JPH09249479A - Method for growing compound semiconductor single crystal - Google Patents

Method for growing compound semiconductor single crystal

Info

Publication number
JPH09249479A
JPH09249479A JP8188596A JP8188596A JPH09249479A JP H09249479 A JPH09249479 A JP H09249479A JP 8188596 A JP8188596 A JP 8188596A JP 8188596 A JP8188596 A JP 8188596A JP H09249479 A JPH09249479 A JP H09249479A
Authority
JP
Japan
Prior art keywords
single crystal
melting point
temperature
compound semiconductor
temperature region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8188596A
Other languages
Japanese (ja)
Inventor
Akira Noda
朗 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8188596A priority Critical patent/JPH09249479A/en
Publication of JPH09249479A publication Critical patent/JPH09249479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a compound semiconductor single crystal in high yield while suppressing the generation of polycrystal and twin crystal in the growth of a compound semiconductor single crystal doped with n-type or p-type dopant, especially a GaAs single crystal doped with Si by a vertical temperature-gradient method. SOLUTION: A temperature gradient 10 is formed in a molten raw material. The gradient starts from a high-temperature zone having a temperature higher than the melting point of the molten liquid through a solid-liquid interface temperature zone near the melting point to a low-temperature zone lower than the melting point and has a high-temperature peak between the high-temperature zone and the interface temperature zone. The temperature gradient is maintained to effect the uniform distribution of a dopant in the molten liquid. Thereafter, a temperature gradient 10 for crystal growth starting from the high-temperature zone higher than the melting point of the molten liquid 3 through a solid-liquid interface temperature zone maintained at about the melting point and controlling the solid-liquid interface 7 to a low-temperature zone maintained below the melting point is formed to effect the growth of a compound semiconductor single crystal doped with a dopant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、垂直徐冷法(以
下、VGF法と略す)による高品質なn型又はp型のド
ーパントを添加した化合物半導体単結晶の成長が可能な
化合物半導体単結晶の成長方法に関するものである。
TECHNICAL FIELD The present invention relates to a growth of a compound semiconductor single crystal capable of growing a high quality n-type or p-type dopant-added compound semiconductor single crystal by a vertical slow cooling method (hereinafter abbreviated as VGF method). It is about the method.

【0002】[0002]

【従来の技術】従来、GaAs等の化合物半導体単結晶
の製造方法としては、液体封止引き上げ法(以下、LE
C法と略す)、水平ブリッジマン法(以下、HB法と略
す)及び垂直徐冷法がある。LEC法は高温度勾配で単
結晶の育成を行うため単結晶中の転位密度が高く、育成
単結晶の直径制御が必要であるという欠点を有する。H
B法は低温度勾配で単結晶成長ができるため得られる単
結晶中の転位密度が低いという長所を有するが、円形ウ
エハーを得るためには結晶を円形に加工する必要があり
歩留りが悪いという欠点を有する。これに対してVGF
法は両方の利点を併せ持ち、低転位で円形断面の結晶を
得ることができるため、化合物半導体単結晶の製造方法
として注目されている。従来のVGF法によるIII−V
族化合物半導体の成長方法を図3を用い説明する。
2. Description of the Related Art Conventionally, as a method for producing a compound semiconductor single crystal such as GaAs, a liquid sealing pulling method (hereinafter referred to as LE
C method), horizontal Bridgman method (hereinafter abbreviated as HB method), and vertical annealing method. The LEC method has a drawback that the dislocation density in the single crystal is high and the diameter of the grown single crystal needs to be controlled because the single crystal is grown with a high temperature gradient. H
The method B has an advantage that the dislocation density in the obtained single crystal is low because the single crystal can be grown with a low temperature gradient. However, in order to obtain a circular wafer, it is necessary to process the crystal into a circular shape and the yield is poor. Have. On the other hand, VGF
The method has both advantages, and it is possible to obtain a crystal having a circular cross section with a low dislocation. Therefore, the method attracts attention as a method for producing a compound semiconductor single crystal. III-V by the conventional VGF method
A method for growing a group compound semiconductor will be described with reference to FIG.

【0003】底部が漏斗状の形状のるつぼ1内に種結晶
2と多結晶原料を入れ、これを円筒状ヒーター5を有す
る炉内に設置し、円筒状ヒーター5に給電して、種結晶
2より上部が融点以上になるような温度勾配を形成し、
温度勾配、融液が安定するまで数日保持する。その後、
温度を徐々に下げこの温度勾配を移動させて融液3より
単結晶6を成長させるものである。この温度勾配10は
重力方向に融点以上の高温領域から融点近傍の固液界面
温度領域を経て融点より低い低温領域に至る緩やかな温
度分布である。
A seed crystal 2 and a polycrystal raw material are put in a crucible 1 having a funnel-shaped bottom, and the seed crystal 2 is placed in a furnace having a cylindrical heater 5, and the cylindrical heater 5 is supplied with electric power to supply the seed crystal 2. Form a temperature gradient such that the upper part is above the melting point,
Hold the temperature gradient for several days until the melt stabilizes. afterwards,
The temperature is gradually lowered and this temperature gradient is moved to grow the single crystal 6 from the melt 3. The temperature gradient 10 has a gentle temperature distribution in the gravity direction from a high temperature region above the melting point to a low temperature region below the melting point through a solid-liquid interface temperature region near the melting point.

【0004】[0004]

【発明が解決しようとする課題】従来の方法でn型又は
p型のドーパントを添加した化合物半導体単結晶、特に
Siを添加したGaAs単結晶やZnを添加したGaA
s単結晶等を成長した場合、結晶育成途中において、部
分的にドーパントが析出しその箇所から多結晶や双晶が
発生していた。このため、単結晶の収率が非常に悪いも
のとなっていた。
SUMMARY OF THE INVENTION A compound semiconductor single crystal doped with an n-type or p-type dopant by a conventional method, particularly a GaAs single crystal doped with Si or a GaA doped with Zn.
When an s single crystal or the like was grown, a dopant was partially precipitated during the crystal growth, and a polycrystal or a twin crystal was generated from that portion. For this reason, the yield of single crystals was very poor.

【0005】[0005]

【課題を解決するための手段】本発明者は、この原因
は、結晶成長中の融液のドーパントの分布が均質になっ
ていないためと考え、鋭意検討を重ねた結果本発明に至
った。
The inventor of the present invention has considered that the cause of this is that the distribution of the dopant in the melt during crystal growth is not uniform, and as a result of intensive studies, the present invention has been accomplished.

【0006】すなわち、本発明は、るつぼ内のドーパン
トと化合物半導体原料を融解させて融液とした後、融液
を形成する融点以上の高温領域から固液界面を制御する
融点近傍の固液界面温度領域を経て融点より低い低温領
域に至る結晶成長用温度勾配を形成し、温度を徐々に下
げることにより温度勾配を移動させ単結晶を成長させる
化合物半導体単結晶の成長方法において、原料を融解
後、一旦、融液を形成する融点以上の高温領域から融点
近傍の固液界面温度領域を経て融点より低い低温領域の
温度勾配中の高温領域と界面温度領域との間に高温ピー
クを有する温度勾配を形成し保持した後、融液を形成す
る融点以上の高温領域から固液界面を制御する融点近傍
の固液界面温度領域を経て融点より低い低温領域に至る
前記結晶成長用温度勾配を形成し、ドーパント添加化合
物半導体単結晶を成長することを特徴とする化合物半導
体単結晶の成長方法であり、また、前記ドーパントがS
i、前記化合物半導体単結晶がGaAs単結晶であるこ
とを特徴とする化合物半導体単結晶の成長方法である。
That is, according to the present invention, after the dopant in the crucible and the compound semiconductor raw material are melted to form a melt, the solid-liquid interface in the vicinity of the melting point for controlling the solid-liquid interface from the high temperature region above the melting point forming the melt. In the method of growing a compound semiconductor single crystal in which a temperature gradient for crystal growth is formed through the temperature region to a low temperature region lower than the melting point, and the temperature gradient is moved to gradually grow the single crystal, the raw material is melted after melting. , A temperature gradient having a high temperature peak between the high temperature region and the interface temperature region in the temperature gradient from the high temperature region above the melting point forming the melt to the low temperature region below the melting point through the solid-liquid interface temperature region near the melting point The temperature for crystal growth from the high temperature region above the melting point forming the melt to the low temperature region below the melting point through the solid-liquid interface temperature region near the melting point controlling the solid-liquid interface after forming and holding Distribution is formed, a method of growing a compound semiconductor single crystal, characterized by growing the dopant additive compound semiconductor single crystal, also the dopant is S
i. The method for growing a compound semiconductor single crystal, wherein the compound semiconductor single crystal is a GaAs single crystal.

【0007】[0007]

【発明の実施の形態】VGF法で単結晶を成長する場
合、融液上部の温度が高い緩やかな温度分布であるた
め、自然対流が起きにくく、融液中にドーパントが均質
になりにくい欠点がある。そこで、原料を融解後、図1
のように高温域と固液界面温度域との間に融液下部が上
部より温度の高い部分11(ピーク温度Th)(以下、高温
ピーク11と言う)を設け、融液中に自然対流4を起こ
しドーパントを融液中に均質に分布させた後、温度分布
を結晶育成用温度勾配に変更し結晶育成を開始する。そ
のことにより、均質な化合物半導体単結晶を高歩留りで
成長させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION When a single crystal is grown by the VGF method, since the temperature of the upper part of the melt is high and has a gradual temperature distribution, natural convection does not easily occur, and it is difficult for the dopant to be homogeneous in the melt. is there. So, after melting the raw materials,
As described above, between the high temperature region and the solid-liquid interface temperature region, a portion 11 (peak temperature Th) in which the lower portion of the melt has a higher temperature than the upper portion (hereinafter referred to as high temperature peak 11) is provided, and natural convection 4 Then, the dopant is homogeneously distributed in the melt, and then the temperature distribution is changed to a temperature gradient for crystal growth to start crystal growth. As a result, a homogeneous compound semiconductor single crystal can be grown with a high yield.

【0008】温度分布中の高温ピーク11から種結晶2
と融液との固液界面7までの距離Lは、固液界面7の温
度と融液の対流とのバランスにより決定される。距離L
が近すぎると種結晶2を溶かしてしまい化合物半導体単
結晶の成長が難しくなり、一方、距離Lが離れすぎる
と、融液3の対流によるドーパントを均質にする効果が
低くなり、均質な化合物半導体単結晶の育成を高歩留り
で成長させることができない。
Seed crystal 2 from high temperature peak 11 in the temperature distribution
The distance L from the melt to the solid-liquid interface 7 is determined by the balance between the temperature of the solid-liquid interface 7 and the convection of the melt. Distance L
Is too close, the seed crystal 2 is melted and the growth of the compound semiconductor single crystal becomes difficult. On the other hand, if the distance L is too long, the effect of homogenizing the dopant due to the convection of the melt 3 is reduced, and a homogeneous compound semiconductor is obtained. A single crystal cannot be grown with a high yield.

【0009】また、温度分布中のピーク温度Thは、高
すぎると融液中から揮発成分(例えば、GaAs単結晶の育
成ではAs成分)が抜け融液組成がずれ双晶等の発生の原
因となる。一方、低すぎると融液の対流が十分起きずド
ーパントを均質にする効果が低くなる。
If the peak temperature Th in the temperature distribution is too high, volatile components (for example, As component in the growth of GaAs single crystal) will escape from the melt and the composition of the melt will shift, causing twinning and the like. Become. On the other hand, if it is too low, convection of the melt does not occur sufficiently, and the effect of making the dopant homogeneous becomes low.

【0010】なお、n型又はp型のドーパントを添加し
た化合物半導体単結晶としては、Siを添加したGaA
s単結晶、Znを添加したGaAs単結晶やSを添加し
たInP単結晶等がある。
As the compound semiconductor single crystal added with an n-type or p-type dopant, GaA added with Si is used.
There are s single crystal, Zn-added GaAs single crystal, S-added InP single crystal, and the like.

【0011】[0011]

【実施例】【Example】

(実施例1)本発明の一実施例をシリコンドープのGa
As単結晶(融点;1238℃)の成長で説明する(使用
した単結晶育成装置;図2)。使用したるつぼ1は、p
BN製、直径80mm、全長180mm、原料であるGaA
s多結晶のチャージ量は3000g、ドーパントである
シリコンの添加量は1.6gである。るつぼ1に原料と
ドーパントを投入し、ヒーター5に通電し炉内縦方向に
種結晶2より上部が融点以上になるような温度勾配を形
成し、原料を融解した。
Example 1 An example of the present invention is silicon-doped Ga.
The growth of As single crystal (melting point; 1238 ° C.) will be described (used single crystal growing apparatus; FIG. 2). The crucible 1 used is p
Made of BN, diameter 80 mm, total length 180 mm, raw material GaA
The charge amount of s polycrystal is 3000 g, and the addition amount of silicon as a dopant is 1.6 g. The raw material and the dopant were charged into the crucible 1, and the heater 5 was energized to form a temperature gradient in the furnace vertical direction such that the upper portion of the seed crystal 2 was above the melting point, and the raw material was melted.

【0012】次いで、サブヒーター8に通電し、高温領
域(1250℃〜1260℃)〜固液界面温度域(約12
40℃)〜低温領域(1100℃〜1220℃)、高温領
域〜固液界面温度域間に部分的に高温ピークを形成した
温度勾配で1時間保持し、融液3を自然対流により撹拌
した。高温ピークから種付け位置までの距離Lは40mm
とし、ピーク温度Thは1280℃とした。GaAs単
結晶の成長の場合、高温ピークのピーク温度Thは、1
250℃以上1300℃未満が好ましい。1250℃よ
り低いと融液の対流の効果が少なく、1300℃以上と
なると常圧では融液からAsが揮発する。
Next, the sub-heater 8 is energized, and the high temperature region (1250 ° C to 1260 ° C) to the solid-liquid interface temperature region (about 12 ° C).
40 ° C.) to low temperature region (1100 ° C. to 1220 ° C.) and a temperature gradient in which a high temperature peak was partially formed between the high temperature region and the solid-liquid interface temperature region were maintained for 1 hour, and the melt 3 was stirred by natural convection. The distance L from the high temperature peak to the seeding position is 40 mm
And the peak temperature Th was 1280 ° C. In the case of GaAs single crystal growth, the peak temperature Th of the high temperature peak is 1
It is preferably 250 ° C or higher and lower than 1300 ° C. If the temperature is lower than 1250 ° C, the effect of convection of the melt is small, and if the temperature is higher than 1300 ° C, As volatilizes from the melt at normal pressure.

【0013】次いで、高温領域(1250℃〜1260
℃)〜固液界面温度域(約1240℃)〜低温領域(110
0℃〜1220℃)、融液中の温度勾配が5℃/cmの結
晶成長用温度分布に変更した。この温度分布が安定した
後、2mm/hの成長速度で冷却した。成長後のGaAs
単結晶は種結晶から全長100mmに亘って完全な単結晶
が得られた。
Next, a high temperature region (1250 ° C. to 1260)
℃) ~ solid-liquid interface temperature range (about 1240 ℃) ~ low temperature range (110
The temperature gradient in the melt was changed to a temperature distribution for crystal growth of 5 ° C / cm. After this temperature distribution was stabilized, the mixture was cooled at a growth rate of 2 mm / h. GaAs after growth
As the single crystal, a complete single crystal was obtained from the seed crystal over the entire length of 100 mm.

【0014】(比較例)原料を融解後の高温ピークを持
った温度分布での保持を行わなず、結晶成長用温度分布
の高温領域(1250℃〜1260℃)〜固液界面温度域
(約1240℃)〜低温領域(1100℃〜1220℃)、
高温領域〜固液界面温度域の温度分布で保持した後、実
施例1と同様にしてGaAs単結晶を成長させた。得ら
れた結晶はるつぼの増径部分(コーン部)で双晶が発生し
ていた。
(Comparative Example) The temperature distribution having a high temperature peak after melting the raw material is not maintained, and the high temperature region (1250 ° C to 1260 ° C) to the solid-liquid interface temperature region of the temperature distribution for crystal growth is maintained.
(About 1240 ° C) to low temperature region (1100 ° C to 1220 ° C),
After maintaining the temperature distribution from the high temperature region to the solid-liquid interface temperature region, a GaAs single crystal was grown in the same manner as in Example 1. The obtained crystals had twins in the increased diameter portion (cone portion) of the crucible.

【0015】実施例1では、高温ピークを形成するため
にサブヒーター8を用いたが、複数段の加熱ヒーターを
有する結晶育成炉を用いて高温ピークを形成しても構わ
ない。
Although the sub-heater 8 is used to form the high temperature peak in Example 1, the high temperature peak may be formed using a crystal growth furnace having a plurality of heaters.

【0016】[0016]

【発明の効果】本発明は、原料を融解後、高温域と固液
界面温度域との間に融液下部が上部より温度の高い部分
を有する温度勾配を形成し一旦保持した後、結晶育成用
温度勾配により結晶を育成を行うため、融液中の部分的
なドーパントの不均一に起因すると考えられる多結晶や
双晶の発生を防止できる。そのため、n型又はp型のド
ーパントを添加した化合物半導体単結晶、例えばSiを
添加したGaAs単結晶、Znを添加したGaAs単結
晶、Sを添加したInP単結晶等を歩留まり良く成長す
ることができる。
Industrial Applicability According to the present invention, after the raw material is melted, a temperature gradient is formed between the high temperature region and the solid-liquid interface temperature region in which the lower part of the melt has a higher temperature part than the upper part, and once held, crystal growth is performed. Since the crystal is grown by the use temperature gradient, it is possible to prevent the generation of polycrystal or twin crystal which is considered to be caused by the partial nonuniformity of the dopant in the melt. Therefore, a compound semiconductor single crystal added with an n-type or p-type dopant, for example, a Si-added GaAs single crystal, a Zn-added GaAs single crystal, an S-added InP single crystal, or the like can be grown with high yield. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る化合物半導体単結晶成長方法の
結晶成長開始前の温度を模式的に示した図である。
FIG. 1 is a diagram schematically showing a temperature before the start of crystal growth in a compound semiconductor single crystal growth method according to the present invention.

【図2】 本発明の実施例に係る化合物半導体単結晶成
長の単結晶成長装置を模式的に示した図である。
FIG. 2 is a diagram schematically showing a single crystal growth apparatus for growing a compound semiconductor single crystal according to an example of the present invention.

【図3】 垂直徐冷法による化合物半導体単結晶成長の
一例を模式的に示した図である。
FIG. 3 is a diagram schematically showing an example of compound semiconductor single crystal growth by a vertical slow cooling method.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 種結晶 3 融液 4 自然対流 5 ヒーター 6 単結晶 7 固液界面 8 サブヒーター 10 温度勾配 11 高温ピーク 1 crucible 2 seed crystal 3 melt 4 natural convection 5 heater 6 single crystal 7 solid-liquid interface 8 sub-heater 10 temperature gradient 11 high temperature peak

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 るつぼ内のドーパントと化合物半導体原
料を融解させて融液とした後、融液を形成する融点以上
の高温領域から固液界面を制御する融点近傍の固液界面
温度領域を経て融点より低い低温領域に至る結晶成長用
温度勾配を形成し、温度を徐々に下げることにより温度
勾配を移動させ単結晶を成長させる化合物半導体単結晶
の成長方法において、融解後、一旦、融液を形成する融
点以上の高温領域から融点近傍の固液界面温度領域を経
て融点より低い低温領域の温度勾配中の高温領域と界面
温度領域との間に高温ピークを有する温度勾配を形成し
保持した後、融液を形成する融点以上の高温領域から固
液界面を制御する融点近傍の固液界面温度領域を経て融
点より低い低温領域に至る前記結晶成長用温度勾配を形
成し、ドーパント添加化合物半導体単結晶を成長するこ
とを特徴とする化合物半導体単結晶の成長方法。
1. After melting a dopant in a crucible and a compound semiconductor raw material to form a melt, a high-temperature region above the melting point that forms the melt passes through a solid-liquid interface temperature region near the melting point that controls the solid-liquid interface. In the method for growing a compound semiconductor single crystal in which a temperature gradient for crystal growth reaching a low temperature region lower than the melting point is formed and the temperature gradient is moved to gradually grow the single crystal, the melt is temporarily melted after melting. After forming and maintaining a temperature gradient with a high temperature peak between the high temperature region and the interface temperature region in the temperature gradient from the high temperature region above the melting point to the low temperature region below the melting point through the solid-liquid interface temperature region near the melting point Forming a temperature gradient for crystal growth from a high temperature region above the melting point forming the melt to a low temperature region lower than the melting point through a solid-liquid interface temperature region near the melting point controlling the solid-liquid interface, and adding a dopant A method for growing a compound semiconductor single crystal, which comprises growing a compound semiconductor single crystal.
【請求項2】 前記ドーパントがSi、前記化合物半導
体単結晶がGaAs単結晶であることを特徴とする請求
項1記載の化合物半導体単結晶の成長方法。
2. The method for growing a compound semiconductor single crystal according to claim 1, wherein the dopant is Si and the compound semiconductor single crystal is GaAs single crystal.
JP8188596A 1996-03-12 1996-03-12 Method for growing compound semiconductor single crystal Pending JPH09249479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188596A JPH09249479A (en) 1996-03-12 1996-03-12 Method for growing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188596A JPH09249479A (en) 1996-03-12 1996-03-12 Method for growing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH09249479A true JPH09249479A (en) 1997-09-22

Family

ID=13758912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188596A Pending JPH09249479A (en) 1996-03-12 1996-03-12 Method for growing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH09249479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053388A (en) * 2000-08-03 2002-02-19 Natl Space Development Agency Of Japan Method for growing crystal
KR100428699B1 (en) * 2001-03-06 2004-04-27 주식회사 사파이어테크놀로지 Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053388A (en) * 2000-08-03 2002-02-19 Natl Space Development Agency Of Japan Method for growing crystal
KR100428699B1 (en) * 2001-03-06 2004-04-27 주식회사 사파이어테크놀로지 Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof

Similar Documents

Publication Publication Date Title
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
EP0751242B1 (en) Process for bulk crystal growth
JPH09249479A (en) Method for growing compound semiconductor single crystal
US6045767A (en) Charge for vertical boat growth process and use thereof
EP1114884A1 (en) Process for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2006188403A (en) Compound semiconductor single crystal and its manufacturing method and apparatus
JP3885245B2 (en) Single crystal pulling method
JP2004345888A (en) Production method for compound semiconductor single crystal
JP3633212B2 (en) Single crystal growth method
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPH0867593A (en) Method for growing single crystal
JPS60239389A (en) Pulling device for single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH05178684A (en) Production of semiconductor single crystal
JP2001130999A (en) METHOD FOR PRODUCING GaAs SEMICONDUCTOR SINGLE CRYSTAL
JPS62138392A (en) Preparation of semiconductor single crystal
JP2005324993A (en) Manufacturing apparatus of single crystal
JP2004002076A (en) METHOD FOR MANUFACTURING GaAs WAFER
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH03153600A (en) Production of single crystal of iii-v compound semiconductor
JPH07291781A (en) Method for growing single crystal