JP2000327496A - Production of inp single crystal - Google Patents

Production of inp single crystal

Info

Publication number
JP2000327496A
JP2000327496A JP11138322A JP13832299A JP2000327496A JP 2000327496 A JP2000327496 A JP 2000327496A JP 11138322 A JP11138322 A JP 11138322A JP 13832299 A JP13832299 A JP 13832299A JP 2000327496 A JP2000327496 A JP 2000327496A
Authority
JP
Japan
Prior art keywords
inp
raw material
single crystal
crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138322A
Other languages
Japanese (ja)
Inventor
Takashi Kainosho
敬司 甲斐荘
Toshiaki Asahi
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11138322A priority Critical patent/JP2000327496A/en
Publication of JP2000327496A publication Critical patent/JP2000327496A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing an InP single crystal of a high yield by suppressing the generation defects, such as polycrystals and twins, when growing the InP single crystal, thereby enhancing a single crystallization rate. SOLUTION: A crystalline body of InP having an atomic composition ratio In/InP of In and P of >=0.490 to <0.500 is used as raw material. More specifically, a crucible 1 containing the InP crystalline body having the composition described above as the raw material is installed in heating furnaces 6, 8 where the raw material heated to above its melting point and is melted and, thereafter, the raw material melt 2 is gradually cooled, by which the InP single crystal is grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、InP化合物半導体
単結晶の製造方法に係り、特に、耐火性ルツボに収容し
た原料融液を徐々に冷却してInP単結晶を育成する方法
に適用して有用な技術に関する。
The present invention relates to a method for producing an InP compound semiconductor single crystal, and more particularly to a method for growing an InP single crystal by gradually cooling a raw material melt contained in a refractory crucible. Regarding useful techniques.

【0002】[0002]

【従来の技術】一般に、GaP、GaAs、InP等のIII―V族
化合物半導体は、融点付近で高い蒸気圧を有するため
に、原料融液上をBO等からなる液体封止剤層で覆う
液体封止法により工業的に製造されており、なかでも、
液体封止チョクラルスキー法(LEC法)が広く用いられ
ている。LEC法は、結晶の成長とともに結晶を引上げて
いく方法であり、種付けにより結晶方位が制御可能で高
純度結晶を得やすいという長所がある。しかし、結晶成
長時の融液中の温度勾配が大きいため、結晶にかかる熱
応力が大きくなり転位密度が高くなってしまい、このよ
うな転位密度の高い化合物半導体単結晶を用いた半導体
レーザやフォトダイオードにおいては、電気的な特性が
低下してしまうという短所がある。
2. Description of the Related Art In general, III-V compound semiconductors such as GaP, GaAs, and InP have a high vapor pressure near the melting point. Therefore, a liquid sealant layer made of B 2 O 3 or the like is formed on a raw material melt. It is manufactured industrially by the liquid sealing method covered with, especially,
The liquid-sealed Czochralski method (LEC method) is widely used. The LEC method is a method in which the crystal is pulled up as the crystal grows, and has the advantage that the crystal orientation can be controlled by seeding and a high-purity crystal can be easily obtained. However, since the temperature gradient in the melt during the crystal growth is large, the thermal stress applied to the crystal increases and the dislocation density increases, so that a semiconductor laser or photo diode using such a compound semiconductor single crystal having a high dislocation density can be used. Diodes have the disadvantage that their electrical characteristics are degraded.

【0003】これに対し、垂直ブリッジマン法(VB法)
や垂直グラジエントフリーズ法(VGF法)は、耐火性ル
ツボ中で原料融液を徐々に冷却して結晶成長を行うた
め、結晶成長時の融液中の温度勾配が数℃/cm〜数十℃
/cmであってLEC法に比ベ1桁以上小さいため、結晶に
かかる熱応力が小さくなり転位密度を低く抑えることが
できるという利点を有している。
On the other hand, the vertical Bridgman method (VB method)
In the vertical gradient freeze method (VGF method), the temperature gradient in the melt during crystal growth is from several degrees Celsius / cm to several tens of degrees Celsius because crystal growth is performed by gradually cooling the raw material melt in a refractory crucible.
/ Cm, which is one order of magnitude smaller than that of the LEC method, and therefore has the advantage that the thermal stress applied to the crystal is reduced and the dislocation density can be kept low.

【0004】このVGF法について、図1に結晶成長装置
を示して説明する。図1に示す結晶成長装置は、原料融
液2を収納するpBN製のルツボ1と、ルツボ1を支持す
るグラファイト製のルツボ支持台3と、ルツボ1および
ルツボ支持台3を収納する石英アンプル5と、石英アン
プルを密閉する石英キャップ4と、原料融液を加熱する
円筒形のヒータ6と高圧容器8からなる加熱炉とで構成
されており、高圧容器8内は密封されている。また、石
英アンプル側部に温度測定用の熱電対7が設置されてお
り、ルツボ近辺の温度が測定できるようになっている。
VGF法は、このような結晶成長装置を用いて、結晶中の
上下方向の温度勾配を制御しながら、ヒータ6を調節し
て徐々に降温して、ルツボ1の下方から上方に結晶を成
長させる方法である。
The VGF method will be described with reference to FIG. 1 showing a crystal growth apparatus. A crystal growing apparatus shown in FIG. , A quartz cap 4 for sealing the quartz ampule, and a heating furnace comprising a cylindrical heater 6 for heating the raw material melt and a high-pressure vessel 8, and the inside of the high-pressure vessel 8 is sealed. A thermocouple 7 for temperature measurement is provided on the side of the quartz ampule so that the temperature near the crucible can be measured.
In the VGF method, by using such a crystal growth apparatus, while controlling the temperature gradient in the vertical direction in the crystal, the heater 6 is adjusted to gradually lower the temperature and grow the crystal from below the crucible 1 to above. Is the way.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
VGF法では、原料の収納されたルツボを石英アンプル内
に設置して密閉され、この石英アンプルを加熱炉内に設
置して加熱されるため、石英アンプル内のリン蒸気分圧
と原料融液の分解圧が平衡するまで原料融液からリンが
蒸発してしまい、常に原料融液の原子組成比In/InPは
0.500以上でIn過剰となっていた。このように、原
料融液の原子組成比にずれが生じることにより、結晶成
長中に組成的過冷却が起こってしまい、これが原因で多
結晶や双晶などが発生していた。その結果、InP単結晶
化歩留まりを低下させることが多かった。
SUMMARY OF THE INVENTION However, the conventional
In the VGF method, the crucible containing the raw material is placed in a quartz ampule and hermetically sealed, and this quartz ampule is placed in a heating furnace and heated, so that the partial pressure of phosphorus vapor in the quartz ampule and the raw material melt Phosphorus evaporates from the raw material melt until the decomposition pressure equilibrates, and the raw material melt always has an atomic composition ratio In / InP of 0.500 or more and an excess of In. As described above, a shift in the atomic composition ratio of the raw material melt causes compositional supercooling during crystal growth, and as a result, polycrystals, twins, and the like have been generated. As a result, the InP single crystallization yield was often reduced.

【0006】本発明は、このような問題に鑑みてなされ
たもので、その目的は、結晶の単結晶化率を高め、歩留
まりが高いInP単結晶の製造方法を提供することであ
る。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for producing an InP single crystal having a high yield and a high yield of single crystal.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、InとPの原子組成比In/InPが0.490
以上、0.500未満であるInPの結晶体を原料として
用いるようにしたものである。具体的には、VGF法など
のように、上記組成のInP結晶体を原料として収納した
ルツボを加熱炉内に設置して、融点以上に加熱して原料
を溶融させた後、その原料融液を徐々に冷却してInP単
結晶を成長させるようにしたものである。上記組成のIn
P結晶体を原料とすれば、加熱中にリンが蒸発するにつ
れて原料融液中のリンが減少し、最初0.490以上
0.500未満であった原料融液の原子組成比In/InP
は0.500(化学量論的組成:Stoichiometric comp
osition)に近づいていき、リン蒸気圧と原料融液の分
解圧が平衡した状態で、原料融液の原子組成比In/InP
と化学量論的組成とのずれがほとんど無くなるため、多
結晶や双晶が発生するのを防ぐことができる。さらに、
上記原料を収納したルツボは密閉型容器内に封入され、
該密閉型容器が加熱炉内に設置されるようにすることに
より、原料融液からリンが蒸発するのを制限することが
でき、原料融液の原子組成比In/InPにずれが生じるの
を効率よく抑えることができる。
According to the present invention, in order to solve the above problems, the atomic composition ratio of In to P, In / InP, is 0.490.
As described above, the InP crystal having a size of less than 0.500 is used as a raw material. Specifically, as in the VGF method, a crucible containing an InP crystal having the above composition as a raw material is placed in a heating furnace, and heated to a temperature equal to or higher than the melting point to melt the raw material. Is gradually cooled to grow an InP single crystal. In the above composition
When the P crystal is used as a raw material, the phosphorus in the raw material melt decreases as the phosphorus evaporates during heating, and the atomic composition ratio In / InP of the raw material melt was initially 0.490 or more and less than 0.500.
Is 0.500 (stoichiometric composition: Stoichiometric comp
osition), and with the phosphorus vapor pressure and the decomposition pressure of the raw material melt in equilibrium, the atomic composition ratio of the raw material melt In / InP
And the stoichiometric composition is hardly deviated, so that generation of polycrystals and twins can be prevented. further,
The crucible containing the above raw materials is sealed in a closed container,
By setting the closed type container in the heating furnace, it is possible to restrict evaporation of phosphorus from the raw material melt, and to prevent a shift in the atomic composition ratio In / InP of the raw material melt. It can be suppressed efficiently.

【0008】以下に、本発明者等が本発明に到るまでの
研究経過を説明する。
[0008] The following describes the progress of the research by the present inventors before reaching the present invention.

【0009】InPの単結晶を育成する際、InPは加熱する
ことによってリンが蒸発しやすくなり、融液状態では3
0気圧前後の蒸気圧を有する。このため、一般にLEC法
ではB 等からなる液体封止剤で覆い、高圧ガス雰
囲気で育成している。
When growing a single crystal of InP, the InP is heated.
This makes it easier for phosphorus to evaporate.
It has a vapor pressure around 0 atm. For this reason, generally the LEC method
Then B 203Cover with a liquid sealant consisting of
It is raised in the atmosphere.

【0010】一方、VGF法では石英アンプルに原料融液
を封止して単結晶を育成するため、アンプル内のリン蒸
気分圧と原料融液の分解圧が平衡するまで原料融液から
リンが蒸発してしまう。そのため、常に原料融液の原子
組成比In/InPは0.500以上でIn過剰となってい
る。この原料融液中の原子組成のずれにより、結晶育成
時に組成的過冷却がおこり、多結晶や双晶などが発生す
ることが判った。そこで、本発明者らはInP単結晶を育
成するのに原子組成比In/InPが0.500未満である
リン過剰InPの結晶体を原料として用いることを検討し
た。
On the other hand, in the VGF method, a single crystal is grown by sealing the raw material melt in a quartz ampoule. Therefore, phosphorus is released from the raw material melt until the partial pressure of phosphorus vapor in the ampoule and the decomposition pressure of the raw material melt are balanced. Will evaporate. Therefore, the atomic composition ratio In / InP of the raw material melt is always 0.500 or more, and there is an excess of In. It has been found that due to the deviation of the atomic composition in the raw material melt, compositional supercooling occurs during crystal growth, and polycrystals, twins, and the like are generated. Thus, the present inventors have studied the use of a phosphorus-rich InP crystal having an atomic composition ratio In / InP of less than 0.500 as a raw material for growing an InP single crystal.

【0011】一般に、InP多結晶原料はHB法で製造され
ており、その原子組成比In/InPは0.500(化学量
論的組成)又は0.500以上であり、In過剰組成とな
りやすい。しかし、本発明者等は、製造条件を最適化す
ることにより、HB法においてもリン過剰組成のInP多結
晶原料を製造することに成功した。例えば、InP多結晶
の合成中にリンを所定の蒸気圧で過剰に印加し、急冷す
ることでリン過剰組成のInP多結晶を得ることができ
た。
In general, an InP polycrystalline raw material is produced by the HB method, and its atomic composition ratio In / InP is 0.500 (stoichiometric composition) or 0.500 or more, so that the In composition tends to be excessive. However, the present inventors have succeeded in producing an InP polycrystalline raw material having a phosphorus excess composition even in the HB method by optimizing the production conditions. For example, phosphorus was excessively applied at a predetermined vapor pressure during the synthesis of the InP polycrystal, and was rapidly cooled to obtain an InP polycrystal having an excess phosphorus composition.

【0012】具体的にはInを1070℃まで加熱し、リ
ンを20気圧、30気圧、50気圧、75気圧、100
気圧ならびに120気圧で印加し、それぞれInP多結晶
を合成した後、約30分で室温まで冷却した。
Specifically, In is heated to 1070 ° C., and phosphorus is heated to 20 atm, 30 atm, 50 atm, 75 atm, 100 atm.
After applying an atmospheric pressure and an atmospheric pressure to synthesize an InP polycrystal, each was cooled to room temperature in about 30 minutes.

【0013】合成後のInP多結晶中のInの重量を分析
し、原子組成比を調べた結果を表1に示す。表1に示す
ように、50,75,100,120気圧でリンを印加
した場合にリン過剰組成のInP多結晶が合成でき、それ
ぞれの原子組成比In/InPの値は0.498,0.49
3,0.490,0.490であった。なお、120気
圧でリンを印加した場合は、InP多結晶中にリンが析出
したため、原子組成比In/InPが0.490以下のリン
過剰InP多結晶を得ることは困難である。
Table 1 shows the result of analyzing the weight of In in the synthesized InP polycrystal and examining the atomic composition ratio. As shown in Table 1, when phosphorus is applied at 50, 75, 100, and 120 atm, an InP polycrystal having a phosphorus excess composition can be synthesized, and the value of each atomic composition ratio In / InP is 0.498, 0. 49
3, 0.490 and 0.490. When phosphorus is applied at 120 atm, it is difficult to obtain a phosphorus-rich InP polycrystal having an atomic composition ratio In / InP of 0.490 or less because phosphorus is precipitated in the InP polycrystal.

【0014】[0014]

【表1】 このリン過剰であるInPの結晶体を原料としてInP単結晶
を育成したところ、多結晶や双晶の発生が抑えられ飛躍
的に単結晶化率を高め、歩留まりを向上させることがで
きた。
[Table 1] When an InP single crystal was grown using this phosphorus-excess InP crystal as a raw material, the generation of polycrystals and twins was suppressed, and the single crystallization ratio was dramatically increased, thereby improving the yield.

【0015】本発明は、上記知見に基づいてなされたも
ので、原料融液を徐々に冷却してInP単結晶を得る結晶
育成法において、InとPの原子組成比In/InPが0.49
0以上、0.500未満であるInPの結晶体を原料とし
て用いるようにしたものであり、これにより、多結晶や
双晶等の発生を効果的に抑制できるようになり、InP単
結晶を歩留まりよく製造することができる。
The present invention has been made based on the above findings. In a crystal growth method for gradually cooling a raw material melt to obtain an InP single crystal, the atomic composition ratio In / InP of In / InP is 0.49.
A crystal of InP having a value of 0 or more and less than 0.500 is used as a raw material, whereby the generation of polycrystals, twins, and the like can be effectively suppressed, and the yield of InP single crystals can be reduced. Can be manufactured well.

【0016】[0016]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0017】図1はVGF法により結晶育成する際に用い
られる結晶成長装置の概略図である。図1に示す結晶成
長装置は、従来のVGF法で用いられていた装置と同じで
あり、原料融液2を収納するpBN製のルツボ1と、ルツ
ボ1を支持するグラファイト製のルツボ支持台3と、ル
ツボ1およびルツボ支持台3を収納する石英アンプル5
と、石英アンプルを密閉する石英キャップ4と、原料融
液を加熱する円筒形のヒータ6と高圧容器8からなる加
熱炉とで構成されており、高圧容器8内は密封されてい
る。また、石英アンプル側部に温度測定用の熱電対7が
設置されており、ルツボ近辺の温度が測定できるように
なっている。
FIG. 1 is a schematic view of a crystal growth apparatus used for growing a crystal by the VGF method. The crystal growth apparatus shown in FIG. 1 is the same as the apparatus used in the conventional VGF method, and includes a pBN crucible 1 for accommodating a raw material melt 2 and a graphite crucible support 3 for supporting the crucible 1. And a quartz ampule 5 accommodating the crucible 1 and the crucible support 3
, A quartz cap 4 for sealing the quartz ampule, and a heating furnace comprising a cylindrical heater 6 for heating the raw material melt and a high-pressure vessel 8, and the inside of the high-pressure vessel 8 is sealed. A thermocouple 7 for temperature measurement is provided on the side of the quartz ampule so that the temperature near the crucible can be measured.

【0018】まず、HB法で合成した原子組成比In/InP
が0.490以上、0.500未満であるInP多結晶
1.5kgをpBN製ルツボ1に入れ、石英アンプル5内を
真空排気の後、図1に示すように石英アンプル5と石英
キャップ4を酸水素バーナーで熔着し、石英アンプル内
を減圧密封した。この石英アンプルをヒータ6により加
熱して加熱炉内を1070℃程度に昇温し、InPを融解
させた。このとき、InPの分解圧で石英アンプル5が破
裂するのを防止するため、高圧容器8内にアルゴンガス
のような不活性ガスを導入し、35気圧とした。
First, the atomic composition ratio In / InP synthesized by the HB method
Is placed in a crucible 1 made of pBN and the quartz ampule 5 is evacuated, and then the quartz ampoule 5 and the quartz cap 4 are removed as shown in FIG. It was welded with an oxyhydrogen burner, and the inside of the quartz ampule was sealed under reduced pressure. The quartz ampule was heated by the heater 6 to raise the temperature inside the heating furnace to about 1070 ° C. to melt InP. At this time, an inert gas such as argon gas was introduced into the high-pressure vessel 8 to prevent the quartz ampule 5 from being ruptured due to the decomposition pressure of InP, and the pressure was set to 35 atm.

【0019】次に、ルツボ1の底部をInPの融点(10
62℃)と同じ温度にし、5〜10℃/cmの温度勾配
でルツボ底部から上部に向かって融液中の温度が高くな
るように、ヒータ6の温度を調整した。温度が十分に安
定した後、結晶の成長速度が約1mm/hとなるように、
ヒータ6を調整し徐々に冷却した。約150時間成長し
た後、30時間かけて結晶を冷却した。
Next, the bottom of the crucible 1 is heated to the melting point of InP (10
62 ° C.), and the temperature of the heater 6 was adjusted such that the temperature in the melt increased from the bottom to the top with a temperature gradient of 5 to 10 ° C./cm. After the temperature is sufficiently stabilized, the crystal growth rate is about 1 mm / h.
The heater 6 was adjusted and gradually cooled. After growing for about 150 hours, the crystal was cooled over 30 hours.

【0020】この条件で繰り返しInP結晶を成長させた
ところ、10本中8本が多結晶や双晶が発生していない
単結晶であり、高い歩留まりでInPの単結晶を得ること
ができた。
When InP crystals were repeatedly grown under these conditions, eight out of ten single crystals were free of polycrystals and twins, and single crystals of InP could be obtained at a high yield.

【0021】本発明者は、本実施形態の効果を確認する
ために、本発明に係る組成比から外れる条件下で比較実
験を行なった。
The present inventor conducted a comparative experiment under conditions deviating from the composition ratio according to the present invention in order to confirm the effects of the present embodiment.

【0022】(比較例1)HB法で合成した原子組成比In
/InPが0.500であるInPの結晶体を原料として、上
記実施例と同様にInP結晶を育成した。その結果、10
本中7本の結晶に多結晶や双晶が発生しており、多結晶
や双晶の発生していない単結晶は10本中半分に満たな
い3本のみであり歩留まりが悪いことが分かった。
Comparative Example 1 Atomic Composition Ratio In Synthesized by HB Method
An InP crystal was grown in the same manner as in the above example, using a crystal of InP having an InP ratio of 0.500 as a raw material. As a result, 10
Polycrystals and twins were generated in 7 of the crystals, and only 3 out of 10 single crystals in which polycrystals and twins were not generated showed that the yield was poor. .

【0023】(比較例2)HB法で合成した原子組成比In
/InPが0.500を超え、0.51未満であるIn過剰I
nPの結晶体を原料として、上記実施例と同様にInP結晶
を育成した。その結果、10本中1本のみが多結晶や双
晶の発生していない単結晶であり、実用にはほど遠い歩
留まりであった。
Comparative Example 2 Atomic composition ratio In synthesized by HB method
/ InP in excess of 0.500 and less than 0.51
InP crystals were grown in the same manner as in the above example using nP crystals as a raw material. As a result, only one out of ten single crystals was a single crystal in which no polycrystal or twin crystal was generated, and the yield was far from practical use.

【0024】以上の結果から、InとPの原子組成比In/I
nPが0.490以上、0.500未満であるInPの結晶
体を原料とすると、大幅に多結晶、双晶の発生を効果的
に抑制でき、InP単結晶を歩留まりよく製造することが
できるようになる。
From the above results, the atomic composition ratio of In and P In / I
When an InP crystal having an nP of 0.490 or more and less than 0.500 is used as a raw material, the generation of polycrystals and twins can be significantly suppressed, and an InP single crystal can be produced with good yield. become.

【0025】なお、本実施形態では、リンの蒸発量を少
なくするために石英アンプルを密閉して単結晶を育成す
る場合について述べたが、例えば、高圧容器内にルツボ
を設置して結晶を育成する場合には、高圧容器内を高圧
にすれば石英アンプルを用いなくてもリンの蒸発量をあ
る程度抑えることができるため、本発明のリン過剰InP
の結晶体を原料として用いる育成方法によれば、原料融
液中の原子組成比の化学量論的組成からのずれを小さく
することができ、多結晶、双晶の発生を抑制できる。
In this embodiment, the case where the quartz ampoule is sealed to grow a single crystal to reduce the amount of phosphorus evaporated has been described. For example, a crystal is grown by placing a crucible in a high-pressure vessel. When the pressure inside the high-pressure vessel is increased, the amount of phosphorus evaporated can be suppressed to some extent without using a quartz ampoule.
According to the growing method using the crystal as a raw material, the deviation of the atomic composition ratio in the raw material melt from the stoichiometric composition can be reduced, and the generation of polycrystals and twins can be suppressed.

【0026】また、本実施形態ではVGF法によりInP単結
晶を成長させる方法について説明したが、本発明はVGF
法に制限されるものではない。ルツボ内の原料融液を徐
々に冷却してInP単結晶を育成する方法であればよく、
例えば、HB法(Horizontal Bridgman法)のように、原
料融液中で水平方向に温度勾配ができるようにヒータの
温度を調整し、温度が安定した後、ヒータを調整し徐々
に冷却して結晶を成長させる方法にも適用可能である。
In this embodiment, a method for growing an InP single crystal by the VGF method has been described.
You are not restricted by law. Any method may be used as long as the raw material melt in the crucible is gradually cooled to grow an InP single crystal,
For example, as in the HB method (Horizontal Bridgman method), the temperature of the heater is adjusted so that a temperature gradient is formed in the raw material melt in the horizontal direction. Is also applicable to the method of growing.

【0027】[0027]

【発明の効果】本願において開示される発明によって得
られる効果を簡単に説明すれば下記のとおりである。
The effects obtained by the invention disclosed in the present application will be briefly described as follows.

【0028】すなわち、本発明のInP単結晶の製造方法
によれば、原料融液を徐々に冷却してInP単結晶を得る
結晶育成法において、InとPの原子組成比In/InPが0.
490以上、0.500未満であるInPの結晶体を原料
として用いるようにしたので、多結晶や双晶等の発生を
効果的に抑制出きるようになり、InP単結晶を歩留まり
よく製造することができるという効果がある。
That is, according to the method for producing an InP single crystal of the present invention, in the crystal growing method for gradually cooling the raw material melt to obtain an InP single crystal, the atomic composition ratio In / InP of In: P is 0.1.
Since an InP crystal having a size of 490 or more and less than 0.500 is used as a raw material, it is possible to effectively suppress the occurrence of polycrystals, twins, and the like, and to produce an InP single crystal with a high yield. There is an effect that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態及び従来のVGF法で用いた結晶育成
装置の概略断面図である。
FIG. 1 is a schematic sectional view of a crystal growing apparatus used in the present embodiment and a conventional VGF method.

【符号の説明】[Explanation of symbols]

1:ルツボ 2:原料融液 3:ルツボ支持台 4:石英キャップ 5:石英アンプル 6:ヒータ 7:熱電対 8:高圧容器 1: Crucible 2: Raw material melt 3: Crucible support 4: Quartz cap 5: Quartz ampule 6: Heater 7: Thermocouple 8: High pressure vessel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 InP化合物半導体単結晶の製造方法にお
いて、InとPの原子組成比In/InPが0.490以上、
0.500未満であるInPの結晶体を原料として用いる
ことを特徴とするInP単結晶の製造方法。
1. A method for producing an InP compound semiconductor single crystal, wherein an atomic composition ratio In / InP of In and P is 0.490 or more,
A method for producing an InP single crystal, characterized by using an InP crystal of less than 0.500 as a raw material.
【請求項2】 上記組成のInP結晶体を原料として収納
したルツボを加熱炉内に設置して、融点以上に加熱して
原料を溶融させた後、その原料融液を徐々に冷却してIn
P単結晶を成長させることを特徴とする請求項1に記載
のInP単結晶の製造方法。
2. A crucible containing an InP crystal having the above composition as a raw material is placed in a heating furnace, and heated to a temperature equal to or higher than the melting point to melt the raw material.
The method for producing an InP single crystal according to claim 1, wherein a P single crystal is grown.
【請求項3】 上記原料を収納したルツボは密閉型容器
内に封入され、該密閉型容器が加熱炉内に設置されるこ
とを特徴とする請求項2に記載のInP単結晶の製造方
法。
3. The method for producing an InP single crystal according to claim 2, wherein the crucible containing the raw material is sealed in a closed container, and the closed container is set in a heating furnace.
JP11138322A 1999-05-19 1999-05-19 Production of inp single crystal Pending JP2000327496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138322A JP2000327496A (en) 1999-05-19 1999-05-19 Production of inp single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138322A JP2000327496A (en) 1999-05-19 1999-05-19 Production of inp single crystal

Publications (1)

Publication Number Publication Date
JP2000327496A true JP2000327496A (en) 2000-11-28

Family

ID=15219204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138322A Pending JP2000327496A (en) 1999-05-19 1999-05-19 Production of inp single crystal

Country Status (1)

Country Link
JP (1) JP2000327496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179567A1 (en) 2017-03-31 2018-10-04 Jx金属株式会社 Compound semiconductor and method for producing single crystal of compound semiconductor
WO2022168369A1 (en) 2021-02-02 2022-08-11 Jx金属株式会社 Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single crystal ingot, and method for producing indium phosphide substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179567A1 (en) 2017-03-31 2018-10-04 Jx金属株式会社 Compound semiconductor and method for producing single crystal of compound semiconductor
KR20190043626A (en) 2017-03-31 2019-04-26 제이엑스금속주식회사 Compound semiconductor and method for manufacturing compound semiconductor single crystal
US11371164B2 (en) 2017-03-31 2022-06-28 Jx Nippon Mining & Metals Corporation Compound semiconductor and method for producing single crystal of compound semiconductor
WO2022168369A1 (en) 2021-02-02 2022-08-11 Jx金属株式会社 Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single crystal ingot, and method for producing indium phosphide substrate
US11926924B2 (en) 2021-02-02 2024-03-12 Jx Metals Corporation Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot and method for producing indium phosphide substrate

Similar Documents

Publication Publication Date Title
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
US20060048701A1 (en) Method of growing group III nitride crystals
EP0751242A1 (en) Process for bulk crystal growth
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
TWI272321B (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JPH10259100A (en) Production of garium-arsenic single crystal
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPH1087392A (en) Production of compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP2010030868A (en) Production method of semiconductor single crystal
US8449672B2 (en) Method of growing group III nitride crystals
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2539841B2 (en) Crystal manufacturing method
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPH10212192A (en) Method for growing bulk crystal
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JPH10338591A (en) Production of compound semiconductor single crystal