JPH06291052A - Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate - Google Patents

Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate

Info

Publication number
JPH06291052A
JPH06291052A JP7561093A JP7561093A JPH06291052A JP H06291052 A JPH06291052 A JP H06291052A JP 7561093 A JP7561093 A JP 7561093A JP 7561093 A JP7561093 A JP 7561093A JP H06291052 A JPH06291052 A JP H06291052A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial layer
compound semiconductor
semi
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7561093A
Other languages
Japanese (ja)
Inventor
Toyoaki Imaizumi
豊明 今泉
Osamu Oda
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7561093A priority Critical patent/JPH06291052A/en
Publication of JPH06291052A publication Critical patent/JPH06291052A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semi-insulation compound semiconductor epitaxial layer exhibiting a high resistivity by growing an undoped compound semiconductor epitaxial layer on the surface of a single-element semiconductor substrate and then performing heat treatment of the substrate for semi-insulating the epitaxial layer. CONSTITUTION:A substrate which is subjected to epitaxial growth is taken out, is loaded into a crystal ampoule along wit arsenic, and then is vacuum- sealed. In this case, the amount of arsenic is determined so that a vapor pressure preventing arsenic from volatilizing from the substrate surface at a heat treatment temperature can be obtained. Then, after the crystal ampoule is loaded into a heating furnace and then is subjected to heat treatment for three hours at 950 deg.C, it is cooled. After heat treatment, the surface of the wafer is eliminated by approximately 10mum by lapping and then resistivity is measured by the Van der Pauw method to confirm that GaAs epitaxial layer with a resistivity of 1X19<7>OMEGA.cm or higher is formed. Hence, the epitaxial layer can be semiinsulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスに用い
る化合物半導体基板に関し、特に高抵抗率のGaAsエ
ピタキシャル層が例えばシリコン基板のような単一元素
半導体基板の表面に形成されてなる基板およびそれを用
いた半導体装置並びにその半導体基板の製造に利用して
好適な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor substrate used for semiconductor devices, and more particularly to a substrate having a high resistivity GaAs epitaxial layer formed on the surface of a single element semiconductor substrate such as a silicon substrate and the like. The present invention relates to a technique suitable for use in manufacturing a semiconductor device using the semiconductor device and a semiconductor substrate thereof.

【0002】[0002]

【従来の技術】単一元素半導体基板は、半導体デバイス
を作成するにあたって、コスト、強度および集積度の点
で化合物半導体基板に比べて優れている。しかしなが
ら、化合物半導体デバイス特有の高周波特性、光学的特
性は単一元素半導体基板を用いたデバイスで実現するの
が困難である。そこで、従来から、単一元素半導体基板
上に化合物半導体をエピタキシャル成長させたヘテロ構
造基板の研究、開発がなされており、電子素子と光素子
を融合したOEIC等のモノリシックデバイスも考案さ
れている。従来、単一元素半導体基板上に化合物半導体
をエピタキシャル成長させたヘテロ構造基板に関して
は、シリコン単結晶基板上にMOCVD法あるいはMB
E法によってGaAs層を成長させることが精力的に試
みられている。
2. Description of the Related Art A single element semiconductor substrate is superior to a compound semiconductor substrate in terms of cost, strength and degree of integration when manufacturing a semiconductor device. However, it is difficult to realize the high frequency characteristics and optical characteristics peculiar to compound semiconductor devices with a device using a single element semiconductor substrate. Therefore, conventionally, research and development of a heterostructure substrate in which a compound semiconductor is epitaxially grown on a single element semiconductor substrate have been carried out, and a monolithic device such as an OEIC in which an electronic element and an optical element are integrated has also been devised. Conventionally, for a heterostructure substrate in which a compound semiconductor is epitaxially grown on a single element semiconductor substrate, a MOCVD method or MB method is used on a silicon single crystal substrate.
Vigorous attempts have been made to grow a GaAs layer by the E method.

【0003】ところが、シリコンとGaAsは格子定数
に比較的大きな違いがあるため、上記構造には格子不整
合および熱膨張率の違いに起因する転位等の結晶欠陥が
高密度に発生するという問題があり、転位密度の低減を
目的とした研究が数多くなされている。その中では、熱
サイクルすなわちエピタキシャル成長開始から終了まで
の間に、基板温度を成長温度からそれよりも高い温度に
複数回に分けて段階的に上げることによって転位を動か
して表面に逃がし、転位密度を低減する方法が比較的容
易かつ有効であるためよく行なわれており、これによっ
て例えば転位密度が2.5×106cm2のGaAs層を有
する基板が得られたとの報告もある。一方、格子不整合
に起因する転位密度を低減する他の方法としては、イン
ジウム等の不純物をエピタキシャル結晶中に添加する方
法や、歪超格子層を挿入する方法等が提案されている。
However, since silicon and GaAs have a relatively large difference in lattice constant, there is a problem that crystal defects such as dislocations are generated at a high density in the above structure due to lattice mismatch and difference in thermal expansion coefficient. There are many studies aimed at reducing the dislocation density. Among them, during the thermal cycle, that is, from the start to the end of epitaxial growth, the substrate temperature is increased from the growth temperature to a higher temperature in multiple steps in a stepwise manner to move dislocations and release them to the surface, thereby increasing the dislocation density. It is well known that the reduction method is relatively easy and effective, and it is reported that a substrate having a GaAs layer with a dislocation density of 2.5 × 10 6 cm 2 was obtained. On the other hand, as other methods for reducing the dislocation density due to the lattice mismatch, a method of adding impurities such as indium into the epitaxial crystal and a method of inserting a strained superlattice layer have been proposed.

【0004】[0004]

【発明が解決しようとする課題】上述したような各種の
方法によれば比較的低転位密度の化合物半導体エピタキ
シャル層を有する基板が得られるため光デバイス用基板
への応用が期待される。しかしながら、集積回路化され
た電子デバイスに応用する場合には、リーク電流を防止
するため各素子間は絶縁体もしくは半絶縁体によって分
離されていなければならない。そのため、従来のシリコ
ン基板を用いた電子デバイスでは、基板を選択酸化させ
てSiO2を形成して素子間分離を行なっている。一
方、化合物半導体デバイスにあっては、電子デバイス用
基板の方が光デバイス用基板に比べて高抵抗かつ低キャ
リア濃度であることを要求される。具体的には、単一元
素半導体基板上に化合物半導体をエピタキシャル成長さ
せたヘテロ構造の基板を電子デバイス用基板として使用
する場合、抵抗率が1×107Ω・cm以上で、キャリア
濃度が1×109cm-3以下のエピタキシャル層が動作層
の下にあることが不可欠である。
According to the above-mentioned various methods, a substrate having a compound semiconductor epitaxial layer having a relatively low dislocation density can be obtained, and therefore it is expected to be applied to an optical device substrate. However, when applied to an electronic device integrated into a circuit, each element must be separated by an insulator or a semi-insulator in order to prevent a leak current. Therefore, in a conventional electronic device using a silicon substrate, the substrate is selectively oxidized to form SiO 2 for element isolation. On the other hand, in the compound semiconductor device, the electronic device substrate is required to have a higher resistance and a lower carrier concentration than the optical device substrate. Specifically, when a heterostructure substrate in which a compound semiconductor is epitaxially grown on a single element semiconductor substrate is used as a substrate for an electronic device, the resistivity is 1 × 10 7 Ω · cm or more and the carrier concentration is 1 ×. It is essential that an epitaxial layer of 10 9 cm -3 or less is under the operating layer.

【0005】しかるに、上述した従来方法により単一元
素半導体基板上に化合物半導体をエピタキシャル成長さ
せた基板にあっては、キャリア濃度で2×1015cm-3
下限であり、1Ω・cm以上の高抵抗率が得られないため
電子デバイスあるいはOEIC等への応用は期待できな
かった。そこで、化合物半導体をエピタキシャル成長さ
せた後に半絶縁性化することが試みられている。従来の
化合物半導体エピタキシャル層の半絶縁性化は一般に、
気相成長時にバイパス管から半絶縁性化不純物を含むド
ーピングガスを流したり、気相成長のソース原料に予め
半絶縁性化不純物を添加しておいて成長時に基板表面の
エピタキシャル層にドーピングさせる方法等により行な
われている。
However, in the substrate in which the compound semiconductor is epitaxially grown on the single element semiconductor substrate by the above-mentioned conventional method, the lower limit of the carrier concentration is 2 × 10 15 cm −3 , which is higher than 1 Ω · cm. Since resistivity could not be obtained, application to electronic devices or OEICs could not be expected. Therefore, it has been attempted to make the compound semiconductor semi-insulating after being epitaxially grown. Conventional semi-insulation of compound semiconductor epitaxial layers is generally
A method of flowing a doping gas containing a semi-insulating impurity from a bypass pipe during vapor phase growth, or adding a semi-insulating impurity to a source material for vapor phase growth in advance and doping the epitaxial layer on the substrate surface during growth. Etc.

【0006】しかし、前者の方法では、バイパス管から
導入した半絶縁性化不純物の化合物が分解してバイパス
管内に析出したり、バイパス管内で半絶縁性化不純物と
HClが反応して塩化物の形で輸送されるので、ドーピ
ング量を多くするとHCl濃度が高くなり、基板がエッ
チングされてしまうなどの欠点がある。一方、後者の方
法ではソース原料に対する半絶縁性化不純物源の偏析係
数が小さいと必要量の半絶縁性化不純物が輸送されない
ため、充分な半絶縁性化が達成できないという欠点があ
る。本発明は上記の問題点に着目してなされたもので、
その目的とするところは、従来に比べてはるかに高い抵
抗率を示す半絶縁性の化合物半導体エピタキシャル層を
単一元素半導体基板表面に有する基板およびそれを用い
た半導体装置並びにその半導体基板の製造方法を提供す
ることにある。
However, in the former method, the compound of the semi-insulating impurity introduced from the bypass pipe is decomposed and deposited in the bypass pipe, or the semi-insulating impurity reacts with HCl in the bypass pipe to generate chloride. Since it is transported in a form, there is a defect that the HCl concentration becomes high and the substrate is etched when the doping amount is increased. On the other hand, in the latter method, if the segregation coefficient of the semi-insulating impurity source with respect to the source material is small, the required amount of semi-insulating impurities cannot be transported, so that sufficient semi-insulating cannot be achieved. The present invention has been made by focusing on the above problems,
The object of the invention is to provide a substrate having a semi-insulating compound semiconductor epitaxial layer on the surface of a single element semiconductor substrate, which exhibits a much higher resistivity than before, a semiconductor device using the same, and a method for manufacturing the semiconductor substrate. To provide.

【0007】[0007]

【課題を解決するための手段】本発明者は、エピタキシ
ャル層の半絶縁性化について鋭意研究を重ねた結果、化
合物半導体エピタキシャル層が充分な半絶縁性を示さな
い原因は、半絶縁性化するのに必要な深い準位が充分に
形成されないことにあり、単一元素半導体基板上に化合
物半導体をエピタキシャル成長させた後に、熱処理を施
すことにより深い準位となる欠陥濃度を高めて化合物半
導体エピタキシャル層を半絶縁性化できることを見出し
た。
As a result of earnest studies on the semi-insulating property of the epitaxial layer, the present inventor has found that the cause of the compound semiconductor epitaxial layer not exhibiting sufficient semi-insulating property is the semi-insulating property. This is because the deep level necessary for the compound semiconductor epitaxial layer is not sufficiently formed. After the compound semiconductor is epitaxially grown on the single-element semiconductor substrate, heat treatment is performed to increase the defect concentration at the deep level to increase the compound semiconductor epitaxial layer. It has been found that can be semi-insulating.

【0008】本発明は上記知見に基づいてなされたもの
で、単一元素半導体基板の表面にアンドープの化合物半
導体エピタキシャル層を成長させた後、上記基板を熱処
理して上記エピタキシャル層を半絶縁性化することを提
案するものである。なお、上記基板の熱処理は、エピタ
キシャル層を形成する化合物半導体の構成元素の蒸気圧
を印加した状態で行なうのが望ましい。ただし、窒化シ
リコンのような保護膜をエピタキシャル層の表面に形成
してから行なう熱処理においては、構成元素の蒸気圧を
印加する必要はない。
The present invention has been made based on the above findings. After growing an undoped compound semiconductor epitaxial layer on the surface of a single element semiconductor substrate, the substrate is heat-treated to make the epitaxial layer semi-insulating. It is a proposal to do. It is desirable that the heat treatment of the substrate is performed in a state where the vapor pressure of the constituent elements of the compound semiconductor forming the epitaxial layer is applied. However, in the heat treatment performed after forming the protective film such as silicon nitride on the surface of the epitaxial layer, it is not necessary to apply the vapor pressure of the constituent elements.

【0009】[0009]

【作用】上記した手段によれば、熱処理によってアンド
ープ化合物半導体エピタキシャル層内に深い準位となる
欠陥が形成されるため、エピタキシャル層内の浅い準位
を形成する不純物が上記深い準位の欠陥によって補償さ
れ、エピタキシャル層が半絶縁性化される。
According to the above-described means, since a defect having a deep level is formed in the undoped compound semiconductor epitaxial layer by the heat treatment, impurities forming a shallow level in the epitaxial layer are not affected by the defect of the deep level. It is compensated and the epitaxial layer is semi-insulating.

【0010】[0010]

【実施例】【Example】

(実施例1)減圧MOCVD装置を用いて、図1に示す
ようにシリコン単結晶基板1上に、GaAs層2a,2
bおよび3を3段階にエピタキシャル成長させてから熱
処理を施した。この実施例では、(100)面から2°
傾いたオフアングルのシリコン基板を用意し、これを減
圧MOCVD装置内に設置し、まず、水素とアルシンの
混合ガスの雰囲気下で基板を900℃まで加熱して10
分間保持した。次に、基板温度を450℃まで下げて基
板1の表面に格子不整合を緩和するバッファ層として第
1層目のGaAs層2aを50Åの厚さにエピタキシャ
ル成長させた。それから、基板温度を750℃に上げ
て、途中で900℃1分間の瞬間熱処理を5回入れなが
ら第2層目のGaAs層2bを3μmの厚さにエピタキ
シャル成長させた。
(Example 1) Using a low pressure MOCVD apparatus, GaAs layers 2a, 2 are formed on a silicon single crystal substrate 1 as shown in FIG.
After b and 3 were epitaxially grown in three stages, heat treatment was performed. In this example, 2 ° from the (100) plane.
A tilted off-angle silicon substrate was prepared and placed in a low pressure MOCVD apparatus.
Hold for minutes. Next, the substrate temperature was lowered to 450 ° C. and the first GaAs layer 2a was epitaxially grown on the surface of the substrate 1 as a buffer layer for relaxing lattice mismatch to a thickness of 50 Å. Then, the substrate temperature was raised to 750 ° C., and the second GaAs layer 2b was epitaxially grown to a thickness of 3 μm while performing instantaneous heat treatment at 900 ° C. for 1 minute five times.

【0011】その後、基板をMOCVD装置より取り出
してガリウムボートとともにクロライド成長装置内に設
置し、水素雰囲気下で750℃まで加熱してから、H2
ガスをキャリアガスとして三塩化ひ素(AsCl3)を
供給して第3層目のGaAs層3を厚さ30μmにエピ
タキシャル成長させた。次に、上記エピタキシャル成長
を行なった基板を取り出して、ひ素とともに石英アンプ
ル内に入れ、真空封止した。この際、ひ素の量は熱処理
する温度で基板表面からひ素が揮発しない程度の蒸気圧
が得られるように決定した。次に、この石英アンプルを
加熱炉に入れて、950℃で3時間熱処理した後、冷却
した。
After that, the substrate was taken out from the MOCVD apparatus, placed in a chloride growth apparatus together with a gallium boat, heated to 750 ° C. in a hydrogen atmosphere, and then H 2
Arsenic trichloride (AsCl 3 ) was supplied using the gas as a carrier gas to epitaxially grow the third GaAs layer 3 to a thickness of 30 μm. Next, the substrate on which the above epitaxial growth was performed was taken out, put into a quartz ampoule together with arsenic, and vacuum-sealed. At this time, the amount of arsenic was determined so as to obtain a vapor pressure at which arsenic does not volatilize from the substrate surface at the heat treatment temperature. Next, this quartz ampoule was placed in a heating furnace, heat-treated at 950 ° C. for 3 hours, and then cooled.

【0012】熱処理後、ラッピングによりウェハの表面
を約10μm除去した後、ファン・デル・パウ(Van
der Pauw)法により抵抗率を測定した。その
結果、抵抗率1×107Ω・cm以上のGaAsエピタキ
シャル層が形成されていることが確認された。さらに、
上記熱処理後の基板のGaAsエピタキシャル層にイオ
ン注入法によってチャンネル層を形成して電界効果トラ
ンジスタを作成し、その特性を評価したところ従来のG
aAs基板上に作成した電界効果トランジスタとほとん
ど変らない特性を有していることが確認された。
After the heat treatment, the wafer surface is removed by about 10 μm by lapping, and then van der Pau (Van) is used.
The resistivity was measured by the der Pauw method. As a result, it was confirmed that a GaAs epitaxial layer having a resistivity of 1 × 10 7 Ω · cm or more was formed. further,
A field effect transistor was prepared by forming a channel layer in the GaAs epitaxial layer of the substrate after the heat treatment by an ion implantation method, and its characteristics were evaluated.
It was confirmed that it has characteristics that are almost the same as those of the field effect transistor formed on the aAs substrate.

【0013】(実施例2)MBE装置を用いてシリコン
単結晶基板上にGaAs層を低温成長して熱処理してか
ら歪超格子層を形成した後、GaAs層を2段階にエピ
タキシャル成長させて熱処理を施した。実施例1と同様
に(100)面から2°傾いたオフアングルのシリコン
基板を用意し、これをMBE装置内に設置し、まず10
00℃で10分間のサーマルクリーニングを行なって表
面を浄化してから、基板温度を300℃まで下げてGa
As層を100nmの厚さに成長させた。その後、基板
温度を600℃まで上げて10分間保持してから、基板
温度を再び300℃まで下げてGaAs層を2μm成長
させた。
(Embodiment 2) A GaAs layer is grown on a silicon single crystal substrate at a low temperature using an MBE apparatus and heat-treated, and then a strained superlattice layer is formed. Then, the GaAs layer is epitaxially grown in two steps and heat-treated. gave. As in Example 1, an off-angle silicon substrate tilted by 2 ° from the (100) plane was prepared and placed in the MBE apparatus.
Perform thermal cleaning at 00 ° C for 10 minutes to clean the surface, then lower the substrate temperature to 300 ° C and Ga
The As layer was grown to a thickness of 100 nm. Then, the substrate temperature was raised to 600 ° C. and held for 10 minutes, and then the substrate temperature was lowered again to 300 ° C. to grow a GaAs layer of 2 μm.

【0014】次に、歪超格子層〔In0.3GaAs(1
0nm)/GaAs(20nm)〕を20周期形成して
から、基板温度を300℃に保持したままGaAs層を
5μm成長させた。その後、基板をMBE装置より取り
出してガリウムの入ったボートとともにクロライド成長
装置内に設置し、水素雰囲気下で750℃まで加熱して
から、H2ガスをキャリアガスとして三塩化ひ素(As
Cl3)を供給して、GaAs層を厚さ30μmにエピ
タキシャル成長させた。次に、上記エピタキシャル成長
を行なった基板を取り出して、ひ素とともに石英アンプ
ル内に真空封止し、上記実施例1と同一の条件(950
℃,3時間)で熱処理を行なった。
[0014] Next, strained superlattice layer [In 0. 3 GaAs (1
0 nm) / GaAs (20 nm)] for 20 cycles, and then the GaAs layer was grown to 5 μm while maintaining the substrate temperature at 300 ° C. After that, the substrate was taken out from the MBE apparatus, placed in a chloride growth apparatus with a boat containing gallium, heated to 750 ° C. in a hydrogen atmosphere, and then H 2 gas was used as a carrier gas for arsenic trichloride (As).
Cl 3 ) was supplied to epitaxially grow the GaAs layer to a thickness of 30 μm. Next, the epitaxially grown substrate was taken out and vacuum-sealed in a quartz ampoule together with arsenic, and the same conditions as those in Example 1 (950) were used.
The heat treatment was performed at 3 ° C. for 3 hours.

【0015】熱処理後、ラッピングによりウェハの表面
を約10μm除去した後、抵抗率を測定した。その結
果、抵抗率1×107Ω・cm以上のGaAsエピタキシ
ャル層が形成されていることが確認された。さらに、上
記熱処理後の基板のGaAsエピタキシャル層にイオン
注入法によってチャンネル層を形成して電界効果トラン
ジスタを作成し、その特性を評価したところ従来のGa
As基板上に作成した電界効果トランジスタで見られた
電流電圧特性のヒステリシスが抑制されていることが確
認された。また、隣接する2つのFETについてその一
方に印加する電圧を変化させて他方のFETのドレイン
電流を測定したところ、ドレイン電流に変化がなく、従
来のバルク結晶で問題とされていたサイドゲート効果が
抑制されていることが分かった。
After the heat treatment, the surface of the wafer was removed by about 10 μm by lapping, and the resistivity was measured. As a result, it was confirmed that a GaAs epitaxial layer having a resistivity of 1 × 10 7 Ω · cm or more was formed. Further, a channel layer was formed on the GaAs epitaxial layer of the substrate after the heat treatment by an ion implantation method to prepare a field effect transistor, and its characteristics were evaluated.
It was confirmed that the hysteresis of current-voltage characteristics, which was observed in the field effect transistor formed on the As substrate, was suppressed. Further, when the voltage applied to one of the two adjacent FETs was changed and the drain current of the other FET was measured, there was no change in the drain current, and the side gate effect, which was a problem with conventional bulk crystals, was observed. It turned out that it was suppressed.

【0016】なお、上記実施例では、基板との格子不整
合を緩和する化合物半導体バッファ層を、MOCVD法
による段階的エピタキシャル成長およびMBE法による
歪超格子成長で形成した場合について説明したが、バッ
ファ層の形成は上記方法に限定されず、他の公知の技術
を用いて形成したものであってよい。また、バッファ層
は組成勾配層その他の構造であってもよい。さらに、上
記実施例では、シリコン基板上にGaAsエピタキシャ
ル層を成長させて半絶縁性化したものについて説明した
が、この発明はそれに限定されず、単一元素半導体基板
上にIII−V族その他の化合物半導体エピタキシャル成
長層を有する基板を製造する場合一般に適用することが
できる。その場合の熱処理温度は、成長させた化合物半
導体に応じて最適な温度を選択するのが望ましい。
In the above embodiments, the compound semiconductor buffer layer for relaxing the lattice mismatch with the substrate is formed by stepwise epitaxial growth by MOCVD and strained superlattice growth by MBE. The formation of is not limited to the above method, and may be formed by using other known techniques. The buffer layer may have a composition gradient layer or other structure. Furthermore, in the above-mentioned embodiment, the case where the GaAs epitaxial layer is grown on the silicon substrate to make it semi-insulating is explained, but the present invention is not limited to this, and a III-V group or other group is formed on a single element semiconductor substrate. It can be generally applied when manufacturing a substrate having a compound semiconductor epitaxial growth layer. In that case, it is desirable to select the optimum heat treatment temperature according to the grown compound semiconductor.

【0017】[0017]

【発明の効果】以上説明したようにこの発明は、単一元
素半導体基板の表面にアンドープの化合物半導体エピタ
キシャル層を成長させた後、上記基板を熱処理するよう
にしたので、熱処理によってアンドープ化合物半導体エ
ピタキシャル層内に深い準位となる欠陥が形成されるた
め、エピタキシャル層内の浅い準位を形成する不純物が
上記深い準位の欠陥によって補償され、エピタキシャル
層が半絶縁性化されるという効果がある。また、上記方
法により得られた基板は、エピタキシャル層が1×10
7Ω・cm以上の抵抗率を有する半絶縁性化合物半導体エ
ピタキシャル層であるため、ここにFET等の電子素子
を複数個形成したときに素子間の分離が充分に達成され
る。しかも、基板表面のエピタキシャル層の一部を除去
して、シリコン等の単一元素半導体基板を露出させ、そ
こに電子素子を形成してやれば、異なる半導体を基体と
する素子を組み合わせて単一の基板上に集積したデバイ
スを得ることができるという効果がある。
As described above, according to the present invention, the undoped compound semiconductor epitaxial layer is grown on the surface of the single element semiconductor substrate, and then the substrate is heat-treated. Since a defect having a deep level is formed in the layer, there is an effect that impurities forming a shallow level in the epitaxial layer are compensated by the defect of the deep level and the epitaxial layer is semi-insulating. . The substrate obtained by the above method has an epitaxial layer of 1 × 10 5.
Since it is a semi-insulating compound semiconductor epitaxial layer having a resistivity of 7 Ω · cm or more, when a plurality of electronic devices such as FETs are formed here, isolation between the devices is sufficiently achieved. Moreover, by removing a part of the epitaxial layer on the surface of the substrate to expose a single element semiconductor substrate such as silicon and forming an electronic element there, an element having different semiconductors as a base is combined to form a single substrate. There is an effect that a device integrated above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により製造された化合物半導体基板
の構造の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a structure of a compound semiconductor substrate manufactured by the method of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月1日[Submission date] July 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】ところが、シリコンとGaAsは格子定数
に比較的大きな違いがあるため、上記構造には格子不整
合および熱膨張率の遠いに起因する転位等の結晶欠陥が
高密度に発生するという問題があり、転位密度の低減を
目的とした研究が数多くなされている。その中では、熱
サイクルすなわちエピタキシャル成長開始から終了まで
の間に、基板温度を成長温度からそれよりも高い温度に
複数回に分けて段階的に上げることによって転位を動か
して表面に逃がし、転位密度を低減する方法が比較的容
易かつ有効であるためよく行なわれており、これによっ
て例えば転位密度が2.5×10cm−2 のGaAs
層を有する基板が得られたとの報告もある。一方、格子
不整合に起因する転位密度を低減する他の方法として
は、インジウム等の不純物をエピタキシャル結晶中に添
加する方法や、歪超格子層を挿入する方法等が提案され
ている。
However, since there is a relatively large difference in lattice constant between silicon and GaAs, there is a problem that the above structure has a high density of crystal defects such as dislocations due to lattice mismatch and distant thermal expansion coefficient. There are many studies aimed at reducing the dislocation density. Among them, during the thermal cycle, that is, from the start to the end of epitaxial growth, the substrate temperature is increased from the growth temperature to a higher temperature in multiple steps in a stepwise manner to move dislocations and release them to the surface, thereby increasing the dislocation density. The reduction method is often performed because it is relatively easy and effective, and thus, for example, GaAs having a dislocation density of 2.5 × 10 6 cm −2 is used.
It is also reported that a substrate having a layer was obtained. On the other hand, as other methods for reducing the dislocation density due to the lattice mismatch, a method of adding impurities such as indium into the epitaxial crystal and a method of inserting a strained superlattice layer have been proposed.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】次に、歪超格子層〔In0.3Ga0.7
As(10nm)/GaAs(20nm)〕を20周期
形成してから、基板温度を300℃に保持したままGa
As層を5μm成長させた。その後、基板をMBE装置
より取り出してガリウムの入ったボートとともにクロラ
イド成長装置内に設置し、水素雰囲気下で750℃まで
加熱してから、Hガスをキャリアガスとして三塩化ひ
素(AsCl)を供給して、GaAs層を厚さ30μ
mにエピタキシャル成長させた。次に、上記エピタキシ
ャル成長を行なった基板を取り出して、ひ素とともに石
英アンプル内に真空封止し、上記実施例1と同一の条件
(950℃,3時間)で熱処理を行なった。
Next, the strained superlattice layer [ In 0.3 Ga 0.7
After forming 20 cycles of As (10 nm) / GaAs (20 nm)], Ga is maintained with the substrate temperature kept at 300 ° C.
An As layer was grown to 5 μm. After that, the substrate was taken out from the MBE apparatus and placed in a chloride growth apparatus together with a boat containing gallium, heated to 750 ° C. in a hydrogen atmosphere, and then arsenic trichloride (AsCl 3 ) was used with H 2 gas as a carrier gas. Supply the GaAs layer to a thickness of 30μ
m was epitaxially grown. Next, the epitaxially grown substrate was taken out, vacuum-sealed in a quartz ampoule together with arsenic, and heat-treated under the same conditions as in Example 1 (950 ° C., 3 hours).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単一元素半導体基板の表面に、基板との
格子不整合を緩和する化合物半導体バッファエピタキシ
ャル層を介して、抵抗率1×107Ω・cm以上の半絶縁
性化合物半導体エピタキシャル層が形成されていること
を特徴とする化合物半導体基板。
1. A semi-insulating compound semiconductor epitaxial layer having a resistivity of 1 × 10 7 Ω · cm or more on the surface of a single-element semiconductor substrate via a compound semiconductor buffer epitaxial layer that relaxes lattice mismatch with the substrate. A compound semiconductor substrate comprising:
【請求項2】 請求項1記載の化合物半導体基板の表面
に電子素子または光素子が形成されてなることを特徴と
する半導体装置。
2. A semiconductor device comprising an electronic element or an optical element formed on the surface of the compound semiconductor substrate according to claim 1.
【請求項3】 単一元素半導体基板の表面にアンドープ
の化合物半導体エピタキシャル層を成長させた後、上記
基板を熱処理して上記エピタキシャル層を半絶縁性化す
るようにしたことを特徴とする化合物半導体基板の製造
方法。
3. A compound semiconductor, wherein an undoped compound semiconductor epitaxial layer is grown on a surface of a single element semiconductor substrate, and then the substrate is heat-treated to semi-insulate the epitaxial layer. Substrate manufacturing method.
【請求項4】 単一元素半導体基板の表面に、基板との
格子不整合を緩和する化合物半導体バッファ層をエピタ
キシャル成長させ、その上に所望の組成比を有するアン
ドープの化合物半導体層をエピタキシャル成長させた
後、上記基板を熱処理して上記エピタキシャル層を半絶
縁性化するようにしたことを特徴とする化合物半導体基
板の製造方法。
4. A compound semiconductor buffer layer for relaxing lattice mismatch with the substrate is epitaxially grown on the surface of a single element semiconductor substrate, and an undoped compound semiconductor layer having a desired composition ratio is epitaxially grown thereon. A method for manufacturing a compound semiconductor substrate, characterized in that the substrate is heat-treated to make the epitaxial layer semi-insulating.
JP7561093A 1993-04-01 1993-04-01 Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate Pending JPH06291052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7561093A JPH06291052A (en) 1993-04-01 1993-04-01 Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7561093A JPH06291052A (en) 1993-04-01 1993-04-01 Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH06291052A true JPH06291052A (en) 1994-10-18

Family

ID=13581157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7561093A Pending JPH06291052A (en) 1993-04-01 1993-04-01 Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH06291052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653576B1 (en) * 2006-06-01 2006-12-05 한국표준과학연구원 Metal conductivity measurement electrode and temperature controller using van der pauw method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653576B1 (en) * 2006-06-01 2006-12-05 한국표준과학연구원 Metal conductivity measurement electrode and temperature controller using van der pauw method

Similar Documents

Publication Publication Date Title
US6083812A (en) Heteroepitaxy by large surface steps
US5891769A (en) Method for forming a semiconductor device having a heteroepitaxial layer
JP4249184B2 (en) Nitride semiconductor growth substrate
JP6304899B2 (en) III-N semiconductor device grown on a silicon substrate with a rare earth oxide gate dielectric
JPH0666274B2 (en) (III) -Method for forming group V compound semiconductor
US20020185686A1 (en) Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing
JP5065676B2 (en) Method and layer structure for producing a strained layer on a substrate
JP2007511892A (en) Epitaxial growth of relaxed silicon germanium layers.
TW202027139A (en) Method for manufacturing nitride semiconductor wafer and nitride semiconductor wafer
JP3508356B2 (en) Semiconductor crystal growth method and semiconductor thin film
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
JPH06291052A (en) Compound semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate
JP2004307253A (en) Method for manufacturing semiconductor substrate
TW202206656A (en) Nitride semiconductor wafer and method for producing nitride semiconductor wafer
JPH06338454A (en) Manufacture of compound semiconductor substrate
JPH08335695A (en) Compound semiconductor device and manufacture thereof
Yamauchi et al. Total low temperature plasma process for epitaxial growth of compound semiconductors on Si: InSb/Si
JP3487393B2 (en) Method of forming heteroepitaxial semiconductor substrate, compound semiconductor device having such heteroepitaxial semiconductor substrate, and method of manufacturing the same
JPH06291053A (en) Semiconductor substrate, semiconductor device using it, and manufacture of semiconductor substrate
JPH0645249A (en) Growth method of gaas layer
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JPH0488627A (en) Deposition of epitaxial layer
JPS63192227A (en) Epitaxial growth method of compound semiconductor
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor