JPH10212192A - Method for growing bulk crystal - Google Patents

Method for growing bulk crystal

Info

Publication number
JPH10212192A
JPH10212192A JP1273297A JP1273297A JPH10212192A JP H10212192 A JPH10212192 A JP H10212192A JP 1273297 A JP1273297 A JP 1273297A JP 1273297 A JP1273297 A JP 1273297A JP H10212192 A JPH10212192 A JP H10212192A
Authority
JP
Japan
Prior art keywords
crystal
grown
plane
substrate
predetermined amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273297A
Other languages
Japanese (ja)
Inventor
Kenji Sato
賢次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP1273297A priority Critical patent/JPH10212192A/en
Publication of JPH10212192A publication Critical patent/JPH10212192A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield of single crystals in a desired growth direction by growing a bulk crystal by using a sheet-like seed crystal substrate of which the surface is inclined at a specific angle with the face of a prescribed bearing at approximately the same diameter as the diameter of the crystal to be grown. SOLUTION: The sheet-like seed crystal substrate 12 which has approximately the same diameter as the diameter of the crystal to be grown and of which the surface is inclined by the angle within a range of >=2 deg.C and below half the angle to produce the next order face with the face of the prescribed bearing is fixed to the bottom of a crucible 10 by a retaining member 15. A compd. semiconductor raw material and solute are put into the crucible 10 and this crucible is installed in a quartz ampoule 4 which is then vacuum sealed. This quartz ampoule is installed in a heating furnace and is heated by a heater 3 to melt the compd. semiconductor raw material and the solute to form a soln. 5. The ampoule 4 is then moved from the high-temp. side to the low-temp. side and the single crystal is gradually glow upward of the soln. 5 from the seed crystal 12 side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バルク結晶の成長
方法に関し、例えば大口径の種結晶を用いて融液または
溶液から化合物半導体の単結晶を製造するのに適用して
有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a bulk crystal, and more particularly, to a technique useful for producing a single crystal of a compound semiconductor from a melt or a solution using a large-diameter seed crystal.

【0002】[0002]

【従来の技術】従来より、化合物半導体のバルク単結晶
を成長させる方法として、原料融液を入れた成長容器
(るつぼ)を、温度勾配を有する加熱炉に対して徐々に
上下方向に相対的に移動させて結晶を成長させる垂直ブ
リッジマン(VB)法や、原料融液中に上下方向の温度
勾配を設けて徐々に冷却することにより結晶を成長させ
る垂直グラジェントフリージング(VGF)法が知られ
ている。これらVB法やVGF法では、通常、図4に示
すように、るつぼ1の底がその中心に向かって下がるよ
うに傾斜するすり鉢状に成形されたるつぼ1を用いる。
そして、成長させる結晶と同じ組成で、成長させる結晶
の直胴部よりもかなり小径の種結晶2を上記形状のるつ
ぼ1の底中央に設置し、ヒータ3の出力制御により炉内
の温度プロファイルを調節しながら、石英アンプル4内
で、種結晶2から原料融液5を固化させてバルク単結晶
6を得ている。あるいは、種結晶を用いずに、るつぼの
底中央に核を自然発生させて原料融液を固化させること
により、バルク単結晶を得ている。
2. Description of the Related Art Conventionally, as a method of growing a bulk single crystal of a compound semiconductor, a growth vessel (crucible) containing a raw material melt is gradually and vertically moved relatively to a heating furnace having a temperature gradient. A vertical Bridgman (VB) method of growing a crystal by moving it, and a vertical gradient freezing (VGF) method of growing a crystal by providing a vertical temperature gradient in a raw material melt and gradually cooling it are known. ing. In the VB method and the VGF method, as shown in FIG. 4, usually, a crucible 1 formed in a mortar shape in which the bottom of the crucible 1 is inclined so as to descend toward the center thereof is used.
Then, a seed crystal 2 having the same composition as the crystal to be grown and having a considerably smaller diameter than the straight body of the crystal to be grown is placed at the center of the bottom of the crucible 1 having the above shape, and the temperature profile in the furnace is controlled by controlling the output of the heater 3. While adjusting, the raw material melt 5 is solidified from the seed crystal 2 in the quartz ampule 4 to obtain a bulk single crystal 6. Alternatively, without using a seed crystal, a bulk single crystal is obtained by solidifying the raw material melt by naturally generating a nucleus at the center of the bottom of the crucible.

【0003】また、化合物半導体のバルク単結晶の成長
方法としては、るつぼ内の原料融液をB2 3 等の封止
剤で覆い、原料融液の表面に種結晶を接触させて徐々に
引き上げることにより結晶を成長させる液体封止チョク
ラルスキー(LEC)法があり、広く実施されている。
その際に用いる種結晶も、上記VB法やVGF法の場合
と同様に、成長させる結晶と同じ組成で、成長させる結
晶の直胴部よりもかなり小径のものである。
In addition, as a method for growing a bulk single crystal of a compound semiconductor, a raw material melt in a crucible is covered with a sealing agent such as B 2 O 3 and a seed crystal is brought into contact with the surface of the raw material melt to gradually form it. There is a liquid-sealed Czochralski (LEC) method for growing a crystal by pulling it up, and it is widely practiced.
The seed crystal used at this time also has the same composition as the crystal to be grown and has a considerably smaller diameter than the straight body of the crystal to be grown, as in the case of the VB method or the VGF method.

【0004】しかし、CdTeやZnTeのようなII−
VI族化合物半導体では、熱伝導率が小さく、しかも剪断
応力が小さいため、上述した従来のVB法やVGF法や
LEC法では、良質の単結晶を歩留まり良く得ることが
できないという欠点がある。また、従来のVB法やVG
F法では、るつぼの底中央から直胴部に至るまでの結晶
肩部の成長時に新たな核発生が起こって多結晶化し易い
という欠点もある。さらに、従来のVB法やVGF法や
LEC法では結晶に肩部が形成されるため、直胴部の長
さが短く、成長させた結晶から切り出すことのできるウ
ェハの枚数が少ないという欠点もある。
However, II- such as CdTe and ZnTe
Since the group VI compound semiconductor has low thermal conductivity and low shear stress, the conventional VB method, VGF method and LEC method have a drawback that a high-quality single crystal cannot be obtained with high yield. In addition, the conventional VB method and VG
The F method also has a disadvantage that a new nucleus is generated during the growth of the crystal shoulder from the bottom center of the crucible to the straight body, and polycrystal is easily formed. Furthermore, in the conventional VB method, VGF method, and LEC method, since a shoulder is formed in the crystal, the length of the straight body is short, and there is a disadvantage that the number of wafers that can be cut out from the grown crystal is small. .

【0005】上述した欠点を克服するために、VB法や
VGF法やLEC法において、従来よりも径の大きい種
結晶を用いることにより、肩部の少ない結晶を成長させ
る方法も提案されているが、肩部が完全になくならない
ため、上述した肩部成長時の核発生に起因する成長結晶
の多結晶化という欠点は依然として解消されない。ま
た、CdTeやZnTe等のII−VI族化合物半導体にお
いては、CdTeやZnTe等の大口径の種結晶を得難
いため、大口径の種結晶を用いる結晶成長方法の適用は
極めて困難である。さらに、種結晶が、成長させる結晶
と同じ組成であるため、種付け時に原料融液と接触する
種結晶の一部が融解してしまうので、その融解量を所定
レベルに抑えるための原料融液の温度制御が極めて難し
いという欠点もある。
In order to overcome the above-mentioned drawbacks, there has been proposed a method of growing a crystal having a small shoulder portion by using a seed crystal having a larger diameter than in the prior art in the VB method, the VGF method, and the LEC method. Since the shoulder does not completely disappear, the above-described drawback of polycrystallization of the grown crystal due to nucleation during growth of the shoulder remains unresolved. Further, in the case of II-VI group compound semiconductors such as CdTe and ZnTe, it is difficult to obtain a large-diameter seed crystal such as CdTe or ZnTe, so that it is extremely difficult to apply a crystal growth method using a large-diameter seed crystal. Further, since the seed crystal has the same composition as the crystal to be grown, a part of the seed crystal that comes into contact with the raw material melt at the time of seeding is melted. There is also a disadvantage that temperature control is extremely difficult.

【0006】そこで、本出願人は、先に、種結晶とし
て、成長させる結晶の成長温度よりも高い融点を有する
とともに、成長させる結晶と成分が異なり、かつ成長さ
せる結晶の構成元素を含む融液または溶液ヘの溶解度が
小さい薄板状の単結晶基板、例えばサファイア(酸化ア
ルミニウム:Al2 3 )よりなる基板を用いる結晶成
長方法を提案した(国際出願第PCT/JP95/02025号)。図
1に、その結晶成長方法の実施に使用される装置の概略
を示す。るつぼ10の底は平坦に成形されており、るつ
ぼ10の底に、育成結晶の直胴部の径と略同じ径の薄板
状の種結晶基板12を設置することができるようになっ
ている。そして、成長させる結晶と異なる成分からな
り、かつ育成結晶の直胴部の径と略同じ径の種結晶基板
12を、るつぼ10の底に押さえ部材15により固定
し、ヒータ3の出力制御により炉内の温度プロファイル
を調節しながら、石英アンプル4内で、種結晶基板12
から原料融液(または溶液)5を固化させることによ
り、肩部のないバルク単結晶が得られる。例えば、種結
晶基板12としてサファイア基板を用い、Te及びZn
Teをそれぞれ溶媒及び溶質とする溶液中からZnTe
単結晶が育成される。
Therefore, the applicant of the present invention has previously disclosed a melt having a melting point higher than the growth temperature of the crystal to be grown as a seed crystal, a component different from that of the crystal to be grown, and containing a constituent element of the crystal to be grown. Alternatively, a crystal growth method using a thin single-crystal substrate having low solubility in a solution, for example, a substrate made of sapphire (aluminum oxide: Al 2 O 3 ) has been proposed (International Application No. PCT / JP95 / 02025). FIG. 1 schematically shows an apparatus used for carrying out the crystal growth method. The bottom of the crucible 10 is formed flat, and a thin seed crystal substrate 12 having a diameter substantially equal to the diameter of the straight body of the grown crystal can be placed on the bottom of the crucible 10. Then, a seed crystal substrate 12 made of a component different from that of the crystal to be grown and having substantially the same diameter as the diameter of the straight body of the grown crystal is fixed to the bottom of the crucible 10 by a pressing member 15. While adjusting the temperature profile inside, the seed crystal substrate 12 in the quartz ampoule 4 is adjusted.
By solidifying the raw material melt (or solution) 5 from the above, a bulk single crystal having no shoulder can be obtained. For example, a sapphire substrate is used as the seed crystal substrate 12, and Te and Zn are used.
ZnTe from a solution containing Te as a solvent and a solute, respectively.
A single crystal is grown.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、我々の
その後の研究により、上記先願技術では、種結晶が平坦
な基板状のものであるため、結晶成長開始時に複数の核
生成が同時多発的に起こり易く、それらの成長方位が異
なる場合に、双晶や多結晶が発生することがあり、所望
の成長方向の単結晶の歩留まりが低下してしまうという
問題点が有ることが判明した。
However, according to our subsequent research, according to the above-mentioned prior art, since the seed crystal is a flat substrate, a plurality of nuclei are generated simultaneously and frequently at the start of crystal growth. It was found that twins and polycrystals were likely to occur when the growth directions were different, and there was a problem that the yield of single crystals in a desired growth direction was reduced.

【0008】この発明は、上記事情に鑑みなされたもの
で、国際出願第PCT/JP95/02025号に係る発明を改良し
て、所望の成長方向の単結晶の歩留まりの向上を図るこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to improve the invention according to International Application No. PCT / JP95 / 02025 to improve the yield of single crystals in a desired growth direction. I do.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、成長させる結晶の成長温度よりも高い融
点を有するとともに、成長させる結晶と成分が異なり、
かつ成長させる結晶の構成元素を成分として含む融液ま
たは溶液ヘの溶解度が小さいという特性を有し、さらに
成長させる結晶と略同じ径の種結晶を、前記融液または
溶液に接触させて該融液または溶液からバルク結晶を成
長させるにあたって、種結晶基板として、該種結晶基板
の表面が所定の方位の面に対して2°以上、次の低次数
面が出る角度の半分以下の範囲内の所定角度だけ傾いた
基板を用いるようにしたものである。
In order to achieve the above object, the present invention has a melting point higher than a growth temperature of a crystal to be grown, and has a different component from the crystal to be grown.
In addition, a seed crystal having a property of low solubility in a melt or a solution containing a constituent element of a crystal to be grown as a component, and further having a seed crystal having substantially the same diameter as the crystal to be grown is brought into contact with the melt or the solution to form a melt. In growing a bulk crystal from a liquid or a solution, as a seed crystal substrate, the surface of the seed crystal substrate is not less than 2 ° with respect to a plane having a predetermined orientation and not more than half the angle at which the next lower-order plane appears. A substrate inclined by a predetermined angle is used.

【0010】図2には、基板表面が所定の方位の面に対
して所定角度θだけ傾いた種結晶基板12が模式的に示
されているが、その基板12の表面は、微視的には1原
子層のステップ12aと、平坦な原子層よりなるテラス
12bとにより階段状に形成されている。このように、
基板12の表面にステップ12aが存在することによ
り、核発生が起こり易くなるとともに、発生した核の面
方位は平面方向及び結晶育成方向(垂直方向)共に基板
12の影響を受けると考えられる。そのため、基板12
の表面で核が同時多発的に発生しても、それぞれの核の
面方位は一致し、同一の面が形成され易く、単結晶が成
長し易い。
FIG. 2 schematically shows a seed crystal substrate 12 in which the substrate surface is inclined by a predetermined angle θ with respect to a plane having a predetermined orientation, and the surface of the substrate 12 is microscopically shown. Are formed in a step-like manner by a step 12a of one atomic layer and a terrace 12b of a flat atomic layer. in this way,
The presence of the step 12a on the surface of the substrate 12 facilitates the generation of nuclei, and the plane orientation of the generated nuclei is considered to be affected by the substrate 12 in both the planar direction and the crystal growth direction (vertical direction). Therefore, the substrate 12
Even if nuclei occur simultaneously and multiple times on the surface, the plane orientation of each nucleus matches, the same plane is easily formed, and a single crystal grows easily.

【0011】この発明において、前記種結晶はサファイ
ア(酸化アルミニウム:Al2 3)でできており、該
サファイア基板の表面が(0001)面に対して2°以
上30°以下、(−1012)面に対して2°以上30
°以下、(1−123)面に対して2°以上30°以
下、または(11−20)面に対して2°以上45°以
下の範囲内の所定角度だけ傾いていてもよい(本明細書
中、ミラー指数の表記において−N(Nは自然数)は該
当する座標軸とマイナス方向で交差することを表す)。
ここで、サファイア基板の(0001)面、(−101
2)面、(1−123)面、または(11−20)面に
対する傾き角度が2°以上前記角度以下の範囲であるの
が妥当である理由は、2°未満では成長した結晶が多結
晶化してしまい、一方、各面に対して前記角度を超える
と所望の方位以外の面が成長してしまうからである。傾
き角度が2°未満の時に多結晶化する理由は、種結晶基
板12のテラス12bの長さ(傾き角度が2°のときテ
ラス12bの長さは30オングストロ−ム(22原子
層))が長くなり、単位面積あたりのステップ12aの
数が少なくなるため、複数箇所で同時多発的に発生した
核の面方位がステップ12aにより十分に制御されず、
同じ方位に揃わないためと考えられる。
In the present invention, the seed crystal is made of sapphire (aluminum oxide: Al 2 O 3 ), and the surface of the sapphire substrate is at least 2 ° and at most 30 ° with respect to the (0001) plane; 2 ° or more to the surface 30
° or less, 2 ° or more and 30 ° or less with respect to the (1-123) plane, or 2 ° or more and 45 ° or less with respect to the (11-20) plane (this specification). In the description, in the notation of the Miller index, -N (N is a natural number) indicates that the coordinate axis intersects the corresponding coordinate axis in the minus direction.
Here, the (0001) plane of the sapphire substrate, (−101)
2) It is appropriate that the inclination angle with respect to the (1-123) plane or the (11-20) plane is in the range of not less than 2 ° and not more than the above-mentioned angle. On the other hand, if the angle exceeds the above-mentioned angle with respect to each plane, a plane other than the desired orientation grows. The reason for polycrystallization when the tilt angle is less than 2 ° is that the length of the terrace 12b of the seed crystal substrate 12 (when the tilt angle is 2 °, the length of the terrace 12b is 30 angstroms (22 atomic layers)). Since the length becomes longer and the number of steps 12a per unit area decreases, the plane orientation of the nuclei simultaneously and frequently generated at a plurality of locations is not sufficiently controlled by the step 12a.
This is probably because they are not aligned in the same direction.

【0012】また、ZnTe単結晶、ZnSe単結晶、
CdTe単結晶、またはCdZnTe単結晶を成長させ
てもよい。その場合には、るつぼに、前記種結晶基板を
設置するとともに、溶媒として所定量のTeと溶質とし
て所定量のZnTe原料、溶媒として所定量のSeと溶
質として所定量のZnSe原料、溶媒として所定量のT
eと溶質として所定量のCdTe原料、または溶媒とし
て所定量のTeと溶質として所定量のCdZnTe原料
を入れ、それを気密容器中に封入してヒータにより加熱
して溶液とし、該気密容器を温度勾配下で徐々に冷却す
ることにより、該溶液中からZnTe単結晶、ZnSe
単結晶、CdTe単結晶、またはCdZnTe単結晶を
析出させるようにしてもよい。
Further, a ZnTe single crystal, a ZnSe single crystal,
A CdTe single crystal or a CdZnTe single crystal may be grown. In that case, the seed crystal substrate is placed in a crucible, a predetermined amount of Te as a solvent, a predetermined amount of ZnTe raw material as a solute, a predetermined amount of Se as a solvent, a predetermined amount of ZnSe raw material as a solute, and a predetermined amount of solvent as a solvent. Quantitative T
e and a predetermined amount of CdTe raw material as a solute, or a predetermined amount of Te as a solvent and a predetermined amount of CdZnTe raw material as a solute, sealed in an airtight container, heated by a heater to form a solution, and the airtight container was heated to a temperature. By gradually cooling under a gradient, a ZnTe single crystal, ZnSe
A single crystal, a CdTe single crystal, or a CdZnTe single crystal may be precipitated.

【0013】[0013]

【発明の実施の形態】本発明に係るバルク結晶の成長方
法の実施形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a bulk crystal growth method according to the present invention will be described.

【0014】この結晶成長方法は、種結晶として、例え
ば成長させる結晶と略同じ径で、かつ種結晶の表面が所
定の方位の面に対して2°以上、次の低次数面が出る角
度の半分以下の範囲内の所定角度だけ傾いた薄板状の基
板を用い、例えば図1に示すようなVB法や、例えば図
3に示すようなVGF法や、LEC法により、バルク結
晶を成長させるようにしたものである。さらには、種結
晶は、成長させる結晶の成長温度よりも高い融点を有す
るとともに、成長させる結晶と成分が異なり、かつ成長
させる結晶の構成元素を成分として含む融液または溶液
ヘの溶解度が小さいという特性を有しているものであ
る。ここで「次の低次数面が出る角度」とは、種結晶基
板の単結晶の所定の方位の面を基準としてある方向に傾
けていったとき、基準となる方向に次の低次数面が現れ
たときの角度である。例えば、サファイア(酸化アルミ
ニウム:Al2 3 )の場合、所定の方位の面が(00
01)面、(−1012)面、(1−123)面のとき
は60°、(11−20)面のときは90°となる。
In this crystal growth method, the seed crystal has, for example, a diameter substantially the same as that of the crystal to be grown, and a surface of the seed crystal having an angle of 2 ° or more with respect to a plane having a predetermined orientation, and an angle at which the next lower-order plane appears. Using a thin-plate substrate inclined by a predetermined angle within a range of half or less, a bulk crystal is grown by, for example, the VB method as shown in FIG. 1, the VGF method as shown in FIG. 3, or the LEC method. It was made. Further, the seed crystal has a melting point higher than the growth temperature of the crystal to be grown, has a different component from the crystal to be grown, and has a low solubility in a melt or a solution containing the constituent element of the crystal to be grown as a component. It has characteristics. Here, the “angle at which the next lower-order plane appears” means that when the single crystal of the seed crystal substrate is tilted in a certain direction with respect to a plane having a predetermined orientation as a reference, the next lower-order plane is oriented in a reference direction. The angle at which it appeared. For example, in the case of sapphire (aluminum oxide: Al 2 O 3 ), the plane having a predetermined orientation is (00).
The angle is 60 ° for the (01), (−1012), and (1-123) planes, and is 90 ° for the (11-20) plane.

【0015】具体的には、VB法の場合には、図1に示
すように、上述した構成の種結晶基板12をるつぼ10
の底に押さえ部材15により固定し、そのるつぼ10内
に例えば溶質となる化合物半導体原料とその原料を溶か
す溶媒とを入れ、それを気密容器である石英アンプル4
内に設置してそのアンプル4を真空封止し、それを垂直
型加熱炉内に設置してヒータ3によって加熱する。そし
て、るつぼ10内の化合物半導体原料と溶媒とが十分に
溶け合って溶液5が得られたら、ヒータ3ヘの給電量を
調整して生ぜしめた所定の炉内温度分布中を高温側から
低温側(図1中、上方から下方)に、アンプル4を徐々
に移動させることにより、種結晶12側から溶液5の上
方に向かって徐々に結晶を成長させる。このようにすれ
ば、容易にZnTe等のII−VI族化合物半導体のバルク
単結晶が得られる。
More specifically, in the case of the VB method, as shown in FIG.
The crucible 10 is filled with, for example, a compound semiconductor material to be a solute and a solvent for dissolving the material, and the crucible 10 is filled with the quartz ampoule 4 as an airtight container.
And the ampule 4 is vacuum-sealed and placed in a vertical heating furnace and heated by the heater 3. Then, when the compound semiconductor raw material and the solvent in the crucible 10 are sufficiently dissolved to obtain the solution 5, the power distribution to the heater 3 is adjusted to change the predetermined furnace temperature distribution generated from the high temperature side to the low temperature side. By gradually moving the ampoule 4 (from above to below in FIG. 1), the crystal is gradually grown from the seed crystal 12 side toward the upper side of the solution 5. In this way, a bulk single crystal of a II-VI compound semiconductor such as ZnTe can be easily obtained.

【0016】なお、るつぼ10内に化合物半導体原料と
溶媒を入れる代わりに、るつぼ10内に化合物半導体原
料を入れ、それをヒータ3により加熱融解して原料融液
とし、その原料融液を固化させるようにしてもよい。
Instead of putting the compound semiconductor raw material and the solvent in the crucible 10, the compound semiconductor raw material is put in the crucible 10, and the raw material melt is heated and melted by the heater 3 to solidify the raw material melt. You may do so.

【0017】また、VGF法の場合には、図3に示すよ
うに、上述した構成の種結晶基板12をるつぼ10の底
に押さえ部材15により固定し、そのるつぼ10内に化
合物半導体原料を入れる。そして、石英アンプル4のリ
ザーバ部4Bに所定量の蒸気圧制御用元素の単体14を
入れるとともに、るつぼ10を石英アンプル4の成長室
4A内に設置し、そのアンプル4を真空封止する。次い
で、その石英アンプル4を垂直型加熱炉内に設置してヒ
ータ3によって加熱する。そして、るつぼ10内の化合
物半導体原料が融解して原料融液5が得られたら、ヒー
タ3ヘの給電量を調整してるつぼ底から上方に向かうに
つれて高温となるような温度勾配を原料融液5中に設
け、その温度勾配を保持しつつ徐々に冷却して、種結晶
基板12側から原料融液5の上方に向かって固化させて
結晶を成長させる。
In the case of the VGF method, as shown in FIG. 3, the seed crystal substrate 12 having the above-described structure is fixed to the bottom of the crucible 10 by the pressing member 15, and the compound semiconductor raw material is put into the crucible 10. . Then, a predetermined amount of the element 14 for controlling the vapor pressure is put into the reservoir portion 4B of the quartz ampule 4, and the crucible 10 is set in the growth chamber 4A of the quartz ampule 4, and the ampule 4 is vacuum-sealed. Next, the quartz ampule 4 is set in a vertical heating furnace and heated by the heater 3. Then, when the compound semiconductor raw material in the crucible 10 is melted and the raw material melt 5 is obtained, the amount of power supply to the heater 3 is adjusted, and the temperature gradient is set such that the temperature becomes higher from the bottom of the crucible upward. 5 and gradually cooled while maintaining the temperature gradient, and solidified from the side of the seed crystal substrate 12 toward the upper part of the raw material melt 5 to grow crystals.

【0018】図3の例では、るつぼ10は、るつぼ本体
10Aの底板から下方に延びる放熱用のヒートシンク1
0Bを備えている。このヒートシンク10Bにより、種
結晶基板12を介して原料融液5中から伝わってきた熱
を効率良く放散することができ、さらに生産性が向上す
る。
In the example of FIG. 3, the crucible 10 is a heat sink 1 for heat radiation extending downward from the bottom plate of the crucible body 10A.
0B. With the heat sink 10B, the heat transmitted from the raw material melt 5 via the seed crystal substrate 12 can be efficiently dissipated, and the productivity is further improved.

【0019】なお、るつぼ10内に化合物半導体原料を
入れる代わりに、るつぼ10内に化合物半導体原料と溶
媒を入れ、それらをヒータ3により加熱して十分に溶解
させ、得られた溶液中から化合物半導体の単結晶を析出
させるようにしてもよい。そうすれば、原料融液からの
結晶成長よりも容易にZnTe等のII−VI族化合物半導
体のバルク単結晶が得られる。
Instead of putting the compound semiconductor raw material in the crucible 10, the compound semiconductor raw material and the solvent are put in the crucible 10, and they are heated by the heater 3 to be sufficiently dissolved. May be precipitated. By doing so, a bulk single crystal of a II-VI compound semiconductor such as ZnTe can be obtained more easily than crystal growth from the raw material melt.

【0020】ここで、原料融液(または溶液)5と接触
する部分の種結晶基板12の面積は、特に限定しない
が、好ましくは1cm2 以上であるのがよい。その理由
は、種結晶基板12の面積が1cm2 よりも小さいと、生
産性が悪化するからである。より好ましくは、種結晶基
板12は、原料融液(または溶液)5を貯留するるつぼ
10の底に丁度納まる大きさであるのがよい。そのよう
にすれば、るつぼ10の底の形状を平坦にでき、るつぼ
10の形状を単純化することができるからである。
Here, the area of the seed crystal substrate 12 at the portion in contact with the raw material melt (or solution) 5 is not particularly limited, but is preferably 1 cm 2 or more. The reason is that if the area of the seed crystal substrate 12 is smaller than 1 cm 2 , the productivity is deteriorated. More preferably, seed crystal substrate 12 should have a size that fits exactly at the bottom of crucible 10 storing raw material melt (or solution) 5. By doing so, the shape of the bottom of the crucible 10 can be made flat, and the shape of the crucible 10 can be simplified.

【0021】また、種結晶基板12の融点が結晶成長温
度よりも高く種付け時に溶けないため、種結晶基板12
は薄くてもよく、特に限定しないが、その厚さは好まし
くは5mm以下、より好ましくは1mm以下であるのがよ
い。その理由は、むやみに厚くしても経済性が悪化する
だけであるのと、良好な熱伝導性を保ち原料融液(また
は溶液)5の熱を外に逃がすには5mm以下、より好まし
くは1mm以下であるのがよいからである。このように薄
い種結晶基板12を用いて原料融液(または溶液)5中
の熱を効率良く外に逃がすことによって、成長速度を大
きくすることができ、生産性が向上する。
Since the melting point of the seed crystal substrate 12 is higher than the crystal growth temperature and is not melted during seeding, the seed crystal substrate 12
May be thin, and is not particularly limited, but the thickness is preferably 5 mm or less, more preferably 1 mm or less. The reason is that even if the thickness is excessively increased, the economic efficiency is only deteriorated. In addition, in order to release the heat of the raw material melt (or solution) 5 while maintaining good thermal conductivity, 5 mm or less, more preferably This is because it is better to be 1 mm or less. By efficiently radiating the heat in the raw material melt (or solution) 5 to the outside using the thin seed crystal substrate 12, the growth rate can be increased and the productivity is improved.

【0022】上記各実施形態によれば、垂直ブリッジマ
ン法や垂直グラジェントフリージング法により結晶成長
させるにあたって、種結晶基板12の表面が所定の方位
の面に対して2°以上、次の低次数面が出る角度の半分
以下の範囲内の所定角度だけ傾いた基板を用いているた
め、核発生が起こり易くなるとともに、種結晶基板12
の影響により、同時多発的に発生したそれぞれの核の面
方位が一致し、同一の面が形成され易く、単結晶が成長
し易い。従って、従来よりも単結晶の歩留まりが向上す
る。
According to each of the above embodiments, when the crystal is grown by the vertical Bridgman method or the vertical gradient freezing method, the surface of the seed crystal substrate 12 is at least 2 ° with respect to the plane having a predetermined orientation, and the next lower order. Since the substrate is tilted by a predetermined angle within a range of not more than half the angle at which the surface emerges, nucleation is likely to occur, and the seed crystal substrate 12
, The nuclei generated simultaneously and simultaneously have the same plane orientation, the same plane is easily formed, and a single crystal is easily grown. Therefore, the yield of the single crystal is improved as compared with the conventional case.

【0023】なお、液体封止チョクラルスキー(LE
C)法やチョクラルスキー(CZ)法においても、上記
種結晶基板12を用いることができる。
Note that a liquid-sealed Czochralski (LE)
The seed crystal substrate 12 can also be used in the C) method or the Czochralski (CZ) method.

【0024】[0024]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、本発明は、以
下の各実施例により何ら制限されるものではない。 (実施例1)第1図に示す加熱炉を用いて、Teを溶媒
としたVB法によりZnTeの単結晶を成長させた。
EXAMPLES The features of the present invention will be clarified below with reference to examples and comparative examples. The present invention is not limited by the following embodiments. Example 1 Using a heating furnace shown in FIG. 1, a ZnTe single crystal was grown by a VB method using Te as a solvent.

【0025】まず、グラファイト製のるつぼの底に、基
板表面がサファイアの(0001)面(C面)に対して
M方向に10°だけ傾いたサファイアよりなる厚さ5mm
以下で直径2インチの種結晶基板(サファイア基板)を
置き、それを押さえ部材により固定した。そして、るつ
ぼ内に溶媒として480gのTeと、溶質として500
gのZnTe多結晶原料(結晶育成温度1100℃にお
いて480gのTe溶媒に十分に溶解する量である。)
を充填し、そのるつぼを石英アンプル中に2×10-6To
rrの真空中で封入した。
First, a thickness of 5 mm made of sapphire whose substrate surface is inclined by 10 ° in the M direction with respect to the (0001) plane (C plane) of sapphire is placed on the bottom of a graphite crucible.
In the following, a seed crystal substrate (sapphire substrate) having a diameter of 2 inches was placed and fixed by a holding member. Then, 480 g of Te as a solvent and 500 as a solute were placed in a crucible.
g of ZnTe polycrystalline raw material (a sufficient amount to dissolve in 480 g of Te solvent at a crystal growth temperature of 1100 ° C.)
And place the crucible in a quartz ampoule at 2 × 10 -6 To
Sealed in rr vacuum.

【0026】次いで、その石英アンプルを結晶育成炉内
に設置した後、ヒータにより加熱して、るつぼ底の温度
が1165℃、溶媒と溶質が溶け合ってできる溶液の上
面の温度が1150℃となるように炉内に温度勾配を設
け、その状態で2日間保持して十分に溶質を溶解させ
た。このように、るつぼ底の温度を溶液の上面の温度よ
りも高く設定することにより、溶液中に対流が起こり、
それによって溶質の溶解が促進されるとともに、種結晶
基板の表面が対流によって洗浄されて清浄な面となる。
Next, the quartz ampoule is placed in a crystal growing furnace and then heated by a heater so that the temperature at the bottom of the crucible becomes 1165 ° C. and the temperature at the upper surface of the solution formed by melting the solvent and the solute becomes 1150 ° C. A temperature gradient was provided in the furnace, and the state was maintained for 2 days to sufficiently dissolve the solute. Thus, by setting the temperature of the crucible bottom higher than the temperature of the upper surface of the solution, convection occurs in the solution,
Thereby, dissolution of the solute is promoted, and the surface of the seed crystal substrate is washed by convection to become a clean surface.

【0027】その後、ヒータにより結晶育成炉内の温度
分布を変更して、炉内下方に向かって10℃/cmの温度
勾配でもって温度が低くなるようにした。その温度勾配
中を、石英アンプルを2cm/日の速度で低温側に移動さ
せて結晶育成を行なった。得られた結晶は(100)方
向に成長したZnTe単結晶であり、(100)方向に
成長したZnTe単結晶の歩留まりは70〜80%であ
った。 (実施例2)種結晶基板として、基板表面がサファイア
の(0001)面(C面)に対してM方向に2°だけ傾
いたサファイア基板を用いた以外は、上記実施例1と同
じ条件で結晶成長を行った。得られた結晶は(100)
方向に成長したZnTe単結晶であり、(100)方向
に成長したZnTe単結晶の歩留まりは70〜80%で
あった。 (実施例3)種結晶基板として、基板表面がサファイア
の(0001)面(C面)に対してM方向に30°だけ
傾いたサファイア基板を用いた以外は、上記実施例1と
同じ条件で結晶成長を行った。得られた結晶は(10
0)方向に成長したZnTe単結晶であり、(100)
方向に成長したZnTe単結晶の歩留まりは70〜80
%であった。 (比較例1)種結晶基板として、基板表面がサファイア
の(0001)面(C面)に対してM方向に1°だけ傾
いたサファイア基板を用いた以外は、上記実施例1と同
じ条件で結晶成長を行った。得られた結晶を観察したと
ころ、ZnTe単結晶の歩留まりは50〜60%、(1
00)方向に成長したZnTe単結晶の歩留まりは45
〜55%であった。ZnTe単結晶とならなかったもの
いくつかは、種結晶基板の中央部から2つの大きな粒界
が発生していた。このように粒界が発生した原因は、種
結晶基板のテラス(図2参照)の長さが長くなり、単位
面積あたりのステップ(図2参照)の数の割合が小さい
ので、ステップ(図2参照)による面方位の制御が十分
でなく、2つの面方位の異なる核が発生して成長したた
めと考えられる。 (比較例2)種結晶基板として、基板表面がサファイア
の(0001)面(C面)に対してM方向に40°だけ
傾いたサファイア基板を用いた以外は、上記実施例1と
同じ条件で結晶成長を行った。ZnTe単結晶は得られ
たが、その成長方向は(100)方向とは異なってい
た。尚、ZnTe単結晶の歩留まりは70〜80%であ
った。 (比較例3)種結晶基板として、基板表面がサファイア
の(0001)面(C面)であるサファイア基板を用い
た以外は、上記実施例1と同じ条件で結晶成長を行っ
た。得られた結晶を観察したところ、ZnTe単結晶の
歩留まりは50〜60%、(100)方向に成長したZ
nTe単結晶の歩留まりは45〜55%であった。 (比較例4)種結晶基板として、基板表面がサファイア
の(0001)面(C面)であるサファイア基板を用
い、るつぼの底に5°傾けて載置した以外は、上記実施
例1と同じ条件で結晶成長を行った。得られた結晶を観
察したところ、ZnTe単結晶の歩留まりは60〜70
%であったが、(100)方向に成長したZnTe単結
晶の歩留まりは55〜65%であった。
Thereafter, the temperature distribution in the crystal growing furnace was changed by the heater so that the temperature was lowered by a temperature gradient of 10 ° C./cm downward in the furnace. During the temperature gradient, the quartz ampoule was moved to a low temperature side at a speed of 2 cm / day to grow crystals. The obtained crystal was a ZnTe single crystal grown in the (100) direction, and the yield of the ZnTe single crystal grown in the (100) direction was 70 to 80%. (Example 2) A sapphire substrate whose surface was inclined by 2 ° in the M direction with respect to the (0001) plane (C plane) of sapphire was used as a seed crystal substrate under the same conditions as in Example 1 above. Crystal growth was performed. The obtained crystal is (100)
The yield of the ZnTe single crystal grown in the (100) direction was 70 to 80%. (Example 3) A sapphire substrate whose surface is inclined by 30 ° in the M direction with respect to the (0001) plane (C plane) of sapphire was used as a seed crystal substrate under the same conditions as in Example 1 above. Crystal growth was performed. The obtained crystal is (10
A ZnTe single crystal grown in the (0) direction;
The yield of ZnTe single crystal grown in the direction is 70-80.
%Met. (Comparative Example 1) A sapphire substrate whose surface was inclined by 1 ° in the M direction with respect to the (0001) plane (C plane) of sapphire was used as a seed crystal substrate under the same conditions as in Example 1 above. Crystal growth was performed. Observation of the obtained crystals showed that the yield of ZnTe single crystal was 50-60%, (1
The yield of ZnTe single crystal grown in the (00) direction is 45
5555%. In some of the ZnTe single crystals, two large grain boundaries were generated from the center of the seed crystal substrate. The cause of the generation of the grain boundary is that the terrace (see FIG. 2) of the seed crystal substrate becomes long and the ratio of the number of steps (see FIG. 2) per unit area is small. It is probable that the control of the plane orientation was not sufficient, and nuclei having two different plane directions were generated and grown. (Comparative Example 2) A sapphire substrate whose substrate surface was inclined by 40 ° in the M direction with respect to the (0001) plane (C plane) of sapphire was used as a seed crystal substrate under the same conditions as in Example 1 above. Crystal growth was performed. Although a ZnTe single crystal was obtained, its growth direction was different from the (100) direction. The yield of the ZnTe single crystal was 70-80%. Comparative Example 3 Crystal growth was performed under the same conditions as in Example 1 except that a sapphire substrate having a (0001) plane (C plane) of sapphire was used as a seed crystal substrate. Observation of the obtained crystal showed that the yield of ZnTe single crystal was 50 to 60%, and the Z
The yield of nTe single crystal was 45-55%. (Comparative Example 4) Same as Example 1 except that a sapphire substrate having a (0001) plane (C plane) of sapphire substrate surface was used as a seed crystal substrate and placed at a bottom of the crucible at an angle of 5 °. Crystal growth was performed under the conditions. Observation of the obtained crystal showed that the yield of ZnTe single crystal was 60-70.
%, But the yield of ZnTe single crystal grown in the (100) direction was 55 to 65%.

【0028】なお、上記実施例ではZnTe単結晶を成
長させる例を挙げたが、これに限らず、ZnSe単結
晶、CdTe単結晶、またはCdZnTe単結晶を成長
させる場合に適用可能である。その場合には、ZnSe
単結晶の成長の場合は溶媒として所定量のSeと溶質と
して所定量のZnSe原料、CdTe単結晶の成長のと
きは溶媒として所定量のTeと溶質として所定量のCd
Te原料、CdZnTe単結晶を成長させるときは溶媒
として所定量のTeと溶質として所定量のCdZnTe
原料を用い、成長させることが可能である。
In the above embodiment, an example in which a ZnTe single crystal is grown has been described. However, the present invention is not limited to this, and the present invention is applicable to a case where a ZnSe single crystal, a CdTe single crystal, or a CdZnTe single crystal is grown. In that case, ZnSe
In the case of growing a single crystal, a predetermined amount of Se as a solvent and a predetermined amount of ZnSe raw material as a solute, and in the case of growing a CdTe single crystal, a predetermined amount of Te as a solvent and a predetermined amount of Cd as a solute.
When growing a Te raw material or a CdZnTe single crystal, a predetermined amount of Te is used as a solvent and a predetermined amount of CdZnTe is used as a solute.
It is possible to grow using raw materials.

【0029】なお、上記実施例ではVB法による単結晶
を成長させる例を挙げたが、VGF法やLEC法やCZ
法による単結晶の成長にも適用可能である。
In the above embodiment, an example of growing a single crystal by the VB method has been described. However, the VGF method, the LEC method, the CZ
It is also applicable to single crystal growth by the method.

【0030】[0030]

【発明の効果】本発明によれば、成長させる結晶の成長
温度よりも高い融点を有するとともに、成長させる結晶
と成分が異なり、かつ成長させる結晶の構成元素を成分
として含む融液または溶液ヘの溶解度が小さいという特
性を有し、さらに成長させる結晶と略同じ径の種結晶
を、前記融液または溶液に接触させて該融液または溶液
からバルク結晶を成長させるにあたって、種結晶基板と
して、該種結晶基板の表面が所定の方位の面に対して2
°以上、次の低次数面が出る角度の半分以下の範囲内の
所定角度だけ傾いた基板を用いるようにしたため、核発
生が起こり易くなるとともに、種結晶基板の影響によ
り、同時多発的に発生したそれぞれの核の面方位が一致
し易くなるので、同一の面が形成され易く、従来よりも
単結晶の歩留まりが向上する。
According to the present invention, a melt or solution having a melting point higher than the growth temperature of a crystal to be grown, a component different from that of the crystal to be grown, and containing a constituent element of the crystal to be grown as a component is used. The seed crystal having the property of low solubility and having the same diameter as the crystal to be grown is brought into contact with the melt or the solution to grow the bulk crystal from the melt or the solution. The surface of the seed crystal substrate is 2
The substrate is inclined at a predetermined angle within the range of not less than ° and half the angle at which the next lower-order plane emerges, so that nucleation is likely to occur and simultaneous occurrence occurs due to the influence of the seed crystal substrate. Since the plane orientations of the respective nuclei easily match, the same plane is easily formed, and the yield of single crystals is improved as compared with the conventional case.

【0031】また、本発明によれば、種結晶がサファイ
ア(酸化アルミニウム:Al2 3)でできており、そ
のサファイア基板の表面が(0001)面に対して2°
以上、次の低次数面が出る角度の半分以下の範囲内の所
定角度だけ傾いているため、成長した結晶が多結晶化す
ることなく所望の面方位の単結晶が成長する。
Further, according to the present invention, the seed crystal is made of sapphire (aluminum oxide: Al 2 O 3 ), and the surface of the sapphire substrate is 2 ° with respect to the (0001) plane.
As described above, since the crystal is inclined by a predetermined angle within a range equal to or less than half of the angle at which the next lower-order plane appears, a single crystal having a desired plane orientation grows without polycrystallizing the grown crystal.

【0032】さらに、本発明によれば、歩留まりよくZ
nTe単結晶、ZnSe単結晶、CdTe単結晶、また
はCdZnTe単結晶が得られる。その際、るつぼに、
種結晶基板を設置するとともに、溶媒として所定量のT
eと、溶質として所定量のZnTe原料、溶媒として所
定量のSeと溶質として所定量のZnSe原料、溶媒と
して所定量のTeと溶質として所定量のCdTe原料、
溶媒として所定量のTeと溶質として所定量のCdZn
Te原料を入れ、それを気密容器中に封入してヒータに
より加熱して溶液とし、その気密容器を温度勾配下で徐
々に冷却することにより、該溶液中からZnTe単結
晶、ZnSe単結晶、CdTe単結晶、またはCdZn
Te単結晶を析出させるようにしたため、容易にZnT
e、ZnSe、CdTe、またはCdZnTeのバルク
単結晶が得られる。
Furthermore, according to the present invention, Z
An nTe single crystal, a ZnSe single crystal, a CdTe single crystal, or a CdZnTe single crystal is obtained. At that time, in the crucible,
A seed crystal substrate is installed, and a predetermined amount of T
e, a predetermined amount of ZnTe raw material as a solute, a predetermined amount of Se as a solvent and a predetermined amount of ZnSe raw material as a solute, a predetermined amount of Te as a solvent and a predetermined amount of CdTe raw material as a solute,
A predetermined amount of Te as a solvent and a predetermined amount of CdZn as a solute
A Te raw material is charged, sealed in an airtight container, heated by a heater to form a solution, and the airtight container is gradually cooled down under a temperature gradient, whereby ZnTe single crystal, ZnSe single crystal, CdTe Single crystal or CdZn
Because a Te single crystal is deposited, ZnT
A bulk single crystal of e, ZnSe, CdTe, or CdZnTe is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を垂直ブリッジマン法に適用した一例を
示す該略図である。
FIG. 1 is a schematic view showing an example in which the present invention is applied to a vertical Bridgman method.

【図2】本発明に係る結晶成長方法において使用される
種結晶基板を模式的に示す部分拡大縦断面図である。
FIG. 2 is a partially enlarged longitudinal sectional view schematically showing a seed crystal substrate used in the crystal growth method according to the present invention.

【図3】本発明を垂直グラジェントフリージング法に適
用した一例を示す該略図である。
FIG. 3 is a schematic view showing an example in which the present invention is applied to a vertical gradient freezing method.

【図4】従来の垂直グラジェントフリージング法による
結晶成長を示す概略図である。
FIG. 4 is a schematic view showing crystal growth by a conventional vertical gradient freezing method.

【符号の説明】[Explanation of symbols]

3 ヒータ 4 気密容器(石英アンプル) 5 原料融液または溶液 12 種結晶基板 3 Heater 4 Airtight container (quartz ampoule) 5 Raw material melt or solution 12 Seed crystal substrate

フロントページの続き (51)Int.Cl.6 識別記号 FI C30B 29/50 C30B 29/50 Continued on the front page (51) Int.Cl. 6 Identification code FI C30B 29/50 C30B 29/50

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 成長させる結晶の成長温度よりも高い融
点を有するとともに、成長させる結晶と成分が異なり、
かつ成長させる結晶の構成元素を成分として含む融液ま
たは溶液ヘの溶解度が小さいという特性を有し、さらに
成長させる結晶と略同じ径の種結晶を、前記融液または
溶液に接触させて該融液または溶液からバルク結晶を成
長させるにあたって、種結晶基板として、該種結晶基板
の表面が所定の方位の面に対して2°以上、次の低次数
面が出る角度の半分以下の範囲内の所定角度だけ傾いた
基板を用いることを特徴とするバルク結晶の成長方法。
1. A crystal having a melting point higher than a growth temperature of a crystal to be grown, and having a component different from that of the crystal to be grown,
In addition, a seed crystal having a property of low solubility in a melt or a solution containing a constituent element of a crystal to be grown as a component, and further having a seed crystal having substantially the same diameter as the crystal to be grown is brought into contact with the melt or the solution to form a melt. In growing a bulk crystal from a liquid or a solution, as a seed crystal substrate, the surface of the seed crystal substrate is not less than 2 ° with respect to a plane having a predetermined orientation and not more than half the angle at which the next lower-order plane appears. A method for growing a bulk crystal, comprising using a substrate inclined at a predetermined angle.
【請求項2】 前記種結晶はサファイアでできており、
該サファイア基板の表面が(0001)面に対して2°
以上30°以下、(−1012)面に対して2°以上3
0°以下、(1−123)面に対して2°以上30°以
下、または(11−20)面に対して2°以上45°以
下の範囲内の所定角度だけ傾いている(ただし、ミラー
指数の表記において−N(Nは自然数)は該当する座標
軸とマイナス方向で交差することを表す)ことを特徴と
する請求項1記載のバルク結晶の成長方法。
2. The seed crystal is made of sapphire,
The surface of the sapphire substrate is 2 ° with respect to the (0001) plane.
Not less than 30 ° and not less than 2 ° and not more than 3 with respect to the (-1012) plane.
0 ° or less, 2 ° to 30 ° with respect to the (1-123) plane, or 2 ° to 45 ° with respect to the (11-20) plane. 2. The method of growing a bulk crystal according to claim 1, wherein -N (N is a natural number) indicates that the index intersects the corresponding coordinate axis in a negative direction in the notation of the index.
【請求項3】 ZnTe単結晶、ZnSe単結晶、Cd
Te単結晶、またはCdZnTe単結晶を成長させるこ
とを特徴とする請求項1または2記載のバルク結晶の成
長方法。
3. A ZnTe single crystal, a ZnSe single crystal, Cd
3. The method of growing a bulk crystal according to claim 1, wherein a single crystal of Te or a single crystal of CdZnTe is grown.
【請求項4】 るつぼに、前記種結晶基板を設置すると
ともに、溶媒として所定量のTeと溶質として所定量の
ZnTe原料、溶媒として所定量のSeと溶質として所
定量のZnSe原料、溶媒として所定量のTeと溶質と
して所定量のCdTe原料、または溶媒として所定量の
Teと溶質として所定量のCdZnTe原料を入れ、そ
れを気密容器中に封入してヒータにより加熱して溶液と
し、該気密容器を温度勾配下で徐々に冷却することによ
り、該溶液中からZnTe単結晶を析出させることを特
徴とする請求項3記載のバルク結晶の成長方法。
4. A seed crystal substrate is placed in a crucible, a predetermined amount of Te as a solvent, a predetermined amount of ZnTe as a solute, a predetermined amount of Se as a solvent, a predetermined amount of ZnSe as a solute, and a predetermined amount of solvent as a solvent. A fixed amount of Te and a predetermined amount of CdTe raw material as a solute, or a predetermined amount of Te as a solvent and a predetermined amount of CdZnTe raw material as a solvent are charged, sealed in an airtight container and heated by a heater to form a solution. 4. The method of growing a bulk crystal according to claim 3, wherein a ZnTe single crystal is precipitated from the solution by gradually cooling the solution under a temperature gradient.
JP1273297A 1997-01-27 1997-01-27 Method for growing bulk crystal Pending JPH10212192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273297A JPH10212192A (en) 1997-01-27 1997-01-27 Method for growing bulk crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273297A JPH10212192A (en) 1997-01-27 1997-01-27 Method for growing bulk crystal

Publications (1)

Publication Number Publication Date
JPH10212192A true JPH10212192A (en) 1998-08-11

Family

ID=11813620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273297A Pending JPH10212192A (en) 1997-01-27 1997-01-27 Method for growing bulk crystal

Country Status (1)

Country Link
JP (1) JPH10212192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100900A (en) * 2006-09-07 2008-05-01 Commiss Energ Atom Method for eliminating precipitate in group ii-iv semiconductor material by annealing
CN108642558A (en) * 2018-05-23 2018-10-12 天津大学 Ring ladder pedestal and system for organic crystal spontaneous nucleation growth
AT524311A4 (en) * 2020-12-29 2022-05-15 Fametec Gmbh Apparatus for growing an artificially produced sapphire crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100900A (en) * 2006-09-07 2008-05-01 Commiss Energ Atom Method for eliminating precipitate in group ii-iv semiconductor material by annealing
CN108642558A (en) * 2018-05-23 2018-10-12 天津大学 Ring ladder pedestal and system for organic crystal spontaneous nucleation growth
CN108642558B (en) * 2018-05-23 2023-12-22 天津大学 Annular ladder base and system for spontaneous nucleation growth of organic crystals
AT524311A4 (en) * 2020-12-29 2022-05-15 Fametec Gmbh Apparatus for growing an artificially produced sapphire crystal
AT524311B1 (en) * 2020-12-29 2022-05-15 Fametec Gmbh Apparatus for growing an artificially produced sapphire crystal

Similar Documents

Publication Publication Date Title
JP3343615B2 (en) Bulk crystal growth method
TW201109483A (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP3806791B2 (en) Method for producing compound semiconductor single crystal
EP1114884B1 (en) Process for producing compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH10259100A (en) Production of garium-arsenic single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2004203721A (en) Apparatus and method for growing single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2004345888A (en) Production method for compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPH10338591A (en) Production of compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH11322489A (en) Production of semiconductor single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal