JPH0764671B2 - Method for growing compound semiconductor single crystal - Google Patents

Method for growing compound semiconductor single crystal

Info

Publication number
JPH0764671B2
JPH0764671B2 JP2645487A JP2645487A JPH0764671B2 JP H0764671 B2 JPH0764671 B2 JP H0764671B2 JP 2645487 A JP2645487 A JP 2645487A JP 2645487 A JP2645487 A JP 2645487A JP H0764671 B2 JPH0764671 B2 JP H0764671B2
Authority
JP
Japan
Prior art keywords
crystal
raw material
gaas
single crystal
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2645487A
Other languages
Japanese (ja)
Other versions
JPS63195193A (en
Inventor
秀男 中西
圭吾 干川
拡樹 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2645487A priority Critical patent/JPH0764671B2/en
Publication of JPS63195193A publication Critical patent/JPS63195193A/en
Publication of JPH0764671B2 publication Critical patent/JPH0764671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はGaAs結晶などの化合物半導体バルク結晶の製造
方法に関するものである。具体的には原料融液を容器内
で合成・融解し、その後種子結晶を用いてその容器内で
結晶化してなる垂直ブリツヂマン法あるいは垂直温度こ
う配凝固法による化合物半導体結晶製造方法の改良に関
するものである。
The present invention relates to a method for manufacturing a compound semiconductor bulk crystal such as a GaAs crystal. Specifically, it relates to the improvement of the compound semiconductor crystal manufacturing method by the vertical Britzmann method or the vertical temperature gradient solidification method in which the raw material melt is synthesized and melted in the container, and then crystallized in the container using the seed crystal. is there.

(従来技術および発明が解決しようとする問題点) 本発明に係わる結晶製造方法は、すでに多くの報告がさ
れている(例えば、S.E.Blum and R.J.Chicotka;Growth
of Low Strain GaP by Liquid−Encapsulation,Vertic
al−Gradient Freeze Technique,Electrochemi.Soci.,1
20(1973)588,W.A.Gault,E.M.Monberg and J.E.Cleman
s;A Novel Application of the Vertical Gradient Fre
eze Method to the Growth of High Quality IV−V Cry
stals,J.Cryst.Growth.74(1986)491など)。
(Prior Art and Problems to be Solved by the Invention) Many reports have already been made on the crystal production method according to the present invention (for example, SEBlum and RJ Chicotka; Growth).
of Low Strain GaP by Liquid-Encapsulation, Vertic
al−Gradient Freeze Technique, Electrochemi.Soci., 1
20 (1973) 588, WAGault, EMMonberg and JECleman
s; A Novel Application of the Vertical Gradient Fre
eze Method to the Growth of High Quality IV−V Cry
stals, J.Cryst.Growth.74 (1986) 491).

第1図は本発明に係わる液体封止垂直ブリツヂマン法の
原理を示す。右側はるつぼの断面図の模式図、左側はる
つぼ内の温度分布を示す。以下、化合半導体結晶の代表
例としてGaAs単結晶に適用した例を説明する。図におい
て、1は結晶形状規定用容器すなわちるつぼであり、2
は種子結晶、3は成長したGaAs結晶、4は原料融液、5
はB2O3などよりなる液体封止剤である。また曲線6は結
晶育成時の炉内の温度分布を示し、結晶成長はるつぼ1
を徐々に下方に移動させ、その結果、結晶成長界面7
(温度は融点Tmに相当する)は種子結晶2の上端部8か
ら徐々に上部へ移動し、結晶3が成長する。一方垂直温
度こう配凝固法では、るつぼ1の位置は固定したまま炉
内温度分布6を変化、すなわち分布をほぼ一定に保つて
全体を高温側から低温側へ変化(第1図左図において右
から左へ平行移動)させる。実際には上述の垂直ブリツ
ヂマン法と垂直温度こう配凝固法の両方法を組合せて結
晶育成する場合が多く、本発明はいずれの場合にも適用
できるものである。さらに、第1図の例では高温の原料
融液4表面からAsの解離蒸発を防止するために液体封止
剤5を用いているが、この代りにAsの解離蒸発を抑える
に十分なAs雰囲気に保つ方法もあることは公知である。
FIG. 1 shows the principle of the liquid-sealed vertical Bridgeman method according to the present invention. The right side shows a schematic view of a cross-sectional view of the crucible, and the left side shows the temperature distribution inside the crucible. An example applied to a GaAs single crystal will be described below as a typical example of a compound semiconductor crystal. In the figure, reference numeral 1 is a crystal shape defining container or crucible, and 2
Is a seed crystal, 3 is a grown GaAs crystal, 4 is a raw material melt, 5
Is a liquid sealant composed of B 2 O 3 . Curve 6 shows the temperature distribution in the furnace during crystal growth, and the crystal growth is in the crucible 1
Are gradually moved downward, and as a result, the crystal growth interface 7
(The temperature corresponds to the melting point T m ) gradually moves from the upper end 8 of the seed crystal 2 to the upper part, and the crystal 3 grows. On the other hand, in the vertical temperature gradient solidification method, the temperature distribution 6 in the furnace is changed while the position of the crucible 1 is fixed, that is, the temperature distribution is kept almost constant and the whole temperature is changed from the high temperature side to the low temperature side (from the right in FIG. Move it to the left in parallel). Actually, in many cases, the above-mentioned vertical Bridgeman method and vertical temperature gradient solidification method are combined to grow a crystal, and the present invention can be applied to any case. Further, in the example of FIG. 1, the liquid sealant 5 is used to prevent dissociative evaporation of As from the surface of the high-temperature raw material melt 4, but instead of this, an As atmosphere sufficient to suppress dissociative evaporation of As is used. It is known that there is also a method of keeping it at.

本発明の特徴は、上述のごとき結晶成長方法において特
に原料融液4の作製と結晶成長開始時の種子付きのプロ
セスにあるもので、以下これについての従来の方法およ
びその欠点について詳述する。第5図は従来適用されて
いた原料融液の作製方法を示す模式図である。図におい
てるつぼ1中には、その下部に設けた突起部9に種子結
晶2を挿入し、次にるつぼ本体部には原料となるGaAs多
結晶10を充填し、さらにこの上部には液体封止剤B2O3
固体11を充填する。原料融液の作製プロセスは適切な炉
内温度分布のもとで温度を徐々に上昇し、B2O311の軟
化、GaAs多結晶10の融解を経て原料融液4作製プロセス
が終了する。このような従来の原料融液4の作製方法の
問題点は、(i)あらかじめ原料となるGaAs多結晶を他
の方法で作製する必要があり、そのための工程が増加
し、結晶製造コストが高くなるばかりでなく、(ii)こ
のような工程の増加は不純物混入の機会を増加させ、育
成した結晶の品質劣化にもつながる。(ii)さらにこの
方法の重大な欠点は、原料となる多結晶はほぼストイキ
オメトリツクな組成であるため、融液の組成を大幅に変
化させることができないことである。このことは、近年
半絶縁性GaAs単結晶の分野で盛んに行なわれている融液
の組成制御による結晶特性の制御の観点からは大きな短
所となる。
The feature of the present invention resides in the above-described crystal growth method, in particular, in the production of the raw material melt 4 and the process of attaching seeds at the start of crystal growth, and the conventional method and its drawbacks will be described in detail below. FIG. 5 is a schematic diagram showing a method for producing a raw material melt which has been conventionally applied. In the figure, the seed crystal 2 is inserted into the protrusion 9 provided in the lower part of the crucible 1, then the GaAs polycrystal 10 as a raw material is filled in the main part of the crucible, and the upper part is liquid-sealed. Fill solid 11 of agent B 2 O 3 . In the manufacturing process of the raw material melt, the temperature is gradually raised under an appropriate temperature distribution in the furnace, the B 2 O 3 11 is softened, the GaAs polycrystal 10 is melted, and the manufacturing process of the raw material melt 4 is completed. The problems of such a conventional method for producing the raw material melt 4 are (i) it is necessary to previously produce a GaAs polycrystal as a raw material by another method, the number of steps for that is increased, and the crystal production cost is high. Not only that, but (ii) such an increase in the number of steps increases the chances of mixing impurities, which leads to the deterioration of the quality of the grown crystal. (Ii) Further, a serious drawback of this method is that the composition of the melt cannot be significantly changed because the polycrystal as a raw material has a substantially stoichiometric composition. This is a major disadvantage from the viewpoint of controlling the crystal characteristics by controlling the composition of the melt, which has been actively performed in the field of semi-insulating GaAs single crystals in recent years.

これらの問題を解決するため発明者らは、液体封止引上
げ法の分野で適用されている直接合成法から容易に類推
できる原料融液作製方法を種々試みたが、この方法にも
歩留りの良い単結晶育成に問題があることがわかつた。
第6図は上述の直接合成垂直ブリツヂマン法における原
料充填方法を示す模式図である。図において、12はGaAs
化合物の素原料の1つである金属Ga、13は金属Asをそれ
ぞれ示す。直接合成法でGaAs原料融液を作製するプロセ
スは、第6図のように原材料をるつぼ1中に充填した後
に、これを炉内で加熱昇温する。温度の上昇に伴つてま
ず金属Ga12が融解し(融点29℃)、次に封止剤であるB2
O311が軟化し(400〜600℃)、第7図(a)に示すよう
に、種子結晶2の上方にGa融液14と固体の金属As13の混
合物が存在し、さらにこれらの上部を液体となつたB2O3
5が封止する。さらに温度を上昇すると、今度は金属As1
3が融解し(融点820℃)、同時に融解したGa14と反応し
GaAsが合成される。第8図(a)はこの状態を示す模式
図であり、図において、15は合成されたGaAs結晶であ
る。この状態からさらに昇温し、種子結晶2と合成され
たGaAs結晶15の境界部16をGaAs結晶の融点として、これ
より上部を融点以上の高温になるように炉内温度および
温度分布を調節することにより原料となるGaAs融液を実
現して原料GaAsの合成・融解プロセスを終了する。
In order to solve these problems, the inventors have tried various raw material melt production methods that can be easily analogized from the direct synthesis method applied in the field of the liquid sealing pulling method, but this method also has a good yield. I knew that there was a problem in growing single crystals.
FIG. 6 is a schematic view showing a raw material charging method in the above-mentioned direct synthesis vertical Bridgeman method. In the figure, 12 is GaAs
Metal Ga, which is one of the raw materials of the compound, represents metal As. In the process for producing the GaAs raw material melt by the direct synthesis method, the raw materials are filled in the crucible 1 as shown in FIG. 6, and then the crucible 1 is heated and heated in the furnace. As the temperature rises, first the metallic Ga12 melts (melting point 29 ° C), then the sealing agent B 2
O 3 11 softened (400 to 600 ° C.), and as shown in FIG. 7 (a), a mixture of Ga melt 14 and solid metal As 13 was present above the seed crystal 2, and the upper portion of these was liquid and summer were B 2 O 3
5 seals. When the temperature is further increased, metal As1
3 melts (melting point 820 ° C) and at the same time reacts with the melted Ga14
GaAs is synthesized. FIG. 8 (a) is a schematic view showing this state, in which 15 is a synthesized GaAs crystal. From this state, the temperature is further raised, and the boundary portion 16 between the GaAs crystal 15 synthesized with the seed crystal 2 is set as the melting point of the GaAs crystal, and the furnace temperature and the temperature distribution are adjusted so that the upper portion thereof becomes a temperature higher than the melting point. As a result, a raw material GaAs melt is realized and the raw material GaAs synthesis / melting process is completed.

第9図は上述のGaAs合成・融解後、種子結晶2の境界部
16から結晶成長を開始し、増径部1cを経て定径部1bの成
長時の状態を示す単結晶育成プロセスの模式図であり、
19は結晶成長界面を20はGaAs融液を示す。(b)図は
(a)図における境界部の拡大図を示す。
FIG. 9 shows the boundary portion of the seed crystal 2 after GaAs synthesis and melting as described above.
Starting crystal growth from 16, is a schematic diagram of a single crystal growth process showing the state during growth of the constant diameter portion 1b through the increased diameter portion 1c,
19 indicates a crystal growth interface and 20 indicates a GaAs melt. The figure (b) shows the enlarged view of the boundary part in the figure (a).

発明者らは、上述のごとき原料GaAsの合成・融解および
単結晶育成プロセスにより得たGaAs結晶の特性を種々調
べた結果、これらの結晶には、再現性良い単結晶育成に
大きな問題があることが判明した。具体的には第9図
(b)の拡大模式図に示すように、種子結晶2部に起源
をもつ高密度の転位、小傾角境界、さらにはサブグレイ
ンなどの欠陥25が発生し、結晶成長の進行と共に多結晶
となつてしまうことである。さらにこれらの原因を種々
考察・検討した結果、次に示すような原因が判明した。
それは第7図(b)の拡大図に模式的に示すように、合
成プロセス中に融解したGa14がGaAsである種子結晶2の
表面を溶解・侵触し、種子結晶の界面形状を不整21にす
ると共に種子結晶としての結晶品質を著しく劣化させる
ことである。
As a result of various investigations on the characteristics of the GaAs crystal obtained by the synthesis / melting of the raw material GaAs and the single crystal growing process as described above, the inventors have found that these crystals have a large problem in growing the single crystal with good reproducibility. There was found. Specifically, as shown in the enlarged schematic view of FIG. 9 (b), high density dislocations originating from the seed crystal 2 part, small tilt boundaries, and defects 25 such as subgrains are generated, causing crystal growth. That is, it becomes a polycrystal with the progress of. Furthermore, as a result of various consideration and examination of these causes, the following causes were found.
As shown in the enlarged view of Fig. 7 (b), Ga14 melted and touched the surface of the seed crystal 2 made of GaAs during the synthesis process to make the interface shape of the seed crystal 21 irregular. At the same time, the crystal quality of the seed crystal is significantly deteriorated.

以上述べたように、液体封止引上げ法の分野で多用され
ている直接合成法をそのまま本発明に係わる垂直ブリツ
ヂマン法に適用した場合、種子結晶の劣化が避けられ
ず、再現性良い単結晶育成が困難となることが明らかに
なつた。
As described above, when the direct synthesis method frequently used in the field of the liquid sealing pulling method is directly applied to the vertical Bridgeman method according to the present invention, the deterioration of the seed crystal is unavoidable and the single crystal growth with good reproducibility is achieved. Became difficult.

(発明の目的) 本発明はこれらの欠点を解決するために提案されたもの
で、その目的は直接合成垂直ブリツヂマン法により、再
現性良く単結晶を育成する化合物半導体単結晶の育成方
法を提供することである。なお本発明以前にも、本発明
とほぼ同じ目的でなされた発明(特願昭61−215980)が
提案されているが、本発明はこれら従来の方法よりもさ
らに簡単でかつ効果的に化合物半導体単結晶の育成を可
能にするものである。
(Object of the Invention) The present invention has been proposed to solve these drawbacks, and an object thereof is to provide a method for growing a compound semiconductor single crystal which grows a single crystal with good reproducibility by a direct synthetic vertical Bridgeman method. That is. Before the present invention, an invention (Japanese Patent Application No. 61-215980) made for almost the same purpose as the present invention has been proposed, but the present invention is simpler and more effective than these conventional methods. It enables the growth of a single crystal.

(問題点を解決するための手段) 上記の目的を達成するため、本発明は結晶形状規定用容
器内の下部に種子結晶を充填し、ついで前記の種子結晶
の上部に、育成しようとする化合物結晶と同一あるいは
これに近い組成からなる単結晶または多結晶からなるキ
ヤツプ層を充填し、前記のキヤツプ層の上部に、必要な
組成比に調合された2種以上の元素からなる素原料とを
充填する工程と、ついで前記の容器内で前記の2種以上
の元素からなる素原料から所望の化合物多結晶を合成す
る工程と、ついで前記の合成された化合物多結晶と前記
のキヤツプ層の化合物結晶とを融解する工程と、ついで
前記の融解された融液と前記の種子結晶とを、前記の容
器内で所定の方位及び形状を有する単結晶に成長させる
工程とを具備することを特徴とする化合物半導体単結晶
育成方法を発明の要旨とするものである。
(Means for Solving Problems) In order to achieve the above-mentioned object, the present invention is to fill a seed crystal in the lower part of a crystal shape defining container, and then to the upper part of the seed crystal, a compound to be grown. A cap layer composed of a single crystal or a polycrystal having the same composition as the crystal or a composition close to that of the crystal is filled, and an elemental raw material composed of two or more elements mixed in a required composition ratio is provided on the upper part of the cap layer. A step of filling, a step of synthesizing a desired compound polycrystal from the raw material composed of the two or more elements in the container, and a step of synthesizing the compound polycrystal thus synthesized and the compound of the cap layer. A step of melting the crystal, and then growing the melted melt and the seed crystal into a single crystal having a predetermined orientation and shape in the container, Compound A method for growing a single semiconductor single crystal is the gist of the invention.

第2図は本発明の主要な特徴を示するつぼ中への原料充
填方法を模式的に示す。図において、1はるつぼであ
り、本発明の方法に用いるるつぼ1の形状に関しては、
るつぼ1の下部の通常円筒形状をもつ突起部1aと上部の
定径部1bとの間には増径部1cを設けてなることが特徴で
ある。ここで、本発明に係わる原料充填法は、この突起
部1aには種子結晶2を挿入した後に、増径部1cまたは定
径部1bの下部に、あるいはその両方にあらかじめ合成あ
るいは育成してなるGaAsの多結晶あるいは単結晶よりな
るキヤツプ層24(固体で種子結晶と融液の接触を初期状
態で抑止する作用をなすもの)を充填することが主要な
特徴である。なお、このキヤツプ層24の断面形状はるつ
ぼ1の断面形状と同一であることが好ましく、かつこの
キヤツプ層24を充填した状態で、できる限りるつぼに密
着して配置することが本発明の効果を大ならしめるもの
である。次にキヤツプ層24の上部には、所要の割合で秤
量された素原料である金属Ga12および金属As13を充填
し、ついでB2O3などからなる封止剤11を充填する。これ
ら金属Ga12,金属As13,封止剤11等の充填方法・配置に関
しては、従来の直接合成法による充填方法と同様であ
り、特別な制限条件は要しないものである。
FIG. 2 schematically shows the method of filling the raw material into the crucible, which shows the main feature of the present invention. In the figure, 1 is a crucible, and regarding the shape of the crucible 1 used in the method of the present invention,
A feature is that a diameter-increasing portion 1c is provided between the protrusion 1a having a generally cylindrical shape in the lower portion of the crucible 1 and the constant-diameter portion 1b in the upper portion. Here, in the raw material filling method according to the present invention, after the seed crystal 2 is inserted into the protruding portion 1a, it is synthesized or grown in advance on the lower portion of the increased diameter portion 1c or the fixed diameter portion 1b, or both. The main feature is to fill the cap layer 24 made of GaAs polycrystal or single crystal (which acts as a solid to suppress the contact between the seed crystal and the melt in the initial state). The cross-sectional shape of the cap layer 24 is preferably the same as the cross-sectional shape of the crucible 1, and the effect of the present invention is to arrange the cap layer 24 as closely as possible to the crucible with the cap layer 24 being filled. It is a big thing. Next, the upper portion of the cap layer 24 is filled with metal Ga12 and metal As13 which are the raw materials weighed in a required ratio, and then the encapsulant 11 made of B 2 O 3 or the like. The filling method / arrangement of the metal Ga 12, the metal As 13, the sealant 11 and the like is the same as the filling method by the conventional direct synthesis method, and no special limiting condition is required.

以上述べた本発明に係わる方法で原料を充填した後のGa
As多結晶15の合成およびGaAs融液20の作製プロセスは以
下のようである。第3図は本発明の方法によるGaAs多結
晶15合成後の状態を示す模式図である。なお、GaとAsか
らGaAs多結晶を形成する温度はGaAsの単結晶又は多結晶
が溶融する温度より低いので、キヤツプ層はとけない。
図において、24は第2図において、あらかじめ充填した
GaAs原料のキヤツプ層であり、このキヤツプ層24の上部
には合成されたGaAs多結晶15が存在するが、キヤツプ層
24の下部すなわち、種子結晶2とキヤツプ層24の間には
新たに合成されたGaAs多結晶は存在しないようにして合
成プロセスを終了することが本発明に係わる合成プロセ
スの特徴である。次に合成されたGaAs多結晶15および充
填したGaAs結晶のキヤツプ層24の融解プロセスは、るつ
ぼ1上部のGaAs多結晶15、次にGaAs結晶のキヤツプ層24
の順に徐々に融解し、最後に種子結晶2の上部2aをGaAs
結晶の融点(1238℃)に保つて終了する。
Ga after filling the raw materials by the method according to the present invention described above
The synthesis process of As polycrystal 15 and the production process of GaAs melt 20 are as follows. FIG. 3 is a schematic view showing a state after GaAs polycrystal 15 is synthesized by the method of the present invention. Since the temperature at which GaAs polycrystal is formed from Ga and As is lower than the temperature at which GaAs single crystal or polycrystal melts, the cap layer cannot be removed.
In the figure, 24 is pre-filled in FIG.
This is a cap layer made of GaAs, and the synthesized GaAs polycrystal 15 exists on the upper part of the cap layer 24.
It is a feature of the synthesis process according to the present invention that there is no newly synthesized GaAs polycrystal between the seed crystal 2 and the cap layer 24 under 24. Next, the melting process of the synthesized GaAs polycrystal 15 and the filled GaAs crystal cap layer 24 is performed by the GaAs polycrystal 15 on the top of the crucible 1 and then the GaAs crystal cap layer 24.
Melted gradually in the order of, and finally the upper part 2a of the seed crystal 2 was GaAs.
Keep the melting point of the crystal (1238 ℃) and finish.

換言すれば本発明における単結晶育成の順序は、 (i)金属Ga及びAs(素原料)とを融解して、GaAs多結
晶を合成し(約850℃)、 (ii)ついで育成しようとする化合物結晶と同一あるい
はこれに近い組成からなる単結晶または多結晶からなる
キヤツプ層と(i)の工程で得られたGaAs多結晶とを融
解し(1238℃以上)、 (iii)上記の(ii)の工程で得られた融液と種子結晶
とを、所望の方位と形状を有する単結晶に成長させる ことにある。
In other words, the order of single crystal growth in the present invention is as follows: (i) melting Ga and As (elementary raw material) to synthesize GaAs polycrystal (about 850 ° C.), and (ii) trying to grow The cap layer made of a single crystal or a polycrystal having the same or similar composition as the compound crystal and the GaAs polycrystal obtained in the step (i) are melted (1238 ° C. or higher), and (iii) above (ii) The purpose is to grow the melt and the seed crystal obtained in the step (1) into a single crystal having a desired orientation and shape.

以上述べたように本発明によるGaAs結晶のごとき化合物
半導体結晶の合成および育成方法によると、第2図に示
すごとき方法で原料をるつぼ中に充填し、さらに第3図
に示すごとき状態でGaAs結晶を合成することにより、第
7図(b)に示したような種子結晶の界面の形状不整21
は発生せず、その結果、第9図(b)に示すごとき欠陥
25の発生もなく、良質の単結晶育成が可能になる。
As described above, according to the method of synthesizing and growing a compound semiconductor crystal such as a GaAs crystal according to the present invention, the raw material is filled in the crucible by the method shown in FIG. 2 and the GaAs crystal is further prepared in the state shown in FIG. As shown in FIG. 7 (b), the shape irregularity of the seed crystal interface 21
Does not occur, and as a result, the defect as shown in FIG. 9 (b)
It is possible to grow a high quality single crystal without the generation of 25.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であつて、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。
Next, examples of the present invention will be described. Needless to say, the embodiment is merely an example, and various modifications and improvements can be made without departing from the spirit of the present invention.

(実施例1) 第2図に示した原料充填法を適用した実施例を次に示
す。用いたるつぼ1の形状・寸法は定径部1bの内径は約
80mm、下部の突起部1aの内径は4mm、増径部1cは約45゜
の傾斜角度である。このるつぼの材質は熱分解窒化ボロ
ン(PBN)である。上述のるつぼ1の突起部1aには直径
約4mmの方位<100>の種子結晶(GaAs単結晶)2を挿入
した。次にGaAs結晶原料のキヤツプ層24には、あらかじ
めほぼ同一形状のるつぼを用いて合成した多結晶インゴ
ツトから切り出して、洗浄・エツチング処理等を施した
直径約80mm、厚さ約15mmの円板形状であり、重量は約40
0gである。これらGaAs結晶原料のキヤツプ層24の上部に
は金属Ga(固体)12 1500.0gと金属As13 1645gを交互に
充填した。さらにこれらの素原料の上部には直径約75m
m、厚さ30mm(重量約240g)の固体のB2O311を載せて原
料充填プロセスを終了した。次に素原料である金属Ga12
と金属As13からのGaAs多結晶15合成プロセスでは炉内圧
力約65気圧(Arガス雰囲気)の炉内で、第1図に示すご
とき温度分布(るつぼ上部が下部より高温)のもとで徐
々に昇温すると共に、充填したGaAs結晶原料24の上部が
約850℃(るつぼ1の外周部での温度測定から推定)に
到達した時点で昇温を停止し一定時間保持して、このプ
ロセスを終了した。この温度は固体のGaAs結晶(単結
晶,多結晶)を融解はせず、一方、GaとAsの両者をとか
してGaAs多結晶を作るには充分な温度である。次にこれ
ら合成したGaAs多結晶15および充填したGaAs結晶原料24
の融解は、やはり第1図に示すごとき温度分布のもと
で、種子結晶2の上端部2aがGaAs結晶の融点(1238℃)
になるまで昇温して後、一定時間保持して融解プロセス
を終了した。なお、以後の単結晶化プロセスは従来の垂
直ブリツヂマン法による結晶育成法とほぼ同様な方法で
行つた。
(Example 1) An example in which the raw material charging method shown in FIG. 2 is applied will be described below. The shape and dimensions of the crucible 1 used is such that the inner diameter of the constant diameter portion 1b is approximately
80 mm, the inner diameter of the lower protrusion 1a is 4 mm, and the increased diameter portion 1c has an inclination angle of about 45 °. The material of this crucible is pyrolytic boron nitride (PBN). A seed crystal (GaAs single crystal) 2 having a diameter of about 4 mm and an orientation of <100> was inserted into the protrusion 1a of the crucible 1 described above. Next, the cap layer 24 of the GaAs crystal raw material is a disk shape with a diameter of about 80 mm and a thickness of about 15 mm that has been cut out from a polycrystalline ingot synthesized in advance using a crucible of almost the same shape and subjected to cleaning / etching treatment. And weighs about 40
It is 0g. The upper portion of the cap layer 24 of these GaAs crystal raw materials was alternately filled with metal Ga (solid) 12 1500.0 g and metal As 13 1645 g. Furthermore, a diameter of about 75 m is above the raw materials.
The raw material filling process was completed by loading solid B 2 O 3 11 having a thickness of 30 mm and a thickness of 30 mm (weight of about 240 g). Next, the metallic raw material Ga12
In the process for synthesizing GaAs polycrystal 15 from Al and metal As13, the temperature was gradually increased in the furnace at a pressure of about 65 atm (Ar gas atmosphere) under the temperature distribution (the upper part of the crucible was higher than the lower part) as shown in Fig. 1. When the temperature of the filled GaAs crystal raw material 24 reaches approximately 850 ° C (estimated from the temperature measurement at the outer periphery of the crucible 1), the temperature is stopped and held for a certain period of time, and this process is completed. did. This temperature does not melt the solid GaAs crystals (single crystal and polycrystal), while it is sufficient to melt both Ga and As to form GaAs polycrystal. Next, these synthesized GaAs polycrystals 15 and filled GaAs crystal raw materials 24
The melting point of the seed crystal 2 is the melting point (1238 ° C) of the GaAs crystal at the upper end 2a of the seed crystal 2 under the temperature distribution shown in Fig. 1.
The temperature was raised until the temperature reached, and the temperature was maintained for a certain period of time to complete the melting process. Incidentally, the subsequent single crystallization process was carried out by a method substantially similar to the conventional crystal growth method by the vertical Bridgeman method.

得られた直径約80mmの結晶は成長方向<100>の単結晶
であり、面内で密度5×103〜104g/cm3の範囲で分布す
る転位は観測されたが、種子結晶部に起源をもつ高密度
の転位分布や結晶境界などは見られなかつた。一方、電
気的特性に関しては、比抵抗は5〜10×107Ω−cmであ
り、熱変成のない安定な半絶縁性を示した。また原料充
填時に対する単結晶育成終了時の重量減少量は12gであ
り、この重量減少の全部が原料合成時のAsの蒸発量であ
ると仮定すると、結晶成長の初期融液組成はAs/(Ga+A
s)=0.503と試算され、この融液から成長した結晶が残
留シヤローアクセプタレベルを点欠陥に起因したデイー
プドナーレベルで補償した半絶縁性結晶であることが推
定できる。
The obtained crystal with a diameter of about 80 mm was a single crystal in the growth direction <100>, and dislocations distributed in the plane at a density of 5 × 10 3 to 10 4 g / cm 3 were observed, but the seed crystal part No high-density dislocation distributions or crystal boundaries originating from the crystal were found. On the other hand, regarding electrical characteristics, the specific resistance was 5 to 10 × 10 7 Ω-cm, and stable semi-insulating property without thermal transformation was shown. Further, the weight reduction amount at the end of the single crystal growth with respect to the raw material filling is 12 g, and assuming that the entire weight reduction is the evaporation amount of As during the raw material synthesis, the initial melt composition of the crystal growth is As / ( Ga + A
s) = 0.503, and it can be inferred that the crystal grown from this melt is a semi-insulating crystal in which the residual shallow acceptor level is compensated by the deep donor level due to point defects.

(実施例2) 第4図は本発明に係わる他と実施例の原料充填方法を示
す模式図である。この実施例における特徴は、(i)種
子結晶2とGaAs結晶原料24は一体の結晶インゴツトを用
い、(ii)または素原料の一つである金属Gaは、充填密
度を高めるため、初めGaを融点以上に加熱融解して、液
体Gaとして充填したことなどであり、その他の充填方法
およびGaAs多結晶合成,融解,単結晶育成プロセスは実
施例1で述べた方法と同様である。
(Embodiment 2) FIG. 4 is a schematic view showing a raw material charging method according to another embodiment of the present invention. The feature of this embodiment is that (i) the seed crystal 2 and the GaAs crystal raw material 24 use an integrated crystal ingot, and (ii) or one of the raw materials, metallic Ga, is initially filled with Ga to increase the packing density. For example, the material is heated and melted at a temperature equal to or higher than the melting point and filled as liquid Ga. Other filling methods and GaAs polycrystal synthesis, melting, and single crystal growth processes are the same as those described in the first embodiment.

得られた結果は、実施例1の場合と同様に結晶全体が単
結晶であり、また電気特性も安定な半絶縁性を示した。
The obtained results showed that the entire crystal was a single crystal as in the case of Example 1 and that the electrical characteristics were stable and showed a semi-insulating property.

この実施例では、種子結晶2の上部に充填するGaAs結晶
原料24として通常、ウエハ状に加工して用いることがで
きない結晶インゴツトの増径部を有効に利用できる利点
もある。
This embodiment also has an advantage that the increased diameter portion of the crystal ingot, which cannot be usually processed into a wafer and used as the GaAs crystal raw material 24 to be filled in the upper portion of the seed crystal 2, can be effectively used.

第10図は結晶育成状態のるつぼ内の状態を模式的に示す
もので、図において2は種子結晶、17は成長したGaAs結
晶、16は種子結晶と成長結晶との境界部を示す。従来方
法の結晶では種子結晶2の表面は、原料合成時に融解し
たGaにより、溶解・侵触され形状不整を生じ、成長結晶
への欠陥導入の原因となる。しかるに本発明の方法によ
る結晶では、Gaがキヤツプ層のため、直接種子結晶2に
接触することはないため、形状不整は全く生じないので
欠陥のない単結晶が得られるものである。
FIG. 10 schematically shows the state in the crucible in the crystal growing state. In the figure, 2 is a seed crystal, 17 is a grown GaAs crystal, and 16 is a boundary between the seed crystal and the grown crystal. In the crystal of the conventional method, the surface of the seed crystal 2 is melted and touched by Ga melted at the time of raw material synthesis to cause shape irregularity, which causes defects to be introduced into the grown crystal. However, in the crystal according to the method of the present invention, since Ga is a capping layer and does not come into direct contact with the seed crystal 2, no shape irregularity occurs and a single crystal having no defects can be obtained.

(発明の効果) 以上説明したように、本発明は、種子結晶を用いた垂直
ブリツヂマン法あるいは垂直温度こう配凝固法による化
合物半導体結晶製造方法において、るつぼ中への原料の
充填法,原料合成・融解プロセス等に大幅な改善を加え
たもので、結晶形状規定用容器内の下部に種子結晶を充
填し、ついで前記の種子結晶の上部に、育成しようとす
る化合物結晶と同一あるいはこれに近い組成からなる単
結晶または多結晶からなるキャップ層を充填し、前記の
キャップ層の上部に、必要な組成比に調合された2種以
上の元素からなる素原料とを充填することによって、原
料合成・融解プロセスにおける種子結晶の劣化を防止
し、この種子結晶により欠陥の少い単結晶の再現性良い
育成を可能にする。また、本発明によると原料融液は直
接合成法によつて作製されるため、融液の組成は自由に
選択できること、さらに他のプロセスで合成した他結晶
原料を用いることもないので、原料融液さらに育成結晶
中への不純物の混入も低減できる等々、結晶育成および
結晶の品質面で多くの利点を有するものである。
(Effects of the Invention) As described above, the present invention provides a method of filling a crucible with a raw material, synthesizing and melting a raw material in a compound semiconductor crystal manufacturing method by a vertical Britzmann method using a seed crystal or a vertical temperature gradient solidification method. With significant improvements made to the process, etc., the seed crystal is filled in the lower part of the crystal shape defining container, and then the upper part of the seed crystal is composed of the same or close composition as the compound crystal to be grown. Synthesis and melting of raw material by filling a cap layer made of single crystal or polycrystal, and filling the upper part of the cap layer with a raw material made of two or more elements mixed in a necessary composition ratio. The deterioration of the seed crystal in the process is prevented, and this seed crystal enables the reproducible growth of a single crystal with few defects. Further, according to the present invention, since the raw material melt is produced by the direct synthesis method, the composition of the melt can be freely selected, and since no other crystal raw material synthesized by another process is used, It has many advantages in terms of crystal growth and crystal quality, such that impurities can be reduced in the liquid and further in the grown crystal.

なお、本発明についてこれまで、GaAs結晶育成について
詳細を説明したが、本発明はGaAs結晶にのみ適用される
ものではなく、炉内温度条件,炉内雰囲気圧力条件など
を適切に選ぶことにより、InP,GaP,InAsなど他の多くの
種類の化合物結晶および混晶の育成にも適用できるもの
である。
Although the present invention has been described in detail so far with respect to GaAs crystal growth, the present invention is not applied only to GaAs crystals, and by appropriately selecting the temperature conditions in the furnace, atmospheric pressure conditions in the furnace, etc. It can also be applied to the growth of many other types of compound crystals and mixed crystals such as InP, GaP and InAs.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わる垂直ブリツヂマン法あるいは垂
直温度こう配凝固法の原理の説明図、第2図は本発明の
実施例を示す模式図であり、第3図は本発明の方法によ
る原料合成後の状態を示す模式図、また第4図は本発明
の他の実施例を示す模式図であり、第5図,第6図は従
来の原料充填法を示す模式図、第7図は従来の方法によ
る原料合成途中の模式図、第8図は従来の方法による原
料多結晶合成後の状態を示す模式図、第9図は従来法の
単結晶育成途中の模式図、第10図は本発明の効果を説明
する図面である。 1……るつぼ 1a……るつぼの突起部 1b……るつぼの定径部 1c……るつぼの増径部 2……種子結晶 3……成長結晶 4……原料融液 5……液体封止剤 6……炉内温度分布曲線 7……結晶成長界面 8……種子結晶上端部 9……種子結晶を挿入するための突起部 10……GaAs多結晶 11……B2O3などからなる液体封止剤 12……金属Ga(原料) 13……金属As 14……液体となつたGa融液 15……合成されたGaAs多結晶 16……境界面 17……成長した単結晶 18……成長した単結晶の定径部 19……結晶成長界面 20……原料GaAs融液 21……種式結晶上部の形状不整 23……種子結晶に導入された欠陥 24……本発明に係わる充填したGaAs原料のキヤツプ層 25……種子結晶部からひき継いた成長結晶中の欠陥
FIG. 1 is an explanatory view of the principle of the vertical Bridgeman method or the vertical temperature gradient solidification method according to the present invention, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIG. 3 is a raw material synthesis by the method of the present invention. FIG. 4 is a schematic diagram showing the latter state, FIG. 4 is a schematic diagram showing another embodiment of the present invention, FIGS. 5 and 6 are schematic diagrams showing a conventional raw material filling method, and FIG. Fig. 8 is a schematic diagram during the raw material synthesis by the method of Fig. 8, Fig. 8 is a schematic diagram showing the state after the raw material polycrystal synthesis by the conventional method, Fig. 9 is a schematic diagram during the conventional single crystal growth, and Fig. 10 is the present It is drawing explaining the effect of invention. 1 ... crucible 1a ... crucible protrusion 1b ... crucible constant diameter portion 1c ... crucible increased diameter portion 2 ... seed crystal 3 ... growing crystal 4 ... raw material melt 5 ... liquid sealant 6 ...... furnace temperature distribution curve 7 ...... crystal growth interface 8 ...... seed crystal upper portion 9 ...... for inserting a seed crystal projections 10 ...... GaAs polycrystal 11 ...... B 2 O 3 liquid made of Sealant 12 …… Metal Ga (raw material) 13 …… Metal As 14 …… Liquid Ga melt 15 …… Synthesized GaAs polycrystal 16 …… Interface 17 …… Growing single crystal 18 …… Constant-diameter part of grown single crystal 19 …… Crystal growth interface 20 …… Material GaAs melt 21 …… Type irregularity of seed crystal top 23 …… Defects introduced into seed crystal 24 …… Filled according to the present invention Cap layer of GaAs source 25 .. Defects in grown crystal inherited from seed crystal part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶形状規定用容器内の下部に種子結晶を
充填し、ついで前記の種子結晶の上部に、育成しようと
する化合物結晶と同一あるいはこれに近い組成からなる
単結晶または多結晶からなるキヤツプ層を充填し、前記
のキヤツプ層の上部に、必要な組成比に調合された2種
以上の元素からなる素原料とを充填する工程と、ついで
前記の容器内で前記の2種以上の元素からなる素原料か
ら所望の化合物多結晶を合成する工程と、ついで前記の
合成された化合物多結晶と前記のキヤツプ層の化合物結
晶とを融解する工程と、ついで前記の融解された融液と
前記の種子結晶とを、前記の容器内で所定の方位及び形
状を有する単結晶に成長させる工程とを具備することを
特徴とする化合物半導体単結晶育成方法。
1. A seed crystal is filled in a lower portion of a crystal shape defining container, and then a single crystal or a polycrystal having a composition similar to or close to that of a compound crystal to be grown is provided in an upper portion of the seed crystal. And a cap raw material consisting of two or more elements mixed in a necessary composition ratio on the upper part of the cap layer, and then in the container, two or more of the above two or more kinds. A step of synthesizing a desired compound polycrystal from an elemental raw material consisting of the element, then melting the synthesized compound polycrystal and the compound crystal of the cap layer, and then melting the melt. And a step of growing the seed crystal into a single crystal having a predetermined orientation and shape in the container, the method for growing a compound semiconductor single crystal.
【請求項2】形状規定用容器は、下部より直径の小さい
突起部、次に増径部及び直径が大きくほぼ一定直径の定
径部より構成され、前記突起部には種子結晶を、またこ
の種子結晶の上部すなわち前記増径部あるいは定径部下
部あるいはその両方には化合物結晶原料を、さらにこの
化合物結晶原料の上部には2種以上の元素からなる素原
料を順次充填してなることを特徴とする特許請求の範囲
の範囲第1項記載の化合物半導体単結晶育成方法。
2. A shape-defining container is composed of a protrusion having a smaller diameter than the lower portion, then a diameter-increasing portion and a constant-diameter portion having a large diameter and a substantially constant diameter. The upper portion of the seed crystal, that is, the lower portion of the increased diameter portion and / or the lower portion of the constant diameter portion, or both, is charged with a compound crystal raw material, and the upper portion of the compound crystal raw material is sequentially filled with an elemental raw material composed of two or more elements. The method for growing a compound semiconductor single crystal according to claim 1, which is characterized in that.
JP2645487A 1987-02-09 1987-02-09 Method for growing compound semiconductor single crystal Expired - Lifetime JPH0764671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2645487A JPH0764671B2 (en) 1987-02-09 1987-02-09 Method for growing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2645487A JPH0764671B2 (en) 1987-02-09 1987-02-09 Method for growing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS63195193A JPS63195193A (en) 1988-08-12
JPH0764671B2 true JPH0764671B2 (en) 1995-07-12

Family

ID=12193950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2645487A Expired - Lifetime JPH0764671B2 (en) 1987-02-09 1987-02-09 Method for growing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0764671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020689A (en) * 2019-12-13 2020-04-17 广东先导先进材料股份有限公司 Crystal growth apparatus and method

Also Published As

Publication number Publication date
JPS63195193A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
JP3343615B2 (en) Bulk crystal growth method
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP2979770B2 (en) Single crystal manufacturing equipment
JPH0340987A (en) Growing method for single crystal
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JPH0244798B2 (en)
JP2690420B2 (en) Single crystal manufacturing equipment
JPH11302094A (en) Production of compound semiconductor single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2539841B2 (en) Crystal manufacturing method
JPH0524964A (en) Production of compound semiconductor single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH05286798A (en) Production of iii-v compound semiconductor single crystal block material
JP2000327496A (en) Production of inp single crystal
JPH0412081A (en) Production of single crystal of compound of group iii-v
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH0867593A (en) Method for growing single crystal
JPH09249479A (en) Method for growing compound semiconductor single crystal
JPS58199796A (en) Pulling device of crystal under sealing with liquid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term