JP2690420B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP2690420B2
JP2690420B2 JP25915491A JP25915491A JP2690420B2 JP 2690420 B2 JP2690420 B2 JP 2690420B2 JP 25915491 A JP25915491 A JP 25915491A JP 25915491 A JP25915491 A JP 25915491A JP 2690420 B2 JP2690420 B2 JP 2690420B2
Authority
JP
Japan
Prior art keywords
single crystal
stirring jig
crucible
raw material
airtight container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25915491A
Other languages
Japanese (ja)
Other versions
JPH0597567A (en
Inventor
智博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25915491A priority Critical patent/JP2690420B2/en
Publication of JPH0597567A publication Critical patent/JPH0597567A/en
Application granted granted Critical
Publication of JP2690420B2 publication Critical patent/JP2690420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主にGaAs,Ga
P,GaSb.InAs,InP,InSbなどのIII-
V族化合物半導体単結晶、CdTe,Hg1-x Cdx
e,ZnSeなどのII-VI 族化合物半導体単結晶を垂直
ブリッジマン法(VB法)若しくは垂直徐冷法(VGF
法)で製造する装置に関する。
BACKGROUND OF THE INVENTION The present invention is mainly applied to GaAs and Ga.
P, GaSb. III- such as InAs, InP, InSb
Group V compound semiconductor single crystal, CdTe, Hg 1-x Cd x T
e-, ZnSe and other II-VI group compound semiconductor single crystals using the vertical Bridgman method (VB method) or the vertical gradual cooling method (VGF).
Method).

【0002】[0002]

【従来の技術】図7は、VGF法の従来装置の断面図で
ある。チャンバー25の保護筒26内に上下に10個分
割されたヒータ1〜10により温度勾配が形成される。
この温度勾配炉の中央には石英管29が置かれ、その下
方に接続されたリザーバー19には固体の高解離圧元素
20が収容され、石英管29内には原料融液を収容する
るつぼ11が置かれ、るつぼ11の下端には種結晶12
が置かれ、石英管29の上方開口は蓋30で密閉され
る。ヒータ1〜10に通電して原料を完全に溶融した
後、炉内に所定の温度勾配を形成し、るつぼは降下させ
ずに同じ高さで回転させ、ヒータの出力を制御して種結
晶側から温度を徐々に降下させることにより、種結晶1
2の上端から上方に向けて原料融液を冷却固化し、単結
晶21を育成する。その間、石英管29内には固体の高
解離圧元素20が気化して、所定の蒸気圧が形成される
ため、原料融液28からの高解離圧元素の抜けを防止す
ることができる。
2. Description of the Related Art FIG. 7 is a sectional view of a conventional apparatus for the VGF method. A temperature gradient is formed in the protective cylinder 26 of the chamber 25 by the heaters 1 to 10 which are vertically divided into ten pieces.
A quartz tube 29 is placed at the center of this temperature gradient furnace, a solid high dissociation pressure element 20 is accommodated in a reservoir 19 connected therebelow, and a crucible 11 for accommodating a raw material melt in the quartz tube 29. The seed crystal 12 is placed at the lower end of the crucible 11.
Is placed, and the upper opening of the quartz tube 29 is sealed with a lid 30. After energizing the heaters 1 to 10 to completely melt the raw material, a predetermined temperature gradient is formed in the furnace, the crucible is rotated at the same height without being lowered, and the output of the heater is controlled to control the seed crystal side. Seed crystal 1 by gradually lowering the temperature from
From the upper end of 2, the raw material melt is cooled and solidified to grow the single crystal 21. During that time, the solid high dissociation pressure element 20 is vaporized in the quartz tube 29 to form a predetermined vapor pressure, so that it is possible to prevent the high dissociation pressure element from escaping from the raw material melt 28.

【0003】VB法は、上記VGF法に対し、炉内に形
成された温度勾配を固定したまま、るつぼを徐々に降下
させることにより、るつぼの下端より冷却固化して単結
晶を得るものであり、VGF装置に対し、るつぼの降下
手段を設けた点で相違するが、るつぼ、るつぼを封入す
る容器、ヒータ等炉の構造はほぼ同じである。
In contrast to the VGF method, the VB method is to obtain a single crystal by cooling and solidifying from the lower end of the crucible by gradually lowering the crucible while fixing the temperature gradient formed in the furnace. The VGF apparatus is different from the VGF apparatus in that crucible lowering means is provided, but the structure of the crucible, the container for enclosing the crucible, the heater and the like is almost the same.

【0004】[0004]

【発明が解決しようとする課題】これらの結晶成長方法
は、成長軸方向の温度勾配を小さくすることにより、低
転位密度の結晶を成長させることができるが、低温度勾
配の下における成長は、双晶やリネージなどの結晶欠陥
が発生し易くなる。これらの欠陥は、固液界面の形状が
融液に対して凸状態にすることによりその発生を抑制で
きるので、固液界面の形状制御が非常に重要になる。そ
れ故、原料融液の固液界面直上に多数の熱電対を挿入し
て、半径方向の温度分布を測定し、固液界面の形状が融
液に対して凸状態になるように、ヒータの出力を調整し
たり、融液内にヒータを配置することが先に提案され
た。
According to these crystal growth methods, a crystal with a low dislocation density can be grown by reducing the temperature gradient in the growth axis direction. Crystal defects such as twins and lineage are likely to occur. These defects can be suppressed from occurring by making the shape of the solid-liquid interface convex with respect to the melt, so that the shape control of the solid-liquid interface becomes very important. Therefore, insert a number of thermocouples directly above the solid-liquid interface of the raw material melt, measure the temperature distribution in the radial direction, and adjust the heater so that the shape of the solid-liquid interface becomes convex with respect to the melt. It has been previously proposed to adjust the power and to place a heater in the melt.

【0005】しかし、従来の温度勾配炉のヒータは、成
長軸方向に分割して配置されているため、成長軸方向の
温度勾配を制御することは比較的容易であるが、半径方
向の温度勾配を制御するための適当な手段がないため、
双晶やリネージなどの結晶欠陥の発生を有効に防ぐこと
ができなかった。そこで、本発明は、VB法若しくはV
GF法で単結晶を製造する装置の改良において、上記の
欠点を解消し、固液界面の形状制御が容易であり、融液
に対して凸状態の下で結晶を成長させることができる単
結晶の製造装置を提供しようとするものである。
However, since the heater of the conventional temperature gradient furnace is divided and arranged in the growth axis direction, it is relatively easy to control the temperature gradient in the growth axis direction, but the temperature gradient in the radial direction is relatively easy. There is no suitable means to control
It was not possible to effectively prevent the occurrence of crystal defects such as twins and lineage. Therefore, the present invention uses the VB method or V
In the improvement of the apparatus for producing a single crystal by the GF method, the above-mentioned drawbacks are solved, the shape of the solid-liquid interface can be easily controlled, and the single crystal can be grown in a convex state with respect to the melt. It is intended to provide a manufacturing apparatus of

【0006】[0006]

【課題を解決するための手段】本発明は、原料融液を収
容する縦型容器と、温度勾配炉とを有し、下方より原料
融液を冷却固化して単結晶を製造する装置において、固
液界面の上方に攪拌ジグを配置し、該攪拌ジグの回転中
心に1本の熱電対を設け、該攪拌ジグとるつぼ内壁との
間に1本以上の熱電対を配置したことを特徴とする単結
晶の製造装置である。
SUMMARY OF THE INVENTION The present invention is an apparatus for producing a single crystal by having a vertical container for containing a raw material melt and a temperature gradient furnace, and cooling and solidifying the raw material melt from below. A stirring jig is arranged above the solid-liquid interface, one thermocouple is provided at the center of rotation of the stirring jig, and one or more thermocouples are arranged between the stirring jig and the inner wall of the crucible. It is an apparatus for producing a single crystal.

【0007】[0007]

【作用】図1は、本発明の1具体例である単結晶製造装
置の概念図であり、VGF法を実施する装置である。チ
ャンバー25の保護筒26内に温度勾配を形成するため
のヒータ1〜10を配置し、他方、気密容器13の底部
のリザーバー19に固形の高解離圧元素単体20を置
き、中央にるつぼ11を配置し、るつぼ11の先端には
種結晶12を、その上に原料融液28を収容し、原料融
液28内には攪拌ジグ14を配置し、該攪拌ジグ14の
支持軸の中心に保護管15を通して先端に熱電対17を
配置し、るつぼ11の壁近くに熱電対18の保護管16
を配置し、かつ、気密容器13の開口を蓋22で密閉す
る。なお、蓋22には、攪拌ジグ14の支持軸及び熱電
対18の保護管16を貫通する孔があり、その周囲に液
体封止剤用の液溜を設けて貫通孔をシールする。また、
攪拌ジグ14の支持軸の後端にも液溜を設けて液体封止
剤を収容し、軸と保護管15の間をシールする。このよ
うにして、熱電対17,18は攪拌ジグから独立して上
下させることができ、所望の高さにおける原料融液の半
径方向の温度分布を測定することができる。また、上記
のようにシールされた気密容器13は、ヒータ1の出力
を制御して、リザーバー19内の固形高解離圧元素単体
20を気化させ、高解離圧元素の蒸気圧を確保できるの
で、原料融液28の解離が防止される。
FIG. 1 is a conceptual diagram of a single crystal production apparatus which is one embodiment of the present invention, and is an apparatus for carrying out the VGF method. The heaters 1 to 10 for forming a temperature gradient are arranged in the protective cylinder 26 of the chamber 25, while the solid high dissociation pressure element simple substance 20 is placed in the reservoir 19 at the bottom of the airtight container 13, and the crucible 11 is placed in the center. The seed crystal 12 is placed at the tip of the crucible 11, the raw material melt 28 is housed thereon, and the stirring jig 14 is placed in the raw material melt 28 to protect the stirring jig 14 at the center of the support shaft. A thermocouple 17 is arranged at the tip through the tube 15, and a protective tube 16 for the thermocouple 18 is provided near the wall of the crucible 11.
And the opening of the airtight container 13 is sealed with a lid 22. The lid 22 has a hole penetrating the support shaft of the stirring jig 14 and the protective tube 16 of the thermocouple 18, and a liquid reservoir for a liquid sealant is provided around the hole to seal the through hole. Also,
A liquid reservoir is also provided at the rear end of the support shaft of the stirring jig 14 to accommodate the liquid sealant and seal between the shaft and the protective tube 15. In this way, the thermocouples 17 and 18 can be moved up and down independently of the stirring jig, and the temperature distribution in the radial direction of the raw material melt at a desired height can be measured. Further, the airtight container 13 sealed as described above can control the output of the heater 1 to vaporize the solid high dissociation pressure element simple substance 20 in the reservoir 19 and secure the vapor pressure of the high dissociation pressure element. Dissociation of the raw material melt 28 is prevented.

【0008】図2は、本発明の別の具体例である単結晶
製造装置の概念図であり、VGF法を実施する装置であ
る。この装置は、図1の装置に対し、気密容器を省略す
る代わりに原料融液28の上に液体封止剤24を収容し
て原料融液28の解離を防止するものであり、その他の
装置構成は図1と同じである。なお、VB法の装置は図
面に示していないが、上記図1又は2の装置にるつぼ昇
降機構を設けたものであり、その他の構成はVGF装置
とほぼ同じである。
FIG. 2 is a conceptual diagram of a single crystal manufacturing apparatus which is another specific example of the present invention, and is an apparatus for carrying out the VGF method. This apparatus is different from the apparatus of FIG. 1 in that the liquid sealant 24 is contained on the raw material melt 28 instead of omitting the airtight container to prevent the raw material melt 28 from dissociating. The configuration is the same as in FIG. Although the apparatus for the VB method is not shown in the drawing, the apparatus of FIG. 1 or 2 is provided with a crucible lifting mechanism, and other configurations are almost the same as the VGF apparatus.

【0009】図3は攪拌ジグの正面図であり、図4は図
3の攪拌ジグの平面図である。この攪拌ジグは、支持軸
の下端に6枚のプロペラ状の攪拌翼を有している。図5
は別の攪拌ジグの正面図であり、図6は図5の攪拌ジグ
の平面図である。この攪拌ジグは、支持軸の下端に攪拌
用の円盤を有している。
FIG. 3 is a front view of the stirring jig, and FIG. 4 is a plan view of the stirring jig of FIG. This stirring jig has six propeller-shaped stirring blades at the lower end of the support shaft. FIG.
Is a front view of another stirring jig, and FIG. 6 is a plan view of the stirring jig of FIG. This stirring jig has a disc for stirring at the lower end of the support shaft.

【0010】本発明のるつぼは、PBN(パイロリティ
ックボロンナイトライド)製のものを使用するが、石英
製のものも使用することができる。また、気密容器は、
PBN、PG(パイロリティックグラファイト)、ガラ
ス化カーボン、PBNコーティングカーボン、PGコー
ティングカーボン、ガラス化カーボンコーティングカー
ボン、ステンレス、モリブデンなどの部材で作ることが
できる。さらに、攪拌ジグは、石英、PBN、PG、ガ
ラス化カーボン、BN、SiC、Si3 4 、AlN及
びそれらをカーボンにコーティングしたもの、また、ス
テンレス、モリブデンなどの金属で作ることができる。
The crucible of the present invention is made of PBN (Pyrolytic Boron Nitride), but quartz can also be used. Also, the airtight container is
It can be made of a member such as PBN, PG (pyrolytic graphite), vitrified carbon, PBN coated carbon, PG coated carbon, vitrified carbon coated carbon, stainless steel, molybdenum and the like. Further, the stirring jig can be made of quartz, PBN, PG, vitrified carbon, BN, SiC, Si 3 N 4 , AlN and those coated with carbon, or a metal such as stainless steel or molybdenum.

【0011】[0011]

【実施例】【Example】

(実施例1)図1の装置を使用してVGF法により直径
3インチのノンドープGaAs単結晶を製造した。るつ
ぼは上部内径が85mm、下部内径が80mmのPBN
製のものを使用し、下部を逆円錐形とし、下端に種結晶
を取り付けた。そして、るつぼにはGaAs多結晶原料
7kgを投入した。PBNをコーティングしたカーボン
製の気密容器のリザーバーには固体のひ素50gを投入
し、その上方に上記るつぼをセットした。そして、図
3,4に示したプロペラ状のPBN製攪拌ジグ、該ジグ
の軸心に設けた熱電対及びるつぼの内壁近くに配置する
熱電対を気密容器に挿入してから蓋をした。蓋の上部の
液溜にはB2 3 を蓄え、チャンバーを密閉して準備を
完了した。
Example 1 A non-doped GaAs single crystal having a diameter of 3 inches was manufactured by the VGF method using the apparatus shown in FIG. The crucible is a PBN with an upper inner diameter of 85 mm and a lower inner diameter of 80 mm.
The bottom part was made into an inverted conical shape and a seed crystal was attached to the bottom end. Then, 7 kg of GaAs polycrystalline raw material was charged into the crucible. 50 g of solid arsenic was put into a reservoir of a carbon airtight container coated with PBN, and the crucible was set above it. Then, the propeller-shaped stirring jig made of PBN shown in FIGS. 3 and 4, the thermocouple provided at the axis of the jig and the thermocouple arranged near the inner wall of the crucible were inserted into the airtight container, and then the lid was closed. B 2 O 3 was stored in the liquid reservoir above the lid, and the chamber was sealed to complete the preparation.

【0012】結晶成長は、まず、チャンバー内を真空に
引き、気密容器の蓋の周囲のヒータを加熱して蓋の液溜
に収容した液体封止剤B2 3 を軟化溶融して気密容器
を完全に密閉した後、リザーバーの周囲のヒータを加熱
してAsを気化し、As分圧を約1atmに調整した。
そして、その他のヒータも加熱してるつぼ内の原料を融
解し、チャンバー内にはArガスを満たして気密容器内
の圧力とバランスさせた。原料を融解した後、攪拌ジグ
と熱電対を成長界面まで降下させ、成長界面における軸
方向の温度勾配を2〜3℃/cmに維持しながら徐々に
温度を降下させ、長さ約250mmのGaAs単結晶を
成長させた。結晶成長の間、熱電対の位置を成長界面上
約1cmの位置になるように成長界面の移動に併せて上
昇させた。また、攪拌ジグの軸に設けた熱電対の温度が
その周囲に設けた熱電対の温度より約0.5℃低くなる
ように、攪拌ジグの回転数を図8のように調節した。具
体的には、結晶の長さが50mmまで成長した後、攪拌
ジグの回転を開始し、その回転数を徐々に上げ、結晶の
長さが250mmにまで成長した時点で回転数を20r
pmに調節することにより、成長界面の温度分布を上記
のように調整することができた。この調整により結晶の
全長にわたって成長界面の形状を緩やかな凸に制御する
ことができた。その結果、フロントからバックまで転位
密度が2×103 cm-2以下の低転位密度のGaAs単
結晶を安定して得ることができた。成長界面における半
径方向の温度分布の制御性が向上した結果、双晶、リネ
ージなどの欠陥が著しく減少した。
In crystal growth, first, the inside of the chamber is evacuated to a vacuum, a heater around the lid of the airtight container is heated to soften and melt the liquid sealant B 2 O 3 contained in the liquid reservoir of the lid, and the airtight container Was completely sealed, the heater around the reservoir was heated to vaporize As, and the As partial pressure was adjusted to about 1 atm.
Then, the other heaters were also heated to melt the raw material in the crucible, and the chamber was filled with Ar gas to balance the pressure in the airtight container. After the raw material is melted, the stirring jig and the thermocouple are lowered to the growth interface, and the temperature is gradually lowered while maintaining the temperature gradient in the axial direction at the growth interface of 2 to 3 ° C./cm. Single crystals were grown. During the crystal growth, the position of the thermocouple was raised along with the movement of the growth interface so that the position was about 1 cm above the growth interface. Further, the rotation speed of the stirring jig was adjusted as shown in FIG. 8 so that the temperature of the thermocouple provided on the shaft of the stirring jig was about 0.5 ° C. lower than the temperature of the thermocouple provided around it. Specifically, after the crystal length has grown to 50 mm, the rotation of the stirring jig is started, the rotation speed is gradually increased, and when the crystal length reaches 250 mm, the rotation speed is 20 r.
By adjusting to pm, the temperature distribution of the growth interface could be adjusted as described above. By this adjustment, the shape of the growth interface could be controlled to have a gentle convex shape over the entire length of the crystal. As a result, a GaAs single crystal having a low dislocation density of 2 × 10 3 cm −2 or less from the front to the back could be stably obtained. As a result of improving the controllability of the radial temperature distribution at the growth interface, defects such as twins and lineage were significantly reduced.

【0013】(実施例2)図2の装置で液体封止剤を使
用し、VGF法により直径3インチのノンドープGaA
s単結晶を製造した。るつぼは上部内径が85mm、下
部内径が80mmのPBN製のものを使用し、下部を逆
円錐形とし、下端に種結晶を取り付けた。そして、るつ
ぼにはGaAs多結晶原料7kgと液体封止剤B2 3
300gを投入した。図5,6に示した円盤状のPBN
製攪拌ジグ、該ジグの軸心に設けた熱電対及びるつぼの
内壁近くに配置する熱電対をるつぼの上部に用意し、チ
ャンバーを密閉して準備を完了した。
(Embodiment 2) A non-doped GaA having a diameter of 3 inches was measured by the VGF method using a liquid sealant in the apparatus shown in FIG.
s single crystal was produced. A crucible made of PBN having an upper inner diameter of 85 mm and a lower inner diameter of 80 mm was used, the lower portion had an inverted conical shape, and a seed crystal was attached to the lower end. Then, in the crucible, 7 kg of GaAs polycrystal raw material and liquid sealing agent B 2 O 3
300 g was added. Disk-shaped PBN shown in FIGS.
A stirring jig for production, a thermocouple provided on the axis of the jig, and a thermocouple arranged near the inner wall of the crucible were prepared above the crucible, and the chamber was sealed to complete the preparation.

【0014】結晶成長は、まず、チャンバー内を真空に
引いた後、チャンバー内にArガスを導入し、ヒータを
加熱してるつぼ内の原料及び液体封止剤を融解した。結
晶成長時のチャンバー内のArガス分圧を5atmに調
整した。原料を融解した後、攪拌ジグと熱電対を成長界
面まで降下させ、成長界面における軸方向の温度勾配を
2〜3℃/cmに維持しながら徐々に温度を降下させ、
長さ約250mmのGaAs単結晶を成長させた。結晶
成長の間、熱電対の位置を成長界面上約1cmの位置に
なるように成長界面の移動に併せて上昇させた。また、
攪拌ジグの軸に設けた熱電対の温度がその周囲に設けた
熱電対の温度より約0.5℃低くなるように、攪拌ジグ
の回転数を調節した。この調整により結晶の全長にわた
って成長界面の形状を緩やかな凸に制御することができ
た。その結果、フロントからバックまで転位密度が2×
103 cm-2以下の低転位密度のGaAs単結晶を安定
して得ることができた。成長界面における半径方向の温
度分布の制御性が向上した結果、双晶、リネージなどの
欠陥が著しく減少した。
In the crystal growth, first, the inside of the chamber was evacuated, Ar gas was introduced into the chamber, and the heater was heated to melt the raw material and the liquid sealant in the crucible. The Ar gas partial pressure in the chamber during crystal growth was adjusted to 5 atm. After melting the raw material, the stirring jig and the thermocouple are lowered to the growth interface, and the temperature is gradually lowered while maintaining the axial temperature gradient at the growth interface at 2 to 3 ° C./cm.
A GaAs single crystal having a length of about 250 mm was grown. During the crystal growth, the position of the thermocouple was raised along with the movement of the growth interface so that the position was about 1 cm above the growth interface. Also,
The rotation speed of the stirring jig was adjusted so that the temperature of the thermocouple provided on the shaft of the stirring jig was about 0.5 ° C. lower than the temperature of the thermocouple provided around it. By this adjustment, the shape of the growth interface could be controlled to have a gentle convex shape over the entire length of the crystal. As a result, the dislocation density from the front to the back is 2 ×
A GaAs single crystal with a low dislocation density of 10 3 cm −2 or less could be stably obtained. As a result of improving the controllability of the radial temperature distribution at the growth interface, defects such as twins and lineage were significantly reduced.

【0015】[0015]

【発明の効果】本発明は、上記の構成を採用することに
より、原料融液の成長界面上に挿入した熱電対の温度を
目的の温度となるように攪拌ジグの回転数を調整して融
液対流を制御することが容易になり、成長界面の温度分
布の制御が正確になった結果、結晶の全長にわたって成
長界面の形状を緩やかに下に凸に維持することが可能に
なり、双晶、リネージの発生を大幅に抑制することがで
きるようになった。その結果、生産性と歩留りが著しく
向上し、結晶全体にわたって低転位密度の結晶を安定し
て得ることができ、品質の向上にも著しい効果があっ
た。
According to the present invention, by adopting the above-mentioned constitution, the number of revolutions of the stirring jig is adjusted so that the temperature of the thermocouple inserted on the growth interface of the raw material melt becomes the target temperature. As a result of easier control of liquid convection and more accurate control of temperature distribution at the growth interface, it is possible to maintain the shape of the growth interface gently downward and convex over the entire length of the crystal, and to prevent twinning. , It became possible to significantly suppress the occurrence of lineage. As a result, the productivity and the yield were remarkably improved, a crystal having a low dislocation density could be stably obtained over the entire crystal, and there was a remarkable effect in improving the quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例である単結晶製造装置の概念
図である。
FIG. 1 is a conceptual diagram of a single crystal manufacturing apparatus that is an embodiment of the present invention.

【図2】本発明の他の実施例である単結晶製造装置の概
念図である。
FIG. 2 is a conceptual diagram of a single crystal manufacturing apparatus that is another embodiment of the present invention.

【図3】本発明の装置に使用する攪拌ジグの正面断面図
である。
FIG. 3 is a front sectional view of a stirring jig used in the apparatus of the present invention.

【図4】図3の平面図である。FIG. 4 is a plan view of FIG. 3;

【図5】本発明の装置に使用する他の攪拌ジグの正面断
面図である。
FIG. 5 is a front sectional view of another stirring jig used in the apparatus of the present invention.

【図6】図5の平面図である。FIG. 6 is a plan view of FIG. 5;

【図7】従来の単結晶製造装置の概念図である。FIG. 7 is a conceptual diagram of a conventional single crystal manufacturing apparatus.

【図8】攪拌ジグの回転数の制御の1例を示したグラフ
である。
FIG. 8 is a graph showing an example of controlling the rotation speed of a stirring jig.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料融液を収容する縦型容器と、温度勾
配炉とを有し、下方より原料融液を冷却固化して単結晶
を製造する装置において、固液界面の上方に攪拌ジグを
配置し、該攪拌ジグの回転中心に1本の熱電対を設け、
該攪拌ジグとるつぼ内壁との間に1本以上の熱電対を配
置したことを特徴とする単結晶の製造装置。
1. An apparatus for producing a single crystal by cooling and solidifying a raw material melt from below in a vertical container for containing the raw material melt and a temperature gradient furnace, wherein a stirring jig is provided above a solid-liquid interface. Is provided, and one thermocouple is provided at the center of rotation of the stirring jig,
An apparatus for producing a single crystal, wherein one or more thermocouples are arranged between the stirring jig and the inner wall of the crucible.
【請求項2】 上記縦型容器を気密容器に内蔵させ、該
気密容器の底に高解離圧成分元素単体を配置し、該気密
容器の蓋に液溜を設け、上記攪拌ジグの駆動軸及び熱電
対の保護管が上記気密容器の蓋を貫通する穴の周囲に液
溜を設け、該液溜に収容した液体封止剤により気密を保
持するようにしたことを特徴とする請求項1記載の単結
晶の製造装置。
2. The vertical container is contained in an airtight container, a high dissociation pressure component element simple substance is arranged at the bottom of the airtight container, a liquid reservoir is provided on the lid of the airtight container, and a drive shaft for the stirring jig and 2. A thermocouple protection tube is provided with a liquid reservoir around a hole penetrating the lid of the airtight container, and airtightness is maintained by a liquid sealant contained in the liquid reservoir. Single crystal manufacturing equipment.
JP25915491A 1991-10-07 1991-10-07 Single crystal manufacturing equipment Expired - Fee Related JP2690420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25915491A JP2690420B2 (en) 1991-10-07 1991-10-07 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25915491A JP2690420B2 (en) 1991-10-07 1991-10-07 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0597567A JPH0597567A (en) 1993-04-20
JP2690420B2 true JP2690420B2 (en) 1997-12-10

Family

ID=17330094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25915491A Expired - Fee Related JP2690420B2 (en) 1991-10-07 1991-10-07 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2690420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100246712B1 (en) * 1994-06-02 2000-03-15 구마모토 마사히로 Method and apparatus for preparing compound single crystals
CN107059132B (en) * 2017-03-29 2024-02-27 磐石创新(江苏)电子装备有限公司 Growth method of tellurium-zinc-cadmium monocrystal

Also Published As

Publication number Publication date
JPH0597567A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JP2979770B2 (en) Single crystal manufacturing equipment
JP2690420B2 (en) Single crystal manufacturing equipment
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JP2010030868A (en) Production method of semiconductor single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JP2010030847A (en) Production method of semiconductor single crystal
JP3154351B2 (en) Single crystal growth method
JP2002234792A (en) Method of producing single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2830306B2 (en) Compound semiconductor crystal manufacturing equipment
JPH0341432B2 (en)
JPH0867593A (en) Method for growing single crystal
JPH0559873B2 (en)
JPH05319973A (en) Single crystal production unit
JP2719672B2 (en) Single crystal growth method
JPH0524964A (en) Production of compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100829

LAPS Cancellation because of no payment of annual fees