growth
US4201623A (en) Method for making epitaxial silicon crystals with uniform doping levels
US5223079A (en) Forming thin liquid phase epitaxial layers
US4468258A (en) Method of controlling the partial pressure of at least one substance mixture or mixture of substances
JP2001180918A (en) Method of directly synthesizing indium phosphide
JP2008300603A (en) Semiconductor production apparatus
JP2599767B2 (en) Solution growth equipment
JPH085760B2 (en) Method for producing Hgl-xo Cdxo Te crystal ingot
US4566934A (en) Cleaning technique for LPE melt ingots
JP2580143B2 (en) Method for manufacturing article having heteroepitaxial structure
JPS59101823A (en) Liquid-phase epitaxial growth device