JP2004203721A - Apparatus and method for growing single crystal - Google Patents

Apparatus and method for growing single crystal Download PDF

Info

Publication number
JP2004203721A
JP2004203721A JP2002383561A JP2002383561A JP2004203721A JP 2004203721 A JP2004203721 A JP 2004203721A JP 2002383561 A JP2002383561 A JP 2002383561A JP 2002383561 A JP2002383561 A JP 2002383561A JP 2004203721 A JP2004203721 A JP 2004203721A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
compound
temperature
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383561A
Other languages
Japanese (ja)
Inventor
Hiramitsu Taniguchi
平光 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002383561A priority Critical patent/JP2004203721A/en
Publication of JP2004203721A publication Critical patent/JP2004203721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for manufacturing a large size and high quality ZnSe single crystal at a low cost which can be used as a base for an optical device as the large size and high quality ZnSe single crystal cannot be produced in a conventional technique. <P>SOLUTION: In the method for growing the single crystal, a crucible where two kinds of raw materials consisting of a compound are housed is sealed in a quartz ampul in the apparatus for solution growing for a compound single crystal and then, the compound single crystal is grown from the top surface of a liquid without using a seed crystal by a vertical gradient freezing (VGF) method while at least a kind of elements consisting of the compound is supplied as a gas from a second crucible to a liquid raw material in a first crucible. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は化合物単結晶の溶液成長装置において、ルツボに入れた原料液体に対して化合物の構成元素のうち少なくとも1種類の元素を気体として供給しながら、種結晶を用いないで垂直グラジェントフリージング(VGF)法により該単結晶を液体の上面から成長させる装置および成長方法に関する。
【0002】
【従来の技術】
ZnSeは、その物理的性質から光デバイス用基板としての応用が期待されているが、これまでデバイスに応用できるような大型で結晶欠陥が低くかつ高純度の良質な単結晶基板は得られていない。これは、常圧近傍において液相状態のZnとSeが、相互の溶解度が極めて小さく、ZnとSeの混合融液を単結晶成長の原料として用いることが出来ず、ZnSeの融液成長あるいは溶液成長が困難であったためである。
【0003】
従来法としては、高圧溶融法、焼結体の再結晶法、フラックス法、CVD法やより単純な気相輸送法等によりZnSeを合成する方法がある。高圧溶融法では、せいぜい直径10mm程度までの単結晶が得られるに過ぎず、また再結晶法でも大きな結晶は得られていない。KClなどを用いるフラックス法では、フラックスの混入による汚染が避けられない。CVD法や気相輸送法により、赤外線用光学材料として、大きな固体が得られているが、これは多結晶体もしくはアモルファスである。未だ、単結晶として、上記デバイスへの応用可能なものは得られていない。
【0004】
一般にZnSeなどのII−VI族化合物半導体は、Siなどの単体半導体に比較して単結晶化し難いIII−V族系化合物半導体より更に結晶欠陥の生成エネルギーが小さいため、結晶成長時に転位や空孔などの結晶欠陥が発生しやすく、これが多結晶化を引き起こす原因となる。主としてこのような結晶欠陥は、液相成長においては、凝固時の液相から固相への相変態に際して生じる体積変化や、それに伴いルツボ壁との間に生じる剪断応力あるいは圧縮応力によって発生する。そして、凝固した結晶が結晶成長温度から冷却される過程で生じる体積収縮は、内部応力を生じ、これが更に単結晶内部の結晶欠陥密度を増加させる。
【0005】
工業的に大型の単結晶を得るためには、融液成長法もしくは溶液成長が最適であり、種々の化合物について単結晶成長に適した装置と方法の実用化が待たれている。特に、結晶欠陥の発生を抑制し、かつルツボ材等による汚染を避けるためには、融液成長に比較して低温度で単結晶成長の可能な溶液成長が望ましい。
【0006】
本発明者らは、これまでに垂直グラジェントフリージング法により高品質のCdTeやCdZnTe等の単結晶を成長させる方法を発明し、日本国特許番号第3232461号として公知である。同発明は、例えばCdTe単結晶を成長させる場合、CdTe多結晶を原料として用い、同時に原料ルツボを封入した石英アンプル内部を所定圧力のCd蒸気で充満し、溶融状態で解離により失われるCdを補償し、かつ温度条件を適正化することにより、安定して大型の単結晶を成長させるというものである。このCdTe単結晶成長の場合には、CdTe多結晶を原料として用いることができるが、これは原料融液においてCdとTeが均一に混合した状態にあるためである。
【0007】
一方上記のように、ZnSe単結晶成長の場合には、ZnとSeは液相状態において、相互の溶解度が極めて小さいため、ZnとSeの混合融液を原料として用いることはできない。従って、上記のCdTe単結晶成長の場合には、Cd蒸気はCdの解離を補償する程度で足りたが、ZnSe単結晶育成の場合には、積極的にSeを供給しながら単結晶を成長させなければならない。また、結晶欠陥の少ない良質の単結晶を得るためには、融液もしくは溶液上面において浮遊状態で単結晶を成長させることが有用であるが、単結晶の成長初期に液相上面の全てが固相で覆われてしまうと、それ以降のSeの供給が抑制され、単結晶の成長速度が著しく低下する。
【0008】
【特許文献1】第3232461号
【特許文献2】第2575948号
【特許文献3】第2610319号
【特許文献4】第2585629号
【特許文献5】第2717256号
【特許文献6】特公平6−17280号
【0009】
【発明が解決しようとする課題】
以上のように従来技術では、光デバイス用基板として使用できる大型かつ高品質なZnSe単結晶は得られなかった。そこで、本発明では大型の高品質なZnSe単結晶を低コストで製造する装置および方法の確立を課題とする。
【0010】
【課題を解決するための手段】
そこで本発明では、種結晶を用いずに、液相の自由表面から単結晶化を開始することのできる装置を使った溶液成長法を用いることにより、成長した単結晶を液体上に浮遊させ、凝固時の相変態に伴う体積変化により生じるルツボ壁による影響をなくし結晶欠陥の発生を抑制している。
【0011】
単結晶を液体の上面から凝固させるために、第1のルツボ3に対応する前記石英アンプル外壁近傍の温度分布の最高温度位置が、同ルツボより下になるように設定し、かつ同ルツボ上端より上部領域に対応する前記石英アンプル外壁近傍の温度勾配を、同ルツボに対応する前記石英アンプル外壁近傍の温度勾配より大きくし、溶液が結晶化する際に発生する潜熱を速やかに上方に取り去ることができる構造とする。
【0012】
一方、ZnとSeのように溶融状態で相互の溶解度が小さい材料を用いて、溶液成長法により化合物単結晶を成長する場合、化合物を構成する一方の物質を結晶の成長とともに溶液外部から供給しなければならない。本発明では、図1の第2のルツボに蒸気圧の高い元素もしくは化合物を入れ、これを下段炉で加熱して蒸発させ、第1のルツボ内の溶液に供給する。この時、蒸発した物質が、第1のルツボ壁を通過できるようにするため、多孔質カーボンをルツボ材として用いる。また、第1のルツボ直上に熱反射板を置くことにより、同ルツボの温度をルツボ内の溶液の融点以上に維持して、第1のルツボ壁近傍の液相状態を維持し、この液相表面を上記の蒸発した物質の通路として確保する。
【0013】
【発明の実施の形態】
上記課題を解決するために、本発明者は図1に示すような装置を考案した。以下にZnSe単結晶を育成する場合を例にして、単結晶の育成手順を示す。
【0014】
まずZnとSeを各々秤量し、等モルよりややSeを過剰にして、各々第1の多孔質グラファイト製ルツボと第2のpBN製ルツボに入れ、図2に示すように第1のルツボ上にpBN製の熱反射板を載せた状態で、2つのルツボを石英アンプルに入れて真空封入する。
【0015】
続いて、該石英アンプルを各々独立して温度制御できる4段の炉からなる上段炉と、各々独立して温度制御できる3段の炉からなる下段炉を用いる電気炉に装填し、第1のルツボに対応する前記石英アンプル外壁近傍の温度を750℃〜900℃に、また並行して第2のルツボに対応する前記石英アンプル外壁近傍の温度を660℃〜700℃になるまで上記電気炉内で加熱する。この時の第1のルツボと第2のルツボに対応する前記石英アンプル外壁近傍温度の昇温プログラムの一例を図3に示す。ZnとSeの蒸気圧は、各温度設定領域で図4に示す蒸気圧曲線によって与えられる。上記温度に加熱した状態で、約10〜30時間維持する。
【0016】
次に、第1のルツボ近傍に対応する前記石英アンプル外壁近傍の温度勾配を0.1〜10℃/cmとし、同ルツボ上端より上の温度勾配をそれより大きく保ちつつ、0.05〜0.5℃/hrの速度で温度を下げ、第1のルツボ表面からZnSe単結晶を成長させる。ZnSeの密度はおよそ5.6g/cmであり、Znの密度はおよそ7.1g/cmである。溶質はZn大過剰であるため、結晶化したZnSeの密度は溶質の密度より小さく、ZnSe結晶は安定した浮遊状態を維持する。
【0017】
最後に、上記電気炉内を室温近傍まで冷却した後、同電気炉から上記石英アンプルを取り出して割り、第1のルツボを回収し、第1のルツボから結晶を回収する。
【0018】
【発明の効果】
これまで、光デバイス用基板に応用可能な高品質のZnSe単結晶は得られなかったが、本発明により、大口径で転位などの結晶欠陥が少なくそして不純物汚染の少ない塊状の単結晶ZnSeを低コストで得ることができる。また、常圧近傍での溶液成長法であるため、装置も簡便であり低コストな製造技術である。
【0019】
【図面の簡単な説明】
【図1】装置の概略の断面図である。
【図2】第1のルツボと熱反射板の斜視図である。
【図3】電気炉の昇温プログラム例である。
【図4】ZnとSeの蒸気圧曲線である。
【符号の説明】
1 熱反射板
2 蒸気圧の低い元素もしくは化合物もしくは混合物、化合物単結晶
3 第1のルツボ
4 石英アンプル
5 蒸気圧の高い元素もしくは化合物
6 第2のルツボ
7a、7b、7c、7d 上段炉
8a、8b、8c 下段炉
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solution for growing a compound single crystal, in which at least one of the constituent elements of the compound is supplied as a gas to a raw material liquid placed in a crucible, and vertical gradient freezing is performed without using a seed crystal ( The present invention relates to an apparatus and a growth method for growing the single crystal from the upper surface of a liquid by a VGF method.
[0002]
[Prior art]
ZnSe is expected to be used as a substrate for optical devices because of its physical properties, but a large-sized single crystal substrate with a low crystal defect and high purity that can be applied to devices has not been obtained so far. . This is because Zn and Se in a liquid state in the vicinity of normal pressure have extremely low mutual solubility, so that a mixed melt of Zn and Se cannot be used as a raw material for single crystal growth, This is because growth was difficult.
[0003]
As a conventional method, there is a method of synthesizing ZnSe by a high-pressure melting method, a recrystallization method of a sintered body, a flux method, a CVD method, a simpler gas phase transport method, or the like. In the high-pressure melting method, a single crystal having a diameter of up to about 10 mm is obtained at most, and no large crystal is obtained in the recrystallization method. In the flux method using KCl or the like, contamination due to mixing of the flux is inevitable. A large solid has been obtained as an optical material for infrared rays by a CVD method or a vapor-phase transport method, which is a polycrystalline or amorphous material. A single crystal that can be applied to the above device has not yet been obtained.
[0004]
In general, a II-VI group compound semiconductor such as ZnSe has a smaller generation energy of crystal defects than a III-V group compound semiconductor which is hard to be single-crystallized as compared with a simple semiconductor such as Si. Such crystal defects are likely to occur, which causes polycrystallization. In the liquid phase growth, such crystal defects are mainly generated by a volume change occurring during a phase transformation from a liquid phase to a solid phase at the time of solidification, and a shear stress or a compressive stress generated with the crucible wall. The volume shrinkage that occurs during the process of cooling the solidified crystal from the crystal growth temperature generates internal stress, which further increases the density of crystal defects inside the single crystal.
[0005]
In order to industrially obtain a large single crystal, a melt growth method or a solution growth method is most suitable, and practical use of an apparatus and a method suitable for single crystal growth of various compounds is awaited. In particular, in order to suppress the generation of crystal defects and avoid contamination by a crucible material or the like, it is desirable to use a solution growth that allows single crystal growth at a lower temperature than melt growth.
[0006]
The present inventors have invented a method of growing a high-quality single crystal such as CdTe or CdZnTe by a vertical gradient freezing method, which is known as Japanese Patent No. 3232461. For example, when growing a CdTe single crystal, the present invention uses a CdTe polycrystal as a raw material, and at the same time, fills the inside of a quartz ampoule containing a raw material crucible with Cd vapor at a predetermined pressure, and compensates for Cd lost by dissociation in a molten state. In addition, by optimizing the temperature conditions, a large single crystal can be stably grown. In the case of CdTe single crystal growth, CdTe polycrystal can be used as a raw material, because Cd and Te are uniformly mixed in the raw material melt.
[0007]
On the other hand, as described above, in the case of ZnSe single crystal growth, the mutual solubility of Zn and Se in the liquid phase is extremely low, so that a mixed melt of Zn and Se cannot be used as a raw material. Therefore, in the case of the above-described CdTe single crystal growth, Cd vapor was sufficient to compensate for the dissociation of Cd, but in the case of ZnSe single crystal growth, the single crystal was grown while positively supplying Se. There must be. In order to obtain a high-quality single crystal with few crystal defects, it is useful to grow a single crystal in a floating state on the melt or the upper surface of the solution. If the phase is covered, the subsequent supply of Se is suppressed, and the growth rate of the single crystal is significantly reduced.
[0008]
[Patent Document 1] No. 3232461 [Patent Document 2] No. 2575948 [Patent Document 3] No. 2610319 [Patent Document 4] No. 2585629 [Patent Document 5] No. 2717256 [Patent Document 6] Japanese Patent Publication No. 6-17280 No. [0009]
[Problems to be solved by the invention]
As described above, according to the conventional technique, a large and high-quality ZnSe single crystal that can be used as a substrate for an optical device cannot be obtained. Therefore, it is an object of the present invention to establish an apparatus and a method for manufacturing a large, high-quality ZnSe single crystal at low cost.
[0010]
[Means for Solving the Problems]
Therefore, in the present invention, without using a seed crystal, by using a solution growth method using a device that can start single crystallization from the free surface of the liquid phase, the grown single crystal is suspended on the liquid, The influence of the crucible wall caused by the volume change accompanying the phase transformation during solidification is eliminated, and the generation of crystal defects is suppressed.
[0011]
In order to solidify the single crystal from the upper surface of the liquid, the highest temperature position of the temperature distribution near the outer wall of the quartz ampule corresponding to the first crucible 3 is set to be lower than the crucible, and from the upper end of the crucible. The temperature gradient near the outer wall of the quartz ampoule corresponding to the upper region is made larger than the temperature gradient near the outer wall of the quartz ampule corresponding to the crucible, and the latent heat generated when the solution is crystallized can be quickly removed upward. A structure that can be used.
[0012]
On the other hand, when a compound single crystal is grown by a solution growth method using a material having a low mutual solubility in a molten state, such as Zn and Se, one substance constituting the compound is supplied from outside the solution together with the growth of the crystal. There must be. In the present invention, an element or a compound having a high vapor pressure is put in the second crucible of FIG. 1, heated and evaporated in a lower furnace, and supplied to the solution in the first crucible. At this time, porous carbon is used as the crucible material so that the evaporated substance can pass through the first crucible wall. Further, by placing a heat reflecting plate directly above the first crucible, the temperature of the crucible is maintained at a temperature equal to or higher than the melting point of the solution in the crucible, and the liquid state near the first crucible wall is maintained. The surface is secured as a passage for the above-mentioned evaporated substance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problems, the present inventors have devised an apparatus as shown in FIG. The procedure for growing a single crystal will be described below, taking the case of growing a ZnSe single crystal as an example.
[0014]
First, Zn and Se were weighed, respectively, and a little excess of Se was added to equimolar amounts, and each was placed in a first porous graphite crucible and a second pBN crucible, and placed on the first crucible as shown in FIG. Two crucibles are put in a quartz ampule and sealed in a vacuum with the heat reflecting plate made of pBN placed thereon.
[0015]
Subsequently, the quartz ampoule was loaded into an electric furnace using an upper furnace consisting of four furnaces each capable of independently controlling the temperature and a lower furnace consisting of three furnaces each capable of independently controlling the temperature. In the electric furnace, the temperature near the outer wall of the quartz ampule corresponding to the crucible is 750 ° C. to 900 ° C., and the temperature near the outer wall of the quartz ampule corresponding to the second crucible is 660 ° C. to 700 ° C. in parallel. Heat with. FIG. 3 shows an example of a program for raising the temperature near the outer wall of the quartz ampule corresponding to the first crucible and the second crucible at this time. The vapor pressure of Zn and Se is given by a vapor pressure curve shown in FIG. 4 in each temperature setting region. Maintain at the above temperature for about 10 to 30 hours.
[0016]
Next, the temperature gradient near the outer wall of the quartz ampoule corresponding to the vicinity of the first crucible is set to 0.1 to 10 ° C./cm, and the temperature gradient above the upper end of the crucible is maintained at 0.05 to 0 ° C. The temperature is lowered at a rate of 0.5 ° C./hr, and a ZnSe single crystal is grown from the surface of the first crucible. The density of ZnSe is about 5.6 g / cm 3 and the density of Zn is about 7.1 g / cm 3 . Since the solute has a large excess of Zn, the density of the crystallized ZnSe is lower than the density of the solute, and the ZnSe crystal maintains a stable floating state.
[0017]
Finally, after cooling the inside of the electric furnace to near room temperature, the quartz ampoule is taken out from the electric furnace, divided, a first crucible is collected, and a crystal is collected from the first crucible.
[0018]
【The invention's effect】
Until now, a high-quality ZnSe single crystal applicable to an optical device substrate has not been obtained. However, according to the present invention, a bulky single crystal ZnSe having a large diameter, having few crystal defects such as dislocations, and having little impurity contamination is reduced. Can be obtained at cost. In addition, since the solution growth method is performed at around normal pressure, the apparatus is a simple and low-cost manufacturing technique.
[0019]
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an apparatus.
FIG. 2 is a perspective view of a first crucible and a heat reflection plate.
FIG. 3 is an example of a heating program of an electric furnace.
FIG. 4 is a vapor pressure curve of Zn and Se.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat reflection plate 2 element or compound or mixture with low vapor pressure, compound single crystal 3 first crucible 4 quartz ampule 5 element or compound with high vapor pressure 6 second crucible 7 a, 7 b, 7 c, 7 d Upper furnace 8 a 8b, 8c Lower furnace

Claims (4)

図1において、各々独立して温度を制御できる4段の炉7a、7b、7c、7dからなる上段炉と、各々独立して温度を制御できる3段の炉8a、8b、8cからなる下段炉を用いる単結晶成長装置において、石英アンプル4の内部に、化合物を構成する元素もしくは化合物もしくは混合物の内、二つの組み合わせからなる物質を比較して、蒸気圧の低い元素もしくは化合物もしくは混合物2を入れた第1のルツボ3と蒸気圧の高い元素もしくは化合物5を入れた第2のルツボ6を入れ、前記石英アンプルを真空封入した後、該石英アンプルを上記の上下段炉からなる加熱炉内で加熱して第1のルツボおよび第2のルツボ内の物質を各々融解し、かつ第2のルツボを所定の温度に加熱して第2のルツボ内の物質を気体として第1のルツボに移送するとともに、第1のルツボに対応する前記石英アンプル外壁近傍における垂直方向の温度勾配が同ルツボの上端よりも上方における温度勾配より小さくなるようにして、前記加熱炉内の温度を徐々に下げ、第1のルツボ内の溶液の表面から下方に向かって前記化合物の単結晶を、種結晶を用いないで成長させることを特徴とする単結晶の成長装置および成長方法。In FIG. 1, an upper furnace consisting of four furnaces 7a, 7b, 7c, and 7d each capable of independently controlling the temperature, and a lower furnace consisting of three furnaces 8a, 8b, and 8c each capable of independently controlling the temperature. In a single crystal growing apparatus using the method, a substance formed of a combination of two of the elements or compounds or the compounds constituting the compound is compared, and the element or compound or the mixture 2 having a low vapor pressure is put in the quartz ampoule 4. The first crucible 3 and the second crucible 6 containing the element or compound 5 having a high vapor pressure are put therein, the quartz ampule is vacuum-sealed, and the quartz ampule is placed in a heating furnace comprising the above-mentioned upper and lower furnaces. Heating to melt the materials in the first crucible and the second crucible, respectively, and heating the second crucible to a predetermined temperature to transfer the material in the second crucible to the first crucible as a gas; And a vertical temperature gradient near the outer wall of the quartz ampoule corresponding to the first crucible is made smaller than a temperature gradient above the upper end of the crucible, so that the temperature in the heating furnace is gradually lowered, An apparatus and method for growing a single crystal, wherein a single crystal of the compound is grown downward from the surface of the solution in the first crucible without using a seed crystal. 上記第1のルツボに多孔質カーボン材料を用いることを特徴とする請求の範囲第1項記載の単結晶の成長装置および成長方法。2. The apparatus and method for growing a single crystal according to claim 1, wherein a porous carbon material is used for said first crucible. 上記第1のルツボ直上に、同ルツボ上端部の外径より大きな外径を持ち、かつ中央に開口部を持つ輪状の熱反射板1を有し、該熱反射板の開口部の直径をdとし、第1のルツボの開口部の直径をDとした時、次式:
X=d/D
で与えられるXを0.3〜0.8、より好ましくは0.55〜0.75の範囲とすることを特徴とする請求の範囲第1項または第2項記載の単結晶の成長装置および成長方法。
Immediately above the first crucible, there is provided a ring-shaped heat reflecting plate 1 having an outer diameter larger than the outer diameter of the upper end of the crucible and having an opening at the center. And when the diameter of the opening of the first crucible is D, the following equation:
X = d / D
3. The apparatus for growing a single crystal according to claim 1 or 2, wherein X given by is in the range of 0.3 to 0.8, more preferably 0.55 to 0.75. Growth method.
上記化合物半導体の単結晶はZnSeであり、かつ上記石英アンプル内の最大圧力が3気圧を越えないことを特徴とする請求の範囲第1項または第2項または第3項記載の単結晶の成長装置および成長方法。4. The single crystal growth according to claim 1, wherein the single crystal of the compound semiconductor is ZnSe, and a maximum pressure in the quartz ampoule does not exceed 3 atm. Apparatus and growth method.
JP2002383561A 2002-12-24 2002-12-24 Apparatus and method for growing single crystal Pending JP2004203721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383561A JP2004203721A (en) 2002-12-24 2002-12-24 Apparatus and method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383561A JP2004203721A (en) 2002-12-24 2002-12-24 Apparatus and method for growing single crystal

Publications (1)

Publication Number Publication Date
JP2004203721A true JP2004203721A (en) 2004-07-22

Family

ID=32818235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383561A Pending JP2004203721A (en) 2002-12-24 2002-12-24 Apparatus and method for growing single crystal

Country Status (1)

Country Link
JP (1) JP2004203721A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412239C (en) * 2005-02-25 2008-08-20 昆明物理研究所 Technique for growing Cd-Zn-Te crystal
CN102220644A (en) * 2011-06-08 2011-10-19 上海大学 Method for improving performance of cadmium zinc telluride crystal
CN102230213A (en) * 2011-06-08 2011-11-02 上海大学 Method for growing tellurium-zinc-cadmium crystals by using tellurium solvent solution method
CN114014663A (en) * 2021-11-29 2022-02-08 河南城建学院 Tellurium-selenium-arsenic-cadmium compound, target material and preparation method thereof
CN115726031A (en) * 2022-09-26 2023-03-03 湖南大合新材料有限公司 Method and equipment for synthesizing tellurium-zinc-cadmium polycrystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412239C (en) * 2005-02-25 2008-08-20 昆明物理研究所 Technique for growing Cd-Zn-Te crystal
CN102220644A (en) * 2011-06-08 2011-10-19 上海大学 Method for improving performance of cadmium zinc telluride crystal
CN102230213A (en) * 2011-06-08 2011-11-02 上海大学 Method for growing tellurium-zinc-cadmium crystals by using tellurium solvent solution method
CN102230213B (en) * 2011-06-08 2012-08-29 上海大学 Method for growing tellurium-zinc-cadmium crystals by using tellurium solvent solution method
CN102220644B (en) * 2011-06-08 2013-04-03 上海大学 Method for improving performance of cadmium zinc telluride crystal
CN114014663A (en) * 2021-11-29 2022-02-08 河南城建学院 Tellurium-selenium-arsenic-cadmium compound, target material and preparation method thereof
CN115726031A (en) * 2022-09-26 2023-03-03 湖南大合新材料有限公司 Method and equipment for synthesizing tellurium-zinc-cadmium polycrystal
CN115726031B (en) * 2022-09-26 2023-06-09 湖南大合新材料有限公司 Method and equipment for synthesizing tellurium-zinc-cadmium polycrystal

Similar Documents

Publication Publication Date Title
US8506706B2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
TW201109483A (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US20060048701A1 (en) Method of growing group III nitride crystals
TWI272321B (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
US7537659B2 (en) Method of obtaining a CdTe or CdZnTe single crystal and the single crystal thus obtained
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP2004203721A (en) Apparatus and method for growing single crystal
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
Capper Bulk crystal growth: methods and materials
CN116334759A (en) Seed crystal dissolving method and device for growing tellurium-zinc-cadmium crystals based on THM
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
EP1114884B1 (en) Process for producing compound semiconductor single crystal
JP3719341B2 (en) Liquid phase epitaxial growth method of SiC crystal
JP2005132663A (en) Group iii nitride crystal growth method, group iii nitride crystal, and crystal growth apparatus
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2009155137A (en) Manufacturing method of compound semiconductor crystal and manufacturing apparatus of single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2000327496A (en) Production of inp single crystal
JPH10212192A (en) Method for growing bulk crystal
Capper et al. Growert
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride
JP2004269274A (en) Vessel for growing semiconductor single-crystal, and method for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041014

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041112

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129