JP2823257B2 - Semiconductor single crystal manufacturing equipment - Google Patents

Semiconductor single crystal manufacturing equipment

Info

Publication number
JP2823257B2
JP2823257B2 JP22564889A JP22564889A JP2823257B2 JP 2823257 B2 JP2823257 B2 JP 2823257B2 JP 22564889 A JP22564889 A JP 22564889A JP 22564889 A JP22564889 A JP 22564889A JP 2823257 B2 JP2823257 B2 JP 2823257B2
Authority
JP
Japan
Prior art keywords
heat
resistant container
single crystal
axis
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22564889A
Other languages
Japanese (ja)
Other versions
JPH03103386A (en
Inventor
高志 藤井
博昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22564889A priority Critical patent/JP2823257B2/en
Publication of JPH03103386A publication Critical patent/JPH03103386A/en
Application granted granted Critical
Publication of JP2823257B2 publication Critical patent/JP2823257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体単結晶製造装置にかかり、特にブリッ
ジマン法による単結晶の製造に用いられる半導体単結晶
製造装置に関する。
The present invention relates to a semiconductor single crystal manufacturing apparatus, and more particularly to a semiconductor single crystal manufacturing apparatus used for manufacturing a single crystal by the Bridgman method.

(従来の技術) 底部に種結晶を設置した耐熱容器内にて結晶原料を溶
融させたのち、その底部から上方に向かって固化させて
結晶を製造する方法には、熱交換法、濃度勾配徐冷法、
垂直ブリッジマン法等が知られている。これらの方法
は、垂直方向に、下部の温度が低く、上部の温度が高く
なるような温度勾配をもつ結晶成長装置の中に結晶原料
を入れた容器を内装し、一旦結晶原料を溶融させたの
ち、炉全体の温度を下げる(温度勾配徐冷法、熱交換
法)、容器を下降させる、あるいは発熱体を上方へ移動
させる(垂直ブリッジマン法)ものである。
(Prior art) A method of producing a crystal by melting a crystal raw material in a heat-resistant container having a seed crystal at the bottom and then solidifying the crystal material upward from the bottom includes a heat exchange method and a concentration gradient slow cooling method. ,
The vertical Bridgman method and the like are known. In these methods, in a vertical direction, a vessel containing a crystal raw material was placed in a crystal growth apparatus having a temperature gradient such that the lower temperature was lower and the upper temperature was higher, and the crystal raw material was once melted. Thereafter, the temperature of the entire furnace is lowered (temperature gradient cooling method, heat exchange method), the vessel is lowered, or the heating element is moved upward (vertical Bridgman method).

叙上の方法は比較的簡便であるが、単結晶が製造しや
すい結晶成長方向が決まってしまっているという重大な
欠点がある。
Although the above method is relatively simple, it has a serious drawback in that the crystal growth direction in which a single crystal is easily produced has been determined.

例えば、GaAs単結晶を例にとれば、結晶方位の〈11
1〉方向に結晶を育成した場合、比較的単結晶が製造さ
れやすいが、例えば〈100〉方向に結晶を育成するほと
んど単結晶は得られない。そのために、これらの方法で
GaAs結晶の(100)基板を必要とする場合には、〈111〉
方向に育成した結晶から斜めに(100)基板を取り出す
ことを行なっていた。通常これらの結晶製造の方法で
は、結晶融液が固化する時の界面の形状はほぼ水平にな
っている。そのために、〈111〉方向の結晶の場合、界
面にほぼ(111)面に平行になる。従って、単結晶体を
斜めに切り出して(100)基板を作製する場合、この(1
00)基板の面内で結晶が育成した時間の早い部分と遅い
部分を含むことになる。結晶中に含まれる不純物は、偏
析を有するために固化した時間がずれると、その部分に
取り込まれる不純物の量が大きく異なってくる。不純物
は微量で結晶の特性に大きな影響を与えるために、この
ような〈111〉方向に育成した結晶から斜めに(100)基
板を取り出すような場合、(100)面内に特性の大きな
不均一を生じてしまう欠点があり、従来の方法を用いて
いる限りにおいては、面内の均一性の良い基板の作製は
非常に困難であった。
For example, taking a GaAs single crystal as an example, the crystal orientation <11
When a crystal is grown in the 1> direction, a single crystal is relatively easily produced, but, for example, a single crystal that grows a crystal in the <100> direction is hardly obtained. For that, in these ways
If a GaAs crystal (100) substrate is required, use <111>
The (100) substrate was taken out obliquely from the crystal grown in the direction. Usually, in these crystal production methods, the shape of the interface when the crystal melt solidifies is almost horizontal. Therefore, in the case of a crystal in the <111> direction, the crystal becomes substantially parallel to the (111) plane at the interface. Therefore, when a single crystal is cut obliquely to produce a (100) substrate, this (1)
00) It includes a portion where the crystal grows early and a portion where the crystal grows later in the plane of the substrate. If the time of solidification of the impurities contained in the crystal due to the segregation is shifted, the amount of impurities taken into that part varies greatly. Since a trace amount of impurities greatly affects the characteristics of the crystal, when the (100) substrate is taken obliquely from such a crystal grown in the <111> direction, the non-uniformity of the characteristics is large in the (100) plane. Therefore, as long as the conventional method is used, it is very difficult to manufacture a substrate having good in-plane uniformity.

(発明が解決しようとする課題) 従来、結晶原料融液を底部に種結晶を配置した耐熱容
器に入れ、その底部から上方に向かって固化させて結晶
を製造する方法を用いて製造した結晶から所望の方位の
基板を必要とする場合にこれらの結晶から成長方向に対
して斜めに基板を取り出していた。かかる従来の方法に
よると、基板面内の特性の均一な基板を取り出すことが
困難であった。
(Problems to be Solved by the Invention) Conventionally, a crystal raw material melt is placed in a heat-resistant container having a seed crystal disposed at the bottom and solidified upward from the bottom to produce a crystal. When a substrate having a desired orientation is required, the substrate is taken out of these crystals at an angle to the growth direction. According to such a conventional method, it has been difficult to take out a substrate having uniform in-plane characteristics.

また、通常、叙上の方法では結晶原料融液を収容する
耐熱容器を固定させたままで行なう場合と、回転させる
場合とがある。容器を固定させたままで行なう場合は、
機構が簡略となり装置の安定性が向上するが、一方で加
熱体の熱分布の影響を直接受けるため温度の均一性を保
つことが難しい。容器を回転させる場合には、温度の均
一性が向上し、結晶の製造も安定化する。しかして、上
記欠点の解決にはならない。
Further, in the above-mentioned method, usually, there are a case where the heat-resistant container containing the crystal raw material melt is fixed and a case where the heat-resistant container is rotated. When performing with the container fixed,
Although the mechanism is simplified and the stability of the apparatus is improved, on the other hand, it is difficult to maintain temperature uniformity because it is directly affected by the heat distribution of the heating element. When the container is rotated, the temperature uniformity is improved and the production of crystals is stabilized. Thus, it does not solve the above disadvantage.

本発明は上記従来の問題点に鑑みてなされたもので、
単結晶体が固化形成される際の界面の方位が基板の方位
と平行に近くなるように温度分布を改良した半導体単結
晶の製造装置を提供することを目的とする。
The present invention has been made in view of the above conventional problems,
An object of the present invention is to provide an apparatus for manufacturing a semiconductor single crystal in which the temperature distribution is improved so that the orientation of an interface when a single crystal is solidified and formed is close to being parallel to the orientation of a substrate.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) この発明にかかる半導体単結晶製造装置は、底部に種
結晶を配置し半導体結晶原料が収容される筒型の耐熱容
器を垂直に設け、その側面周囲に間隔を置いて包囲する
加熱体を配置し、半導体結晶原料を前記耐熱容器内で加
熱溶融させ融液をその底部から上方に向かって固化させ
て単結晶を製造する半導体単結晶製造装置において、前
記半導体結晶原料の融液に前記耐熱容器の軸に対し傾斜
した等温面を形成させるように、前記耐熱容器の側面周
方向に温度傾斜を形成する手段を有することを特徴とす
るものである。さらに、この温度傾斜を形成する手段と
して(a)加熱体にその周方向に温度勾配を設ける、
(b)前記耐熱容器が加熱体の熱中心位置からずれ、か
つ、熱中心位置を含む垂直面の一方側にある配置にす
る、(c)耐熱容器と加熱体との間に遮熱板を配置す
る、(d)耐熱容器と加熱体との間隙の一部に垂直方向
に通気導管を配置する、(e)耐熱容器が支持容器に収
納支持され、該支持容器は鉛直方向に複数に分割されて
なるとともに、これらは相互に熱伝達率の異なる材質で
構成する、等を特徴とするものである。
(Means for Solving the Problems) In the semiconductor single crystal manufacturing apparatus according to the present invention, a cylindrical heat-resistant container in which a seed crystal is disposed at the bottom and a semiconductor crystal raw material is accommodated is vertically provided, and a space is provided around the side surface thereof. A semiconductor single crystal manufacturing apparatus for manufacturing a single crystal by arranging a heating body to be placed and surrounding, heating and melting a semiconductor crystal raw material in the heat-resistant container, and solidifying the melt upward from its bottom. The apparatus is characterized by having means for forming a temperature gradient in a circumferential direction of a side surface of the heat-resistant container so as to form an isothermal surface inclined with respect to the axis of the heat-resistant container in the melt of the raw material. Further, as means for forming the temperature gradient, (a) providing a temperature gradient in the circumferential direction of the heating body,
(B) the heat-resistant container is displaced from the heat center position of the heating element and is arranged on one side of a vertical plane including the heat center position. (C) A heat shield plate is provided between the heat-resistant container and the heating element. (D) a ventilation conduit is vertically arranged in a part of a gap between the heat-resistant container and the heating element; (e) the heat-resistant container is housed and supported in a support container, and the support container is vertically divided into a plurality of pieces. These are characterized by being made of materials having mutually different heat transfer coefficients.

(作 用) 本発明の単結晶の製造装置は、結晶が固化する時の界
面が水平方向に対して一定の角度をもって結晶が製造さ
れるので、この結晶から成長方向と異なる方位の基板を
取り出す場合においても、基板面内の特性が均一な基板
が得られる。
(Operation) In the apparatus for producing a single crystal of the present invention, a crystal is produced at a fixed angle with respect to the horizontal direction when the crystal is solidified, and a substrate having an orientation different from the growth direction is taken out from the crystal. Even in such a case, a substrate having uniform characteristics in the substrate plane can be obtained.

(実施例) 以下、本発明の実施例につき図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1実施例 第1および第2の発明に係る第1実施例として、垂直
ブリッジマン法によるGaAs単結晶の製造に用いる半導体
単結晶製造装置の加熱体(以下ヒーターと略称)を第1
図に示す。第1図(a)はヒータの上面図、第1図
(b)はヒータの側面図を夫々示す。また、第2図に垂
直ブリッジマン法による実施例の単結晶製造装置を断面
図で示す。
First Embodiment As a first embodiment according to the first and second inventions, a heater (hereinafter abbreviated as a heater) of a semiconductor single crystal manufacturing apparatus used for manufacturing a GaAs single crystal by a vertical Bridgman method is used as a first embodiment.
Shown in the figure. FIG. 1A is a top view of the heater, and FIG. 1B is a side view of the heater. FIG. 2 is a cross-sectional view showing a single crystal manufacturing apparatus according to an embodiment using the vertical Bridgman method.

まず、第1図によってヒータ11の構造を説明する。グ
ラファイトで円筒状に形成されたヒータ11は、その周側
面が縦に厚肉部11aと、これに対向する部分が薄肉部11c
と、その間を緩やかに肉厚が変わる中肉部11bからなっ
ている。図に示す一例のヒータ11は外径が80mm、長さ25
0mmで、内径は外側面の中心軸線11oから10mm離れて平行
な中心軸線11iを軸とした内径60mmの円筒状の空洞で内
側面が形成されている。そして周側面には上端縁から下
端縁に向かうとともに下端縁には達しない下降スリット
12aと、これと逆方向に下端縁から上端縁に向かうとと
もに上端縁には達しない上昇スリット12bとからなるス
リット12が周側面に交互に設けられて周側面をスリット
間の間融幅を有する板状のヒータエレメント13に形成し
てなる。また、上記ヒータエレメントは周側面の対向部
にこのヒータエレメント13と電極とを接続するための接
続部14を備えている。
First, the structure of the heater 11 will be described with reference to FIG. A cylindrical heater 11 made of graphite has a vertically thick peripheral portion 11a and a thin portion 11c facing the thick portion 11a.
And a middle portion 11b whose thickness gradually changes. The example heater 11 shown in the figure has an outer diameter of 80 mm and a length of 25 mm.
The inner surface is formed by a cylindrical cavity having an inner diameter of 0 mm and an inner diameter of 60 mm centered on a central axis 11i parallel to and spaced from the central axis 11o of the outer surface by 10 mm. And on the peripheral side, a descending slit that goes from the upper edge to the lower edge and does not reach the lower edge
12a, a slit 12 consisting of a rising slit 12b which goes from the lower edge toward the upper edge in the opposite direction and does not reach the upper edge is provided alternately on the peripheral side, and the peripheral side has a width between the slits. It is formed on a plate-like heater element 13. Further, the heater element has a connecting portion 14 for connecting the heater element 13 and an electrode to an opposing portion on a peripheral side surface.

第2図に示されるブリッジマン装置には、前記第1図
によって説明されたヒータが上下に2個設けられてい
る。これら上下のヒータ21a、21bは夫々の内側面の中心
軸線が一致するように設置され、これらのヒータ21a、2
1bは、夫々の接続部22a、22bに電力を供給する電源23
a、23bに接続される電極23に接続する。そして、このヒ
ータの内側面の中心軸線と共軸に耐熱容器駆動軸24上に
(111)方位の種結晶25を底部に入れ、その上にGaAs多
結晶体26を200g入れた径50mm、長さ100mmの石英アンプ
ル27を設置する。この石英アンプル27内は予め常温10-3
Torrに減圧されている。そして、上記部品は高圧容器28
内に設置され、不活性ガス雰囲気中で加熱される。上記
ヒータ21a、21bは夫々熱電対29a、29bによって温度検出
され、所定温度に制御される。
In the Bridgman device shown in FIG. 2, two heaters described with reference to FIG. 1 are provided above and below. These upper and lower heaters 21a, 21b are installed so that the central axes of the respective inner surfaces coincide with each other.
1b is a power supply 23 that supplies power to the respective connection portions 22a and 22b.
Connected to the electrode 23 connected to a and 23b. A (111) -oriented seed crystal 25 is placed at the bottom on the heat-resistant vessel drive shaft 24 coaxially with the center axis of the inner surface of the heater, and 200 g of GaAs polycrystal 26 is placed thereon. A 100 mm quartz ampule 27 is installed. The inside of this quartz ampoule 27 should be 10 -3
The pressure is reduced to Torr. And the above parts are the high pressure vessel 28
And heated in an inert gas atmosphere. The temperatures of the heaters 21a and 21b are detected by thermocouples 29a and 29b, respectively, and controlled to a predetermined temperature.

叙上の構成にて電源23a、23bによりヒータに通電し、
上部ヒータ21aをGaAsの融点よりも高温の1400℃、下部
ヒータ21bを、GaAsの融点よりも低温の1000℃になるよ
うに調整する。このとき、耐熱容器がない状態でのヒー
タ内の温度分布を第3図に示す。この第3図における横
軸は第2図に示した下側のヒータ21bの下端を温度分布
原点位置31を示し、第3図中にヒータ21a、21bの配置を
破線31a、31bで対応し示した。また、縦軸は温度を示
し、図中の32aはヒータ内側面の中心位置、33aは前記ヒ
ータ内側面の中心位置32aの位置からヒータの外側面の
中心に向かう方向に25mm離れた位置、34aは前記33aとは
反対方向に25mm離れた位置の夫々温度分布を各位置に対
応し示す。この図に示すところから温度分布が水平方向
より一定の角度で傾斜していることが明らかである。こ
の状態で耐熱容器を5mm/時の速度で下降させ〈111〉方
位のGaAs単結晶を作製した。そして、得られた単結晶か
ら(100)基板を切り出し、ファンデルポール法によっ
てキャリヤ濃度を測定した。その結果の一例を第4図に
示す。図の横軸はウェハの長軸方向の一端を原点にとっ
た時の位置であり、縦軸(対数目盛)はキャリヤ濃度を
示す。そして、本発明により取り出したGaAs基板41と、
これと同径の従来のGaAs基板42を比較すると、従来10倍
以上不均一のあった基板内のキャリヤ濃度差が、本発明
では15%以下の不均一にとどまり、基板内におけるキャ
リヤ濃度の均一性に顕著な向上が認められる。
Power is supplied to the heater by the power supplies 23a and 23b in the above configuration,
The upper heater 21a is adjusted to 1400 ° C., which is higher than the melting point of GaAs, and the lower heater 21b is adjusted to be 1000 ° C., which is lower than the melting point of GaAs. FIG. 3 shows the temperature distribution in the heater without the heat-resistant container at this time. The horizontal axis in FIG. 3 indicates the lower end of the lower heater 21b shown in FIG. 2 at the temperature distribution origin position 31, and the arrangement of the heaters 21a and 21b is indicated by broken lines 31a and 31b in FIG. Was. The vertical axis indicates the temperature, 32a in the figure is the center position of the inner surface of the heater, 33a is a position 25 mm away from the position of the center position 32a of the inner surface of the heater toward the center of the outer surface of the heater, 34a Indicates a temperature distribution at a position 25 mm away from the position 33a corresponding to each position. It is apparent from the figure that the temperature distribution is inclined at a certain angle from the horizontal direction. In this state, the heat-resistant container was lowered at a speed of 5 mm / hour to produce a <111> oriented GaAs single crystal. Then, a (100) substrate was cut out from the obtained single crystal, and the carrier concentration was measured by the van der Pol method. One example of the result is shown in FIG. The horizontal axis in the figure is the position when one end in the major axis direction of the wafer is taken as the origin, and the vertical axis (log scale) shows the carrier concentration. And, the GaAs substrate 41 taken out according to the present invention,
Comparing this with the conventional GaAs substrate 42 of the same diameter, the carrier concentration difference in the substrate, which had been non-uniform more than 10 times in the past, is now less than 15% in the present invention, and the carrier concentration difference in the substrate is uniform. A remarkable improvement in the properties is observed.

前記実施例は、垂直ブリッジマン法によるGaAs結晶製
造を例示したが、融液成長が可能な結晶製造の全般に適
用でき、また、温度勾配徐冷法、熱交換法等についても
適用できる。
In the above-described embodiment, the GaAs crystal production by the vertical Bridgman method has been exemplified. However, the present invention can be applied to general production of crystals capable of growing a melt, and can also be applied to a temperature gradient slow cooling method, a heat exchange method, and the like.

なお、本発明におけるヒータの周方向の温度分布に傾
斜を形成する手段として、上記実施例のほか、ヒータエ
レメントの幅をヒータの周方向で変えてもよい。
In addition, in addition to the above embodiment, the width of the heater element may be changed in the circumferential direction of the heater as a means for forming a gradient in the circumferential temperature distribution of the heater in the present invention.

第2実施例 第1および第3の発明に係る第2実施例として、垂直
ブリッジマン法による単結晶製造装置を第5図に断面図
で示し説明する。
Second Embodiment As a second embodiment according to the first and third inventions, an apparatus for manufacturing a single crystal by the vertical Bridgman method will be described with reference to a sectional view shown in FIG.

第5図に示すように、高圧容器51内にグラファイト製
のヒータ52a、52bが垂直、かつ共軸に装着されている。
このヒータは内径100mm、長さ250mmの円筒型で、各の外
側面に設けられた熱電対53a、53bによって温度検出し、
夫々のヒータを独立して所定の温度に保つようになって
いる。また、前記ヒータ52a、52bはいずれも単純な円筒
型であるため、このヒータによって作られる温度分布の
対称中心(熱中心)は幾何学的中心と一致する。そし
て、このヒータの内側に、ヒータの中心軸(熱中心位
置)に対し偏心して直径50mm、長さ100mm寸法に形成さ
れた石英アンプルの耐熱容器54を容器駆動軸55上に設置
する。この耐熱容器54内には〈111〉方位の種結晶56aと
GaAs多結晶56bが収容され、10-3Torr.の真空度で封じら
れている。また、上記耐熱容器の中心軸とヒータの中心
軸とは25mm偏心させて設置した。このようにして、耐熱
容器54は第5図に示すように、熱中心位置を含む垂直面
の一方側に配置される。叙上の状態でヒータに通電加熱
を行ない、一旦耐熱容器内のGaAs多結晶を溶融させる。
この時、上部のヒータ52aは1400℃、下部のヒータ52bは
1100℃になるように電力を設定した。そして5mm/時の速
度で駆動軸55を下降させ、〈111〉方位のGaAs単結晶を
作成した。
As shown in FIG. 5, graphite heaters 52a and 52b are vertically and coaxially mounted in a high-pressure vessel 51.
This heater is a cylindrical type with an inner diameter of 100 mm and a length of 250 mm, and the temperature is detected by thermocouples 53a and 53b provided on each outer surface,
Each heater is independently maintained at a predetermined temperature. In addition, since the heaters 52a and 52b are both simple cylindrical types, the center of symmetry (heat center) of the temperature distribution created by the heater coincides with the geometric center. Then, inside the heater, a quartz ampule heat-resistant container 54 having a diameter of 50 mm and a length of 100 mm formed eccentrically with respect to the center axis (heat center position) of the heater is set on a container drive shaft 55. Inside the heat-resistant container 54, there is a seed crystal 56a having a <111> orientation.
The GaAs polycrystal 56b is housed and sealed at a vacuum of 10 -3 Torr. The center axis of the heat-resistant container and the center axis of the heater were eccentrically arranged by 25 mm. In this way, the heat-resistant container 54 is arranged on one side of the vertical plane including the heat center position, as shown in FIG. In the above state, the heater is energized and heated to temporarily melt the GaAs polycrystal in the heat-resistant container.
At this time, the upper heater 52a is 1400 ° C., and the lower heater 52b is
The power was set to 1100 ° C. Then, the drive shaft 55 was lowered at a speed of 5 mm / hour to produce a GaAs single crystal of <111> orientation.

次に、上記作成された単結晶から(100)基板を切り
出し、ファン・デ・ポール法によってキャリヤ濃度を測
定した。第6図にキャリヤ濃度測定結果を示す。図中横
軸は基板の長軸方向の一端を原点にとったときの位置を
示し、縦軸はキャリヤ濃度(対数目盛)を夫々示し、本
発明にかかるGaAs基板のキャリヤ濃度を曲線61で、従来
の方法で作製された同径の結晶から作成されたGaAs基板
のキャリヤ濃度を曲線62で夫々示す。この図から、従来
10倍以上不均一のあったキャリヤ濃度が本発明により±
15%以下となり、基板内キャリヤ濃度の均一性に対し顕
著な効果が認められた。
Next, a (100) substrate was cut out from the single crystal prepared above, and the carrier concentration was measured by the van de Paul method. FIG. 6 shows the carrier concentration measurement results. In the figure, the abscissa indicates the position when one end in the major axis direction of the substrate is taken as the origin, the ordinate indicates the carrier concentration (log scale), and the carrier concentration of the GaAs substrate according to the present invention is represented by a curve 61, Curve 62 shows the carrier concentration of a GaAs substrate formed from crystals of the same diameter manufactured by a conventional method. From this figure,
According to the present invention, the carrier concentration which was 10 times or more non-uniform was ±
It was 15% or less, and a remarkable effect on the uniformity of the carrier concentration in the substrate was recognized.

第3実施例 第1および第3の発明に係る第3実施例として、ブリ
ッジマン法による単結晶製造装置を第7図に断面図で示
し説明する。
Third Embodiment As a third embodiment according to the first and third aspects of the present invention, an apparatus for producing a single crystal by the Bridgman method will be described with reference to a sectional view shown in FIG.

第7図に示される第3実施例で、高圧容器、ヒータは
前記第2実施例と変わらない。また、この図においては
高圧容器は省略して示され、同図(a)は軸に沿う断面
図、同図(b)は上面図である。これらの図から明らか
なように、駆動軸55はその上端に支持台71が固設され、
この支持台71上に4個の石英アンプルである耐熱容器72
a、72b、72c、72dが、いずれもヒータ52a、52bの中心軸
に対し25mm偏心させて配置されている。すなわち、耐熱
容器は個々に熱中心位置を含む任意の垂直面の一方側に
ある配置になっている。また、耐熱容器の寸法はいずれ
も直径30mm、長さ100mmに形成され、支持台71は駆動軸5
5によって10rpmで回転される。
In the third embodiment shown in FIG. 7, the high-pressure vessel and the heater are the same as those in the second embodiment. Also, in this figure, the high-pressure vessel is omitted, and FIG. 10A is a cross-sectional view along the axis, and FIG. 10B is a top view. As is clear from these figures, the drive shaft 55 has a support base 71 fixed at its upper end,
On this support 71, a heat-resistant container 72, which is four quartz ampules,
Each of a, 72b, 72c, and 72d is arranged so as to be eccentric by 25 mm with respect to the central axis of the heaters 52a, 52b. That is, the heat-resistant containers are individually arranged on one side of any vertical plane including the heat center position. The dimensions of the heat-resistant container are all 30 mm in diameter and 100 mm in length.
Rotated by 5 at 10 rpm.

次に、上記耐熱容器内に得られた単結晶につき前記実
施例と同様(100)基板を取り出してそのキャリヤ濃度
を測定し、従来10倍以上の不均一があったものが±10%
以下の不均一にとどまることが確認された。
Next, for the single crystal obtained in the heat-resistant container, the (100) substrate was taken out in the same manner as in the above example, and its carrier concentration was measured.
The following non-uniformity was confirmed to remain.

本実施例は垂直ブリッジマン法によるGaAs結晶作製を
例示したが、これに限られるものでなく、融液成長が可
能な半導体結晶の作製全般に適用可能であり、また、温
度勾配徐冷法、熱交換法等の方法についても同様に適用
可能である。
In this embodiment, the GaAs crystal production by the vertical Bridgman method has been exemplified.However, the present invention is not limited to this, and is applicable to general production of a semiconductor crystal capable of growing a melt. A method such as a method can be similarly applied.

第4実施例 第1および第4の発明に係る第4実施例として、ブリ
ッジマン法による単結晶製造装置第8図(a)に軸に沿
う断面図、(b)に上面図で示す。図示のように、耐熱
容器81の半周側を熱遮蔽部材80で被覆することにより、
耐熱容器の半周側に入射する輻射を遮断し耐熱容器内の
融液に温度傾斜を設けるようになっている。なお、前記
熱遮蔽部材80としては一例としてモリブデンの熱遮蔽板
を用いた。
Fourth Embodiment As a fourth embodiment according to the first and fourth aspects of the present invention, FIG. 8A is a cross-sectional view along an axis, and FIG. As shown in the figure, by covering the half-circumferential side of the heat-resistant container 81 with the heat shielding member 80,
Radiation incident on the half-circumferential side of the heat-resistant container is blocked to provide a temperature gradient in the melt in the heat-resistant container. As the heat shield member 80, a molybdenum heat shield plate was used as an example.

第8図のブリッジマン法による単結晶製造装置は、ヒ
ータ82a、82bが上下に2個設けられている。これらのヒ
ータ82a、82bは、夫々の内側面の中心軸線と共軸に耐熱
容器駆動軸83上に(111)方位の種結晶84を底部に入
れ、その上にGaAs多結晶体85を200g入れた径50mm、長さ
100mmの耐熱容器86が設置されている。そして、この耐
熱容器内の半周を囲むようにモリブデンで板状に形成さ
れた熱遮蔽部材80が設けられている。
The single crystal manufacturing apparatus according to the Bridgman method of FIG. 8 is provided with two heaters 82a and 82b vertically. These heaters 82a and 82b put a (111) oriented seed crystal 84 at the bottom on the heat-resistant vessel drive shaft 83 coaxially with the center axis of each inner surface, and put 200 g of GaAs polycrystal 85 on it. Diameter 50mm, length
A 100 mm heat-resistant container 86 is provided. A heat shielding member 80 formed of molybdenum in a plate shape is provided so as to surround a half circumference in the heat-resistant container.

この耐熱容器86内は予め常温で10-3Torrに減圧されて
いる。そして、上記部品は高圧容器内に設置され(図示
省略)、不活性ガス雰囲気中で加熱される。上記ヒータ
82a、82bは夫々熱電対88a、88bによって温度が検出さ
れ、所定温度に制御される。
The pressure inside the heat-resistant container 86 is previously reduced to 10 −3 Torr at room temperature. Then, the component is placed in a high-pressure vessel (not shown) and heated in an inert gas atmosphere. The above heater
The temperatures of the sensors 82a and 82b are detected by thermocouples 88a and 88b, respectively, and are controlled to predetermined temperatures.

叙上の構成にてヒータに通電し、上部ヒータ82aをGaA
sの融点よりも高温の1400℃、下部ヒータ82bをGaAsの融
点よりも低温の1000℃になるように調整する。このよう
にして熱電対が挿入された状態の耐熱容器を降下させた
ときの融液内の温度分布を第9図に示す。この第9図に
おける横軸は第8図に示したヒータ82bの下端87を原点
にとったときの位置を示し、第9図中に耐熱容器内に挿
入された熱電対の配置の対応を示した。また、縦軸は温
度を示し、図中の92aは耐熱容器内側面の中心位置、93a
は前記内側面の中心位置92aの位置からヒータの外側面
の中心に向かう方向に15mm離れた位置、94aは前記93aと
は反対方向に15mm離れた位置の夫々温度分布を各位置に
対応し示す。この図に示すところから温度分布が水平方
向より一定の角度で傾斜していることが明らかである。
この状態で耐熱容器を5mm/時の速度で下降させ〈111〉
方位のGaAs単結晶を作製した。そして、得られた単結晶
から(100)基板を切り出し、ファンデルポール法によ
ってキャリヤ濃度を測定した。その結果の一例を第10図
に示す。図の横軸はウェハの長軸方向の一端を原点にと
った時の位置であり、縦軸はキャリヤ濃度を示す。そし
て、本発明により取り出したGaAs基板101と、これと同
径の従来のGaAs基板102を比較すると、従来10倍以上不
均一のあった基板内のキャリヤ濃度差が、本発明では15
%以下の不均一にとどまり、基板内におけるキャリヤ濃
度の均一性に顕著な向上が認められる。
In the above configuration, the heater is energized and the upper heater 82a is
The lower heater 82b is adjusted to have a temperature of 1400 ° C., which is lower than the melting point of GaAs. FIG. 9 shows the temperature distribution in the melt when the heat-resistant container having the thermocouple inserted therein is lowered. The horizontal axis in FIG. 9 shows the position when the lower end 87 of the heater 82b shown in FIG. 8 is taken as the origin, and FIG. 9 shows the correspondence of the arrangement of the thermocouple inserted in the heat-resistant container. Was. The vertical axis indicates the temperature, 92a in the figure is the center position of the inner surface of the heat-resistant container, 93a
Shows a temperature distribution at a position 15 mm away from the center position 92a of the inner surface toward the center of the outer surface of the heater, and 94a shows a temperature distribution at a position 15 mm away from the 93a in the opposite direction to the respective positions. . It is apparent from the figure that the temperature distribution is inclined at a certain angle from the horizontal direction.
In this state, lower the heat-resistant container at a speed of 5 mm / hour <111>
Oriented GaAs single crystals were prepared. Then, a (100) substrate was cut out from the obtained single crystal, and the carrier concentration was measured by the van der Pol method. One example of the result is shown in FIG. The horizontal axis in the figure is the position when one end in the major axis direction of the wafer is taken as the origin, and the vertical axis shows the carrier concentration. A comparison between the GaAs substrate 101 taken out according to the present invention and the conventional GaAs substrate 102 having the same diameter as the GaAs substrate 101 shows that the carrier concentration difference in the substrate, which has been non-uniform by 10 times or more, is 15% in the present invention.
%, And the carrier concentration uniformity in the substrate is remarkably improved.

第5実施例 第1および第5の発明に係る第5実施例として、ブリ
ッジマン法による単結晶製造装置の要部を第11図aおよ
び第11図bに断面図で示し説明する。なお前記第4実施
例で説明した部分と変わらない部分には同じ符号を付け
て示し説明を省略する。
Fifth Embodiment As a fifth embodiment according to the first and fifth aspects of the present invention, a main part of a single crystal manufacturing apparatus by the Bridgman method will be described with reference to cross-sectional views shown in FIGS. 11A and 11B. Portions that are the same as those described in the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.

第11図aは装置の軸に沿う断面図、第11図bは装置の
軸に垂直方向の断面図を夫々示し、図示のようにヒータ
82a、82bの半周側の一部でこれと耐熱容器113との間に
装置の軸線に平行な通気導管111を配置することによ
り、耐熱容器のいずれかの半周側の融液に温度傾斜を設
けるようになっている。前記通気導管111内に通気させ
るガス112の一例としてヘリウムを用いて、耐熱容器の
半周側を強制的に冷却を図った。また、前記通気導管11
1内の通気には装置への装着を容易にするためと、上部
に比して下部を低温に保つ必要から二重管型構造にし
た。また、前記通気導管111は一例のステンレスで構成
してよい。なお、前記通気は加熱温度よりも低い場合を
例示したが、高温度でもよいことは勿論である。
FIG. 11a shows a cross section along the axis of the apparatus, and FIG. 11b shows a cross section perpendicular to the axis of the apparatus.
By providing a ventilation conduit 111 parallel to the axis of the device between the heat-resistant container 113 and a part of the heat-resistant container on a half of the heat-resistant container 82a, 82b, a temperature gradient is provided to the melt on either half of the heat-resistant container. It has become. Helium was used as an example of the gas 112 to be passed through the ventilation conduit 111, and the half-circumferential side of the heat-resistant container was forcibly cooled. The ventilation conduit 11
A double tube structure was adopted for the ventilation in 1 because it was necessary to keep the lower part colder than the upper part in order to make it easier to attach to the device. Further, the ventilation conduit 111 may be made of an example of stainless steel. Although the case where the ventilation is lower than the heating temperature has been exemplified, it is needless to say that the temperature may be high.

上記装置により前記第4実施例と同様に単結晶製造を
行って、前記第4実施例と変わらない効果が得られた。
この効果については、前記第4実施例において第9図お
よび第10図によって説明したところと同等であるので、
これを援用し記載を省略する。
The same apparatus as in the fourth embodiment was used to produce a single crystal, and the same effect as in the fourth embodiment was obtained.
This effect is the same as that described in the fourth embodiment with reference to FIGS. 9 and 10, and
This is referred to and the description is omitted.

第6実施例 第1および第6の発明に係る第6実施例として、ブリ
ッジマン法による単結晶製造装置の要部を第12図aおよ
び第12図bに断面図で示し説明する。なお前記実施例で
説明した部分と変わらない部分には同じ符号を付けて示
し説明を省略する。本実施例は、上記第1〜5実施例と
同様にGaAs結晶製造を例にとり、炉の構成としては通気
導管をもたない場合の第5実施例と同じである。
Sixth Embodiment As a sixth embodiment according to the first and sixth aspects of the present invention, a main part of a single crystal manufacturing apparatus using the Bridgman method will be described with reference to cross-sectional views shown in FIGS. 12A and 12B. Portions that are the same as those described in the above embodiment are given the same reference numerals, and description thereof is omitted. This embodiment is similar to the first to fifth embodiments in that GaAs crystal production is taken as an example, and the furnace configuration is the same as the fifth embodiment in the case where there is no vent pipe.

第12図aは装置の軸に沿う断面図、第12図bは装置の
軸に垂直方向の断面図を夫々示し、図示のように、本実
施例においてはGaAs結晶原料融液を収納する石英ガラス
製封管状の耐熱容器113の外周を軸線方向に一例の2分
割され互いに熱伝導率の異なるグラファイト、熱分解窒
化ボロン(BNと略称)によって構成された支持容器121a
〜121d(121a、121bは側壁)に入れられ、これらのグラ
ファイトとBNの支持容器はBN製の下端部固定部材121c、
および上端がふた体121dによって固定された構造になっ
ている。グラファイトとBNは、熱伝達率が異なるため
に、GaAs融液に伝達する熱量に差が生じ、垂直方向に対
して傾斜した温度勾配が得られる。実際に本実施例の支
持容器を用いて、耐熱容器を回転数5rpm、下降速度5mm/
時で結晶製造を行い、この結晶から(100)基板を切り
出してファンデルポール法によってキャリア濃度を測定
して前実施例と同様の結果が得られた。
FIG. 12a is a cross-sectional view taken along the axis of the apparatus, and FIG. 12b is a cross-sectional view taken in a direction perpendicular to the axis of the apparatus. As shown, in this embodiment, quartz containing a GaAs crystal raw material melt is used. A support container 121a made of graphite or pyrolytic boron nitride (abbreviated as BN), which is formed by dividing the outer periphery of the glass sealed heat-resistant container 113 into two examples in the axial direction and having different thermal conductivity from each other.
~ 121d (121a, 121b are side walls), these graphite and BN support container is a lower end fixing member 121c made of BN,
The upper end is fixed by a lid 121d. Since graphite and BN have different heat transfer coefficients, there is a difference in the amount of heat transferred to the GaAs melt, and a temperature gradient inclined with respect to the vertical direction is obtained. Actually, using the support container of this embodiment, the heat-resistant container is rotated at 5 rpm, and the descent speed is 5 mm /
At that time, a crystal was produced, a (100) substrate was cut out from the crystal, and the carrier concentration was measured by the van der Pol method. The same result as in the previous example was obtained.

本実施例においては、グラファイトとBNを例示した
が、アルミナ、窒化アルミニウム、窒化硅素等のセラミ
ックス、モリブデン、タングステン等の金属等であって
も構わない。
In the present embodiment, graphite and BN are exemplified, but ceramics such as alumina, aluminum nitride, and silicon nitride, and metals such as molybdenum and tungsten may be used.

また、本実施例は円筒状の支持容器側壁を軸に沿って
2分割し、かつその各々が相等(中心角がいずれも180
゜)の場合を例示したがこれに限られることなく、任意
の大きさ(異なる中心角)でもよい。さらに、2分割に
限られるものでなく、これを含む複数分割を施しても同
様の効果が得られる。
In this embodiment, the cylindrical support container side wall is divided into two along the axis, and each of them is equivalent (the center angle is 180 °).
Although the case of ゜) is illustrated, the size is not limited to this and may be an arbitrary size (different center angle). Further, the present invention is not limited to two divisions, and the same effect can be obtained by performing plural divisions including this.

前記実施例は、垂直ブリッジマン法によるGaAs結晶構
造を例示したが、融液成長が可能な結晶製造の全般に適
用でき、また、温度勾配徐冷法、熱交換法等についても
適用できる。
Although the above embodiment has exemplified the GaAs crystal structure by the vertical Bridgman method, the present invention can be applied to all types of crystal production capable of growing a melt, and can also be applied to a temperature gradient slow cooling method, a heat exchange method, and the like.

〔発明の効果〕〔The invention's effect〕

本発明によれば、結晶固化の界面の傾き、すなわち、
水平面との角度を制御することができるので、結晶成長
方位と異なる方位の基板を取出す時においても面内の特
性が均一な基板を得ることができる顕著な効果がある。
According to the present invention, the inclination of the solidification interface, that is,
Since the angle with respect to the horizontal plane can be controlled, there is a remarkable effect that a substrate with uniform in-plane characteristics can be obtained even when a substrate having an orientation different from the crystal growth orientation is taken out.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は第1実施例にかかる半導体単結晶製造装
置のヒータの上面図、第1図(b)は同ヒータの側面
図、第2図は垂直ブリッジマン法による実施例の単結晶
製造装置の断面図、第3図はヒータ内の温度分布を示す
線図、第4図は半導体基板内のキャリヤ濃度の測定結果
を示す線図、第5図は垂直ブリッジマン法による第2実
施例の単結晶製造装置の断面図、第6図は半導体基板内
のキャリヤ濃度の測定結果を示す線図、第7図(a)は
垂直ブリッジマン法による第3実施例の単結晶製造装置
の軸に沿う断面図、第7図(b)は同製造装置の上面
図、第8図(a)は垂直ブリッジマン法による第4実施
例の単結晶製造装置の軸に沿う断面図、第8図(b)は
同単結晶製造装置の上面図、第9図は融液の温度分布を
示す線図、第10図は半導体基板内のキャリヤ濃度の測定
結果を示す線図、第11図(a)は垂直ブリッジマン法に
よる第5実施例の単結晶製造装置の軸に沿う断面図、第
11図(b)は同単結晶製造装置の上面図、第12図(a)
は垂直ブリッジマン法による第6実施例の単結晶製造装
置の軸に沿う断面図、第12図(b)は水平方向の断面図
である。 11、21a、21b、52a、52b、82a、82b……ヒータ、 11a……ヒータの厚肉部、11c……ヒータの薄肉部、 27、54、72a、72b、73c、73d、86……耐熱容器、 25、56a、84……種結晶、 121a、121b、121c、121d……(耐熱容器の)支持容器
FIG. 1 (a) is a top view of a heater of the semiconductor single crystal manufacturing apparatus according to the first embodiment, FIG. 1 (b) is a side view of the heater, and FIG. FIG. 3 is a diagram showing a temperature distribution in a heater, FIG. 4 is a diagram showing a measurement result of a carrier concentration in a semiconductor substrate, and FIG. 5 is a diagram showing a second diagram by a vertical Bridgman method. FIG. 6 is a cross-sectional view of the single crystal manufacturing apparatus of the embodiment, FIG. 6 is a diagram showing the measurement results of the carrier concentration in the semiconductor substrate, and FIG. 7 (a) is the single crystal manufacturing apparatus of the third embodiment by the vertical Bridgman method. 7 (b) is a top view of the manufacturing apparatus, FIG. 8 (a) is a cross-sectional view along the axis of the single crystal manufacturing apparatus of the fourth embodiment by the vertical Bridgman method, and FIG. 8 (b) is a top view of the single crystal manufacturing apparatus, FIG. 9 is a diagram showing the temperature distribution of the melt, and FIG. Graph showing the measurement results of the carrier concentration in the body substrate, FIG. 11 (a) is a sectional view taken along the axis of the single crystal manufacturing apparatus of the fifth embodiment by the vertical Bridgman method, the
FIG. 11 (b) is a top view of the single crystal manufacturing apparatus, and FIG. 12 (a).
Fig. 12 is a cross-sectional view along the axis of the single crystal manufacturing apparatus of the sixth embodiment according to the vertical Bridgman method, and Fig. 12 (b) is a horizontal cross-sectional view. 11, 21a, 21b, 52a, 52b, 82a, 82b ... heater, 11a ... thick section of heater, 11c ... thin section of heater, 27, 54, 72a, 72b, 73c, 73d, 86 ... heat resistant Containers, 25, 56a, 84 ... Seed crystal, 121a, 121b, 121c, 121d ... Support container (for heat-resistant container)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 11/00 - 11/14 H01L 21/208 H01L 21/368 C30B 28/00 - 35/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C30B 11/00-11/14 H01L 21/208 H01L 21/368 C30B 28/00-35/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体結晶原料が収容される筒型の耐熱容
器を垂直に設け、その側面周囲に間隔を置いて包囲する
加熱体を配置し、半導体結晶原料を前記耐熱容器内で加
熱溶融させ融液をその底部から上方に向かって固化させ
て単結晶を製造する半導体単結晶製造装置において、前
記耐熱容器の側面周方向に温度傾斜を形成する手段を有
して前記半導体結晶原料の融液に前記耐熱容器の軸に対
し傾斜した等温面を形成させることを特徴とする半導体
単結晶製造装置。
1. A cylindrical heat-resistant container in which a semiconductor crystal raw material is accommodated is provided vertically, and a surrounding heating body is arranged around the side surface thereof at intervals, and the semiconductor crystal raw material is heated and melted in the heat-resistant container. In a semiconductor single crystal manufacturing apparatus for manufacturing a single crystal by solidifying a melt upward from a bottom thereof, there is provided a means for forming a temperature gradient in a circumferential direction of a side surface of the heat-resistant container. Forming an isothermal surface inclined with respect to the axis of the heat-resistant container.
【請求項2】前記加熱体がその周方向に温度勾配を備
え、半導体結晶原料の融液に前記耐熱容器の軸に対し傾
斜した等温面を形成させることを特徴とする請求項
(1)に記載の半導体単結晶製造装置。
2. The method according to claim 1, wherein the heating element has a temperature gradient in a circumferential direction thereof, and the melt of the semiconductor crystal raw material forms an isothermal surface inclined with respect to the axis of the heat-resistant container. Semiconductor single crystal manufacturing apparatus according to the above.
【請求項3】前記耐熱容器が、加熱体の熱中心位置から
ずれ、かつ、熱中心位置を含む垂直面の一方側にあるよ
うに配置されて半導体結晶原料の融液に前記耐熱容器の
軸に対し傾斜した等温面を形成させることを特徴とする
請求項(1)に記載の半導体単結晶製造装置。
3. The heat-resistant container is disposed so as to be displaced from the heat center position of the heating element and to be on one side of a vertical plane including the heat center position. 2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein an isothermal surface inclined with respect to is formed.
【請求項4】耐熱容器と加熱体との間に遮熱板を配置し
前記半導体結晶原料の融液に前記耐熱容器の軸に対し傾
斜した等温面を形成させることを特徴とする請求項
(1)に記載の半導体単結晶製造装置。
4. A heat shield plate is provided between the heat-resistant container and the heating element, and an isothermal surface inclined with respect to the axis of the heat-resistant container is formed in the melt of the semiconductor crystal raw material. The apparatus for producing a semiconductor single crystal according to 1).
【請求項5】耐熱容器と加熱体との間隙の一部に垂直方
向に通気導管を配置し、前記半導体結晶原料の融液に前
記耐熱容器の軸に対し傾斜した等温面を形成させること
を特徴とする請求項(1)に記載の半導体単結晶製造装
置。
5. A method according to claim 5, further comprising the step of arranging a ventilation pipe in a vertical direction in a part of a gap between the heat-resistant container and the heating element to form an isothermal surface inclined with respect to the axis of the heat-resistant container in the melt of the semiconductor crystal raw material. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein:
【請求項6】前記耐熱容器が支持容器に収納支持され、
該支持容器は鉛直方向に複数に分割されてなるととも
に、これらは相互に熱伝達率の異なる材質で構成されて
半導体結晶原料融液に前記耐熱容器の軸に対し傾斜した
等温面を形成させることを特徴とする請求項(1)に記
載の半導体単結晶製造装置。
6. The heat-resistant container is stored and supported in a support container,
The supporting vessel is divided into a plurality of pieces in the vertical direction, and these are made of materials having mutually different heat transfer coefficients, so that the semiconductor crystal raw material melt forms an isothermal surface inclined with respect to the axis of the heat-resistant vessel. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein:
JP22564889A 1989-01-06 1989-08-31 Semiconductor single crystal manufacturing equipment Expired - Fee Related JP2823257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22564889A JP2823257B2 (en) 1989-01-06 1989-08-31 Semiconductor single crystal manufacturing equipment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP100989 1989-01-06
JP1-1009 1989-01-06
JP64-1009 1989-06-16
JP15360389 1989-06-16
JP1-153603 1989-06-16
JP22564889A JP2823257B2 (en) 1989-01-06 1989-08-31 Semiconductor single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03103386A JPH03103386A (en) 1991-04-30
JP2823257B2 true JP2823257B2 (en) 1998-11-11

Family

ID=27274721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22564889A Expired - Fee Related JP2823257B2 (en) 1989-01-06 1989-08-31 Semiconductor single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2823257B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099579A (en) * 2005-10-06 2007-04-19 Nippon Telegr & Teleph Corp <Ntt> Crystal production method and its apparatus
JP5486190B2 (en) 2006-01-20 2014-05-07 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
JP5172881B2 (en) * 2010-03-05 2013-03-27 Jx日鉱日石金属株式会社 Compound semiconductor single crystal manufacturing apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JPH03103386A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
JP5005651B2 (en) Method and apparatus for growing semiconductor crystals with rigid support with carbon doping, resistivity control, temperature gradient control
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
JP2823257B2 (en) Semiconductor single crystal manufacturing equipment
Capper Bulk crystal growth: methods and materials
JPH11209198A (en) Synthesis of silicon carbide single crystal
JP2985040B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP4053125B2 (en) Method for synthesizing SiC single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JPS6217496Y2 (en)
JP2991585B2 (en) Single crystal growing apparatus and single crystal manufacturing method
JPS62171984A (en) Apparatus for production of crystal
JPH0297480A (en) Single crystal pulling up device
JPH0297482A (en) Apparatus for producing semiconductor single crystal
JPH0651275U (en) Silicon carbide single crystal growth equipment
JPH05178683A (en) Device for producing single crystal of compound semiconductor
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0449185Y2 (en)
JPH03153594A (en) Device for producing semiconductor single crystal
JPH09315881A (en) Production of semiconductor crystal
JP2000344600A (en) Method and apparatus for growing compound semiconductor crystals of groups ii to iv
JPH01264989A (en) Device for growing single crystal
JPS6121194B2 (en)
JPS6339558B2 (en)
JPH01145395A (en) Production of compound semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees