JPS62138392A - Preparation of semiconductor single crystal - Google Patents

Preparation of semiconductor single crystal

Info

Publication number
JPS62138392A
JPS62138392A JP27646985A JP27646985A JPS62138392A JP S62138392 A JPS62138392 A JP S62138392A JP 27646985 A JP27646985 A JP 27646985A JP 27646985 A JP27646985 A JP 27646985A JP S62138392 A JPS62138392 A JP S62138392A
Authority
JP
Japan
Prior art keywords
crucible
crystal
single crystal
solution
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27646985A
Other languages
Japanese (ja)
Inventor
Sadao Yasuda
安田 貞夫
Yoshihide Yamada
山田 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27646985A priority Critical patent/JPS62138392A/en
Publication of JPS62138392A publication Critical patent/JPS62138392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain single crystal having uniform concentration of impurities when semiconductor single crystals are prepd. by the Czochralski method using a crucible having a double wall structure by holding the liquid level of the inside crucible at somewhat lower level than the liquid level of the outside crucible. CONSTITUTION:A crucible for melt for growing semiconductor single crystal by the liquid encapsulated Czochralski method is constructed to have a double wall structure constituted of an inside crucible 3a and an outside crucible 3b and both crucibles are communicated with a small hole 8, and the outside cru cible 3b is constructed so as to be moved rotationally and vertically. When a single crystal 2 is pulled from the melt 5a of the starting material in the inside crucible 3b, the melt 5b of the starting material 5b is supplied simultane ously from the outside crucible 3b to the inside crucible 3a. By holding the level of the melt in the inside crucible 3a at least several mm lower level than the level of the melt in the outer crucible 3b, the variation of concentration of impurities in the crystal 2 due to segregation is prevented, thus a uniform crystal 2 is grown.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、L E C(L i quid  E nc
apsulatedCzochralski )法の半
導体単結晶の製造方法に関するものである。
[Detailed Description of the Invention] [Background and Objectives of the Invention] The present invention is based on L E C (L iquid Enc
The present invention relates to a method for manufacturing a semiconductor single crystal using the apsulated Czochralski method.

引上法結晶成長における添加物不純物の濃度は、当該不
純物の偏析係数によって決まる分布をし、偏析係数1以
下の不純物は結晶化分率の増加と共に1度が増加してし
まう。これを避ける方法として二重るつぼを用い内側る
つぼから結晶を引き上げ、内側るつぼに設けた微小貫通
孔を通じて内側の溶液の減少分を外側るつぼから補給さ
れるようにする方法が知られている。当該不純物の偏析
係数をに、内側るつぼ液中の不純物濃度をN in、外
側るつぼのそれをNoutとすると、N0ut=k ・
Ninの濃度として成長すれば、結晶中の濃度はに−N
inに一定し、全長にわたり均一化することになる。
The concentration of an additive impurity in crystal growth by the pulling method has a distribution determined by the segregation coefficient of the impurity, and the concentration of impurities with a segregation coefficient of 1 or less increases as the crystallization fraction increases. A known method for avoiding this is to use a double crucible, pull the crystals from the inner crucible, and replenish the lost amount of the inner solution from the outer crucible through minute through holes provided in the inner crucible. If the segregation coefficient of the impurity is N, the impurity concentration in the inner crucible liquid is N in, and that in the outer crucible is Nout, then N0ut=k ・
If it grows as a concentration of Nin, the concentration in the crystal will be -N
It is constant at in and is made uniform over the entire length.

二重るつぼ法は、不純物濃度の均一化には著しく効果的
な方式であるが、実際にはこの方式は外側液を介して内
側るつぼ内液を加圧することになリ、内外の液面が同一
高さにあるため、内側るつぼ内液中の温度分布を結晶引
上げに適する状態にすることが困難になる欠点があり一
般に実用されていない。るつぼ中の溶液中にはるつぼの
径方向に、中心部が低く周辺部が高くなる温度分布が多
少ともあり、これが結晶形状の制御の助けとなっている
が、二重るつぼにするとこの温度分布を実現することが
困難になり、液温のわずかな変化により結晶怪が3変し
易い。また、実用的な引上速度を1!?る温度にすると
、内側るつぼ壁から結晶の析出が始まってしまうなどの
51ff点がある。
The double crucible method is extremely effective in making the impurity concentration uniform, but in reality, this method pressurizes the liquid in the inner crucible via the outer liquid, so the inner and outer liquid levels are Since they are at the same height, it is difficult to bring the temperature distribution in the liquid inside the inner crucible into a state suitable for crystal pulling, which is why it is not generally put into practical use. The solution in the crucible has some degree of temperature distribution in the radial direction of the crucible, with the center being lower and the periphery being higher, and this helps control the crystal shape, but when using a double crucible, this temperature distribution It becomes difficult to realize this, and the crystal shape tends to change due to slight changes in liquid temperature. In addition, the practical pulling speed is 1! ? At a temperature of

また、従来の二重るつぼ式では、内側るつぼは炉内の固
定部を支点とする治具によって支持するが、外側るつぼ
中に挿入し溶液に対する浮力によって保持するなどの方
法で、外側るつぼだ(プに回転、上下移動する機構を取
り付けられている。このため、内側るつぼは固定かまた
は外側るつぼと同期回転することになり、結晶成長を容
易にするような溶液の温度分布が実現し難い。
In addition, in the conventional double crucible type, the inner crucible is supported by a jig with a fixed part in the furnace as a fulcrum, but the outer crucible is supported by a jig that is inserted into the outer crucible and held by buoyancy against the solution ( A mechanism for rotating and moving up and down is attached to the crucible.For this reason, the inner crucible is either fixed or rotates synchronously with the outer crucible, making it difficult to achieve a solution temperature distribution that facilitates crystal growth.

第3図は従来の半導体単結晶の製造方法を実施する装置
の縦断面図である。図において、1は結晶用」−駆動軸
、2は引上単結晶、3はるつぼ、4は液体封止剤、5は
Qa AS溶液、6はヒータ、7はるつぼ駆動軸である
。そして、PBN(p yrOIitiC30rOn 
 N 1tride)のるつぼ中で、Ga Asを溶解
し液面を8203液体封止材4で封止し、かつ、高圧の
不活性ガス雰囲気下で、GaASの分解、AsのTS発
を抑制しながら単結晶を引き上げる。第4図はこれを二
重るつぼとした場合で、14図において、3aは内側る
つぼ、3bは外側るつぼ、4aは内側るつぼ内液体封止
剤、4bは外側るつぼ内液体封止剤、5aは内側るつぼ
内Ga As溶液、5bは外側るつぼ内GaAs溶液で
あり、8は小穴である。そして、外側るつぼ3bは回転
駆動されると共に上下方向に移動駆動されるようになっ
ている。この二重るつぼとすることにより、外側るつぼ
3bから内側るつぼ3aへ溶液の補給が行なわれ、偏析
による引上結晶中への不純物濃度の変化を低減できるが
、これでは内側るつぼ内Ga AS溶液5aの温度分布
を結晶引上げに適するようにすることが難しく結晶の成
長が困難である。
FIG. 3 is a longitudinal sectional view of an apparatus for carrying out a conventional semiconductor single crystal manufacturing method. In the figure, 1 is a crystal drive shaft, 2 is a pulled single crystal, 3 is a crucible, 4 is a liquid sealant, 5 is a Qa AS solution, 6 is a heater, and 7 is a crucible drive shaft. And PBN(pyrOIitiC30rOn
GaAs was dissolved in a crucible of N 1tride), the liquid surface was sealed with 8203 liquid sealant 4, and the melt was melted in a high-pressure inert gas atmosphere while suppressing decomposition of GaAs and TS generation of As. Pull up the single crystal. Figure 4 shows the case where this is made into a double crucible. In Figure 14, 3a is an inner crucible, 3b is an outer crucible, 4a is a liquid sealant in the inner crucible, 4b is a liquid sealant in the outer crucible, and 5a is a liquid sealant in the outer crucible. The GaAs solution in the inner crucible, 5b is the GaAs solution in the outer crucible, and 8 is a small hole. The outer crucible 3b is driven to rotate and also to move in the vertical direction. By using this double crucible, the solution is replenished from the outer crucible 3b to the inner crucible 3a, and changes in the concentration of impurities in the pulled crystal due to segregation can be reduced. It is difficult to make the temperature distribution suitable for crystal pulling, making it difficult to grow the crystal.

本発明は上記の状況に鑑みなされたものであり、不純物
濃度の均一な結晶を容易に成長させることかできる半導
体単結晶の製造方法を提供することを目的としたもので
ある。
The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for manufacturing a semiconductor single crystal that can easily grow a crystal with a uniform impurity concentration.

[発明の概要] 本発明の半導体単結晶の製造方法は、液体封止チョクラ
ルスキー法半導体結晶成長用の溶液るつぼが内側るつぼ
及び外側るつぼの二重構造に形成され該外側るつぼが回
転駆動し上下方向に移動駆動され、上記内側るつぼ内溶
液から単結晶が引き上げられるように構成するとともに
小孔を介し上記内側るつぼ及び外側るつぼを連通し外側
るつぼから内側るつぼへ溶液が補給されることにより偏
析による上記結晶中の不純物濃度の変化をなくし均一な
結晶を成長させる場合に、上記内側るつぼ内溶液面を上
記外側るつぼ内溶液面より少なくとも数mm低く保つよ
うに液面を保持する方法である。
[Summary of the Invention] The method for producing a semiconductor single crystal of the present invention includes a liquid-sealed Czochralski method semiconductor crystal growth solution crucible formed into a dual structure of an inner crucible and an outer crucible, and the outer crucible being rotationally driven. The structure is configured such that the single crystal is pulled up from the solution in the inner crucible by being driven to move in the vertical direction, and the inner crucible and the outer crucible are connected through a small hole to replenish the solution from the outer crucible to the inner crucible, thereby preventing segregation. When growing uniform crystals by eliminating changes in the impurity concentration in the crystal due to oxidation, this method maintains the liquid level so that the solution level in the inner crucible is kept at least several mm lower than the solution level in the outer crucible.

そして、上記のように内側るつぼ内溶液面を外側るつぼ
内溶液面より低くすると共に、内側るつぼを外側るつぼ
に対し独立して回転及び上下駆動する方法である。
As described above, the solution level in the inner crucible is made lower than the solution level in the outer crucible, and the inner crucible is rotated and vertically driven independently with respect to the outer crucible.

二重るつぼ法において内側るつぼ内の溶液の温度分布を
調整する方法としては、加熱ヒータの構造、温度分布を
工夫するのも一方法で、例えば、外側るつぼの底部を高
温加熱したり、逆に液面より上方からの加熱を増すこと
なども幾分かは効果がある。しかし、外側るつぼ内溶液
を介して加熱することがil約となり、内側るつぼ内の
溶液を結晶引上が容易な温度分布にすることは困難であ
る。
In the double crucible method, one way to adjust the temperature distribution of the solution in the inner crucible is to devise the structure and temperature distribution of the heater. For example, heating the bottom of the outer crucible to a high temperature, or vice versa. Increasing heating from above the liquid level is also somewhat effective. However, heating via the solution in the outer crucible causes heat loss, and it is difficult to create a temperature distribution in the solution in the inner crucible that facilitates crystal pulling.

結晶直径を増すため温度を少し下げれば、るつぼ内壁か
らの析出が起り易く、これを避けるため、上部の加熱を
増せば引上結晶が加熱されてしまうので、結晶の直径の
制御が難しくなってしまう。
If the temperature is lowered slightly to increase the crystal diameter, precipitation from the inner wall of the crucible is likely to occur, and to avoid this, increasing the heating at the top will heat the pulled crystal, making it difficult to control the crystal diameter. Put it away.

内側るつぼ及び外側るつぼ液面の高さを同一面から変え
ることは、上記の点の自由度を大幅に増し、ヒータの構
造、温度分布の変更による効果を活かすことバ可能とな
り、不純物濃度の均一な結晶を成長できる。
Changing the heights of the liquid levels in the inner and outer crucibles from the same level greatly increases the degree of freedom in the above points, and makes it possible to take advantage of the effects of changing the heater structure and temperature distribution, resulting in a uniform impurity concentration. can grow crystals.

そして、本発明は、LEC法を用いるGa AS 。The present invention is a Ga AS using the LEC method.

cap、rnpなどの化合物結晶の成長にイテ効Cあり
、例えば、Ga AsにInなどを多聞に添1j口づる
不純物硬化を利用した低転位結晶の成Iまに特に有効で
あり、ざらに、混晶的組成の化合物結晶の成長にも適用
できる。
It is effective for the growth of compound crystals such as cap and rnp. For example, it is particularly effective for the growth of low dislocation crystals using impurity hardening by adding a large amount of In to GaAs. It can also be applied to the growth of compound crystals with a mixed crystal composition.

[実施例] 以下本発明の半導体単結晶の製造方法を、G a A 
S単結晶の成長において1 X 10”cm”近(ブク
濃度のlnを添加する場合の実施例について説明する。
[Example] Hereinafter, the method for manufacturing a semiconductor single crystal of the present invention will be described.
An example will be described in which ln is added at a concentration of approximately 1 x 10 cm in the growth of an S single crystal.

第1図は本発明の方法を実施する装置の縦断面図であり
、図において、9は内側るつぼ駆動支持具で、内側るつ
ぼ3aは外側るつぼ3bとは独立し回転及び上下移動さ
れるようになっている。内側るつぼ3a径が100mm
、外側るpぼ3b径が150mで、GaAsを3.5K
rtチヤージし、その上に内側るつぼ3aにはB203
を650!/外側るつぼ3bには250gを入れる。
FIG. 1 is a longitudinal cross-sectional view of an apparatus for carrying out the method of the present invention, and in the figure, 9 is an inner crucible drive support, so that the inner crucible 3a can be rotated and moved up and down independently of the outer crucible 3b. It has become. Inner crucible 3a diameter is 100mm
, the diameter of the outer 3b is 150m, and the GaAs is 3.5K.
rt charge, and then add B203 to the inner crucible 3a.
650! /Put 250 g into the outer crucible 3b.

これを加熱溶解するとGa Asの融点1238℃にお
いて、内側るつぼ3a中の82034aの液体厚さが約
55mm、外側るつは3bのB2034bの厚さが約1
5mmとなり、B203液の密度は1.531/C,、
+3なので、内側るつぼ3aのGa A S溶液5a液
面は外側るつぼ3bのGaAS溶液5b液面より約’+
3mm低く保たれる。
When melted by heating, at the melting point of GaAs of 1238°C, the liquid thickness of 82034a in the inner crucible 3a is approximately 55 mm, and the thickness of B2034b in the outer crucible 3b is approximately 1 mm.
5mm, and the density of B203 liquid is 1.531/C.
+3, so the liquid level of the GaAS solution 5a in the inner crucible 3a is about '+' than the liquid level of the GaAS solution 5b in the outer crucible 3b.
It is kept 3mm lower.

このようにすることで、内側るつば3aの内壁近傍の液
温か中心部より高くなり、中心部を結晶の成長が可能な
温度に下げてもるつぼ壁で溶液が固化することはなく、
結晶直径制御も可能となる。
By doing this, the temperature of the liquid near the inner wall of the inner crucible 3a is higher than that of the center, and even if the temperature of the center is lowered to a temperature that allows crystal growth, the solution will not solidify on the crucible wall.
It also becomes possible to control the crystal diameter.

原料GaASは、Ga As多結晶の形でも、または、
GaとASをチャージして直接合成してもよいが、Ga
 Asとして上記3.5Kgのうち、内側るつぼ3a中
に1.2Ky、外側るつぼ3bに2.3Kgチャージし
、内側るつぼ3a内には1X1021α゛3相当のIn
、外側るつは3bには1×1020cm°コのInを単
体あるいはInAsとして添加しておく。lnのGaA
s中での偏析係数は約0.1なので、この方法で成長し
た結晶中のIrzl1度は、横軸に結晶化分立をとり、
縦軸にTrzlE1度をとって示した特性図を示す第2
図中における本実施例の曲線Bのように、結晶化分率:
a=0.66まではほぼI X 102acm−’に一
定している。曲線Aは従来の方法により成長初期の結晶
中濃度が1 X 10 ”cm’になるようにInを添
加し引き上げた結晶中のIn1度分布である。この内側
るつぼ3a及び外σ1ダるつぼ3bへの原料及び添加不
純物のヂ1!−ジは、不純物の偏析係数によって調整す
ればよく、本実施例はGaAsへの他の不純物の添加や
他の化合物結晶の成長、あるいは混晶組成の結晶の成長
にも適用できる。
The raw material GaAS may be in the form of GaAs polycrystals or
Although Ga and AS may be charged and synthesized directly, Ga
Of the above 3.5Kg as As, 1.2Ky was charged into the inner crucible 3a and 2.3Kg was charged into the outer crucible 3b.
, 1×10 20 cm° of In alone or as InAs is added to the outer cross-section 3b. GaA of ln
Since the segregation coefficient in s is about 0.1, the Irzl degree in the crystal grown by this method is given by taking the crystallization separation on the horizontal axis,
The second diagram shows the characteristic diagram with TrzlE1 degree taken on the vertical axis.
As shown by curve B of this example in the figure, the crystallization fraction:
Up to a=0.66, it is approximately constant at I x 102acm-'. Curve A is the In 1 degree distribution in a crystal that has been pulled by adding In to the initial crystal growth concentration of 1 x 10 "cm" using the conventional method. The di(1!-di) of raw materials and added impurities may be adjusted by the segregation coefficient of impurities, and in this example, the addition of other impurities to GaAs, the growth of other compound crystals, or the growth of crystals with a mixed crystal composition are used. It can also be applied to growth.

このように本実施例の半導体単結晶の製造方法において
は、内側るつぼ溶液面を外側るつぼ溶液面より低く保つ
と共に内側るつぼを外側るつぼに対し独立し回転し上下
移動駆動するようにしたので、所望の不純物濃度の結晶
を歩留りよく成長し不純物濃度の均一な結晶を容易に成
長させることができ、また、結晶引上長さ方向の不純物
濃度の変化が減少することにより結晶を横切りした切断
面の不純物濃度の不均一が低減し、均一濃度のウェハが
製造できる。
In this way, in the method for manufacturing a semiconductor single crystal of this example, the inner crucible solution surface is kept lower than the outer crucible solution surface, and the inner crucible is rotated independently of the outer crucible and driven to move up and down as desired. It is possible to easily grow crystals with a uniform impurity concentration with a high yield, and also to reduce the change in impurity concentration in the length direction of the crystal. Nonuniformity in impurity concentration is reduced, and wafers with uniform concentration can be manufactured.

尚、内側るつぼ及び外側るつぼへの液体封止剤の装入量
を変える代りに、封止剤の上に封止剤より密度の小さい
ドーナツ形状の物体を浮べるようにして溶液面を加圧し
ても同様の作用効果が得られる。また、液体封止剤とし
て密度の異なる物質あるいは添加剤により密度を変える
ものを用いて同様な効果が得られる。
In addition, instead of changing the amount of liquid sealant charged into the inner crucible and outer crucible, pressurize the solution surface by floating a donut-shaped object with a lower density than the sealant on top of the sealant. Similar effects can be obtained. Furthermore, similar effects can be obtained by using substances with different densities or whose densities are changed by additives as the liquid sealant.

〔発明の効果1 以上記述した如く本発明の半導体単結晶の製造方法によ
れば、不純物+1度の均一な結晶を容易に成長させるこ
とができる効果を有するものである。
[Advantageous Effects of the Invention 1] As described above, the method for manufacturing a semiconductor single crystal of the present invention has the effect of easily growing a uniform crystal with an impurity level of +1 degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体単結晶の製造方法を実施する装
置の縦断面図、第2図は第1図の装置による方法及び従
来の方法の結晶中のInの濃度分布特性図、第3図、第
4図はそれぞれ従来の方法を実mする装置の縦断面図で
ある。 2:引上単結晶、 3a :内側るつぼ、 3b:外側るつぼ、 8:小孔。
FIG. 1 is a vertical cross-sectional view of an apparatus for carrying out the method of manufacturing a semiconductor single crystal of the present invention, FIG. 2 is a characteristic diagram of the In concentration distribution in the crystal of the method using the apparatus of FIG. 4 are longitudinal cross-sectional views of an apparatus implementing the conventional method, respectively. 2: Pulled single crystal, 3a: Inner crucible, 3b: Outer crucible, 8: Small hole.

Claims (2)

【特許請求の範囲】[Claims] (1)液体封止チョクラルスキー法半導体結晶成長用の
溶液るつぼが内側るつぼ及び外側るつぼの二重構造に形
成され該外側るつぼが回転駆動し上下方向に移動駆動さ
れ、上記内側るつぼ内溶液から単結晶が引き上げられる
ように構成するとともに小孔を介し上記内側るつぼ及び
外側るつぼを連通し外側るつぼから内側るつぼへ溶液が
補給されることにより偏析による上記結晶中の不純物濃
度の変化をなくし均一な結晶を成長させる方法において
、上記内側るつぼ内溶液面を上記外側るつぼ内溶液面よ
り少なくとも数mm低く保つように保持することを特徴
とする半導体単結晶の製造方法。
(1) A liquid-sealed Czochralski method A solution crucible for semiconductor crystal growth is formed into a double structure of an inner crucible and an outer crucible, and the outer crucible is driven to rotate and move in the vertical direction, and the solution in the inner crucible is removed from the solution in the inner crucible. The structure is configured so that the single crystal can be pulled up, and the inner crucible and the outer crucible are connected through a small hole to supply a solution from the outer crucible to the inner crucible, thereby eliminating changes in the impurity concentration in the crystal due to segregation and making it uniform. A method for producing a semiconductor single crystal, characterized in that the method for growing a crystal comprises maintaining the solution surface in the inner crucible at least several mm lower than the solution surface in the outer crucible.
(2)上記内側るつぼが上記外側るつぼに対し独立して
回転し上下移動駆動されるように形成されている特許請
求の範囲第1項記載の半導体単結晶の製造方法。
(2) The method for manufacturing a semiconductor single crystal according to claim 1, wherein the inner crucible is formed to be rotated and driven to move up and down independently of the outer crucible.
JP27646985A 1985-12-09 1985-12-09 Preparation of semiconductor single crystal Pending JPS62138392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27646985A JPS62138392A (en) 1985-12-09 1985-12-09 Preparation of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27646985A JPS62138392A (en) 1985-12-09 1985-12-09 Preparation of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS62138392A true JPS62138392A (en) 1987-06-22

Family

ID=17569881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27646985A Pending JPS62138392A (en) 1985-12-09 1985-12-09 Preparation of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS62138392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303409A1 (en) * 1987-08-06 1989-02-15 United Kingdom Atomic Energy Authority Single crystal pulling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303409A1 (en) * 1987-08-06 1989-02-15 United Kingdom Atomic Energy Authority Single crystal pulling

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JPH10167898A (en) Production of semi-insulative gaas single crystal
JPS62138392A (en) Preparation of semiconductor single crystal
CN111379014A (en) Crystal growth fluxing agent and crystal growth method
JP2636929B2 (en) Method for producing bismuth germanate single crystal
EP0355833A2 (en) Method of producing compound semiconductor single crystal
JPS61151094A (en) Production of single crystal of compound semiconductor
JP2010030847A (en) Production method of semiconductor single crystal
JPH06239686A (en) Vertical vessel for growing compound semiconductor crystal
JP4576571B2 (en) Method for producing solid solution
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPH09249479A (en) Method for growing compound semiconductor single crystal
JP3660604B2 (en) Single crystal manufacturing method
JPH0341432B2 (en)
JPS60239389A (en) Pulling device for single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPH0558772A (en) Production of compound semiconductor single crystal
JPS60118696A (en) Method for growing indium phosphide single crystal
JPH11322489A (en) Production of semiconductor single crystal
JPS63215594A (en) Growth of crystal by double crucible
JPS61174189A (en) Method and device for production of single crystal
JPH05178684A (en) Production of semiconductor single crystal
JP2000327496A (en) Production of inp single crystal