CN111379014A - A kind of flux for crystal growth and crystal growth method - Google Patents
A kind of flux for crystal growth and crystal growth method Download PDFInfo
- Publication number
- CN111379014A CN111379014A CN202010380449.0A CN202010380449A CN111379014A CN 111379014 A CN111379014 A CN 111379014A CN 202010380449 A CN202010380449 A CN 202010380449A CN 111379014 A CN111379014 A CN 111379014A
- Authority
- CN
- China
- Prior art keywords
- crystal
- crystal growth
- temperature
- flux
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 89
- 230000004907 flux Effects 0.000 title claims abstract description 16
- 238000002109 crystal growth method Methods 0.000 title claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 11
- 150000005309 metal halides Chemical class 0.000 claims abstract description 11
- 239000000155 melt Substances 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 238000010899 nucleation Methods 0.000 claims abstract description 6
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 229910052788 barium Inorganic materials 0.000 claims abstract description 3
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 3
- 229910052745 lead Inorganic materials 0.000 claims abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 abstract 1
- 238000005336 cracking Methods 0.000 abstract 1
- 238000002845 discoloration Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 230000008832 photodamage Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开了一种晶体生长的助熔剂及晶体生长方法。所述晶体为Pb17O8Cl18,所述助熔剂的体系包括PbO、金属卤化物M′X、金属卤化物M″X2和Bi2O3中的至少一种;M′为Li、Na或K,M″为Mg、Ca、Ba、Sr或Pb,X为F或Cl。晶体生长方法为:将多晶原料与助熔剂混合融化;在熔体温度饱和点上方开始引晶,熔体温度稳定在饱和点,开始晶体生长;晶体生长至所需尺寸,提升籽晶杆晶体脱离液面,在弱氧化性气氛中进行退火处理。本发明充分照顾晶体生长的取向,有效提高晶体生长稳定性,减小生长过程中溶体挥发和体系粘度,解决晶体针状发育及生长的晶体易开裂、变颜色等问题,生长出的晶体尺寸大、光学质量高。The invention discloses a flux for crystal growth and a crystal growth method. The crystal is Pb 17 O 8 Cl 18 , and the system of the flux includes at least one of PbO, metal halide M′X, metal halide M″X 2 and Bi 2 O 3 ; M′ is Li, Na or K, M" is Mg, Ca, Ba, Sr or Pb, and X is F or Cl. The crystal growth method is: mix and melt the polycrystalline raw material with the flux; start seeding above the saturation point of the melt temperature, the melt temperature is stabilized at the saturation point, and the crystal growth begins; the crystal grows to the required size, and the seed rod crystal is raised After leaving the liquid surface, annealing is performed in a weakly oxidizing atmosphere. The invention fully takes care of the orientation of crystal growth, effectively improves the stability of crystal growth, reduces the volatilization of the solution and the viscosity of the system during the growth process, solves the problems of needle-like development of the crystal and the easy cracking and discoloration of the grown crystal, and the size of the grown crystal is large. , High optical quality.
Description
技术领域technical field
本发明涉及一种单晶的生长方法,特别涉及一种中红外非线性光学Pb17O8Cl18晶体生长的助熔剂及晶体生长方法。The invention relates to a single crystal growth method, in particular to a flux and a crystal growth method for mid-infrared nonlinear optical Pb 17 O 8 Cl 18 crystal growth.
背景技术Background technique
Pb17O8Cl18晶体是2015年发现的一种具有高激光损伤阈值的新型中红外非线性光学晶体。它具有较大的非线性光学系数、高的激光损伤阈值、宽的透光范围、物理化学性能稳定等优点。与其它中红外非线性光学晶体相比,Pb17O8Cl18晶体的生长习性较好,可在开放体系生长,大大降低了传统红外倍频晶体在封闭系统中生长的难度。Pb17O8Cl18晶体能够通过激光频率变换对可见光或近红外激光实现中远红外激光输出,由于该晶体具有高的抗光伤阈值,因而该晶体在高功率激光变频领域具有广阔的应用前景。美国的《美国化学会志》[J.Am.Chem.Soc.2015,137,8360-8363]报道了Pb17O8Cl18晶体的结构,该晶体属于正交晶系、空间群是Fmm2、是双轴晶体,其晶胞参数 每个晶胞中包含3个Pb17O8Cl18化学式。由于Pb17O8Cl18晶体是同成分熔融化合物,先前的报道是采用自发成核的方法进行晶体生长,但生长出的晶体都是部分透明,并且晶体内有大量的宏观包裹体,生长的晶体易开裂,难以能满足物性测试。因此本发明优选新的合适的助熔剂采用熔盐顶部籽晶法来进行中红外非线性光学晶体Pb17O8Cl18的生长。Pb 17 O 8 Cl 18 crystal is a new type of mid-infrared nonlinear optical crystal with high laser damage threshold discovered in 2015. It has the advantages of large nonlinear optical coefficient, high laser damage threshold, wide light transmission range, and stable physical and chemical properties. Compared with other mid-infrared nonlinear optical crystals, the Pb 17 O 8 Cl 18 crystal has a better growth habit and can be grown in an open system, which greatly reduces the difficulty of growing traditional infrared frequency-doubling crystals in a closed system. Pb 17 O 8 Cl 18 crystal can realize mid- and far-infrared laser output for visible light or near-infrared laser through laser frequency conversion. Due to the high light damage resistance threshold of this crystal, the crystal has broad application prospects in the field of high-power laser frequency conversion. The American Journal of the American Chemical Society [J.Am.Chem.Soc.2015, 137, 8360-8363] reported the structure of the Pb 17 O 8 Cl 18 crystal, which belongs to the orthorhombic system, the space group is Fmm2, is a biaxial crystal whose unit cell parameters Each unit cell contains 3 chemical formulas of Pb 17 O 8 Cl 18 . Since the Pb 17 O 8 Cl 18 crystal is a molten compound of the same composition, the previous report used the method of spontaneous nucleation for crystal growth, but the grown crystals were all partially transparent, and there were a large number of macroscopic inclusions in the crystals. The crystal is easy to crack, and it is difficult to meet the physical property test. Therefore, the present invention preferably uses a new and suitable flux for the growth of the mid-infrared nonlinear optical crystal Pb 17 O 8 Cl 18 by using the molten salt top seeding method.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:提供一种Pb17O8Cl18晶体生长的助熔剂及晶体生长方法,以提高晶体生长体系稳定性,增大晶体生长的析晶温度区间、减小高温溶液粘度以及挥发性、改善晶体针状生长习性,获得较大尺寸、高质量的Pb17O8Cl18晶体。The technical problem to be solved by the present invention is to provide a flux and a crystal growth method for Pb 17 O 8 Cl 18 crystal growth, so as to improve the stability of the crystal growth system, increase the crystallization temperature range for crystal growth, and reduce the high temperature solution. Viscosity and volatility, improve crystal acicular growth habit, and obtain larger size and high quality Pb 17 O 8 Cl 18 crystals.
为了解决上述问题,本发明采用以下技术方案:In order to solve the above problems, the present invention adopts the following technical solutions:
一种Pb17O8Cl18晶体生长的助熔剂,其特征在于,所述助熔剂的体系包括PbO、金属卤化物M′X、金属卤化物M″X2和Bi2O3中的至少一种;所述金属卤化物M′X、金属卤化物M″X2中,M′为Li、Na或K,M″为Mg、Ca、Ba、Sr或Pb,X为F或Cl。A flux for Pb 17 O 8 Cl 18 crystal growth, characterized in that the system of the flux comprises at least one of PbO, metal halide M'X, metal halide M'X 2 and Bi 2 O 3 In the metal halide M′X and metal halide M″X 2 , M′ is Li, Na or K, M″ is Mg, Ca, Ba, Sr or Pb, and X is F or Cl.
优选地,所述的Pb17O8Cl18是由含Pb化合物、含O化合物和含Cl化合物反应制得。Preferably, the Pb 17 O 8 Cl 18 is prepared by reacting a Pb-containing compound, an O-containing compound and a Cl-containing compound.
本发明还提供了一种利用上述Pb17O8Cl18晶体生长的助熔剂的晶体生长方法,其特征在于,采用熔盐顶部籽晶法生长,包括以下步骤:The present invention also provides a crystal growth method using the above-mentioned Pb 17 O 8 Cl 18 crystal growth flux, which is characterized in that the growth by using a molten salt top seed crystal method includes the following steps:
步骤1):预合成Pb17O8Cl18多晶原料;Step 1): pre-synthesize Pb 17 O 8 Cl 18 polycrystalline raw material;
步骤2):采用铂金坩埚或氧化铝陶瓷为容器,将预合成的Pb17O8Cl18多晶原料与所述助熔剂混合均匀,升温至原料完全融化,恒温保持;Step 2): using a platinum crucible or an alumina ceramic as a container, mixing the pre-synthesized Pb 17 O 8 Cl 18 polycrystalline raw material with the fluxing agent uniformly, heating up until the raw material is completely melted, and maintaining at a constant temperature;
步骤3):在熔体温度饱和点上方1-10℃开始引晶,恒温5-300分钟,熔体温度稳定在饱和点,开始晶体生长;Step 3): start seeding at 1-10°C above the melt temperature saturation point, keep the temperature constant for 5-300 minutes, the melt temperature is stabilized at the saturation point, and crystal growth begins;
步骤4):晶体生长至所需尺寸,提升籽晶杆晶体脱离液面,以小于50℃/h的速率降至室温,在弱氧化性气氛中进行退火处理,得到Pb17O8Cl18晶体。Step 4): the crystal is grown to the required size, the seed rod crystal is lifted out of the liquid surface, lowered to room temperature at a rate of less than 50°C/h, and annealed in a weakly oxidizing atmosphere to obtain a Pb 17 O 8 Cl 18 crystal .
优选地,所述步骤2)中助熔剂的用量为Pb17O8Cl18多晶原料的5-75mol%;Pb17O8Cl18多晶原料完全熔化成高温溶液的温度为515~600℃;恒温的时间为24h。Preferably, the amount of the fluxing agent in the step 2) is 5-75 mol% of the Pb 17 O 8 Cl 18 polycrystalline raw material; the temperature at which the Pb 17 O 8 Cl 18 polycrystalline raw material is completely melted into a high-temperature solution is 515-600° C. ; The time of constant temperature is 24h.
优选地,所述步骤3)中熔体温度饱和点为510~550℃。Preferably, in the step 3), the temperature saturation point of the melt is 510-550°C.
优选地,所述步骤4)中晶体生长的工艺参数为:降温速率0.01~2℃/天,转速为1~50转/分钟,拉速为0~100mm/天,Preferably, the process parameters for crystal growth in the step 4) are: the cooling rate is 0.01-2°C/day, the rotational speed is 1-50 rpm/min, the pulling speed is 0-100mm/day,
优选地,所述步骤4)中的弱氧化性气氛为空气,或氮气、氢气、一氧化碳气体、二氧化碳气体和烷类气体中的任意一种或几种的混合,或前述气体与氧气和/或惰性气体的混合气体。Preferably, the weak oxidizing atmosphere in the step 4) is air, or a mixture of any one or more of nitrogen, hydrogen, carbon monoxide gas, carbon dioxide gas and alkane gas, or the aforementioned gas and oxygen and/or A mixture of inert gases.
本发明还提供了上述晶体生长方法所制备的Pb17O8Cl18晶体在红外非线性光学晶体中的应用。The invention also provides the application of the Pb 17 O 8 Cl 18 crystal prepared by the above crystal growth method in an infrared nonlinear optical crystal.
优选地,所述Pb17O8Cl18晶体通过激光频率下转换将可见光或近红外激光转换产生3~8μm、8~14μm波段中远红外激光输出。Preferably, the Pb 17 O 8 Cl 18 crystal converts visible light or near-infrared laser light through laser frequency down-conversion to generate mid- and far-infrared laser output in the 3-8 μm and 8-14 μm bands.
本发明提供的Pb17O8Cl18晶体的熔盐顶部籽晶法,使用了金属卤化物M′X、M″X2、PbO与Bi2O3的助溶剂体系。与现有技术相比,本方法的有益效果在于:The molten salt top seeding method of the Pb 17 O 8 Cl 18 crystal provided by the present invention uses a cosolvent system of metal halides M′X, M″X 2 , PbO and Bi 2 O 3 . Compared with the prior art , the beneficial effects of this method are:
1)可以有效减少熔体挥发,提高晶体生长过程中体系的稳定性,防止杂晶、枝晶形成,提高了晶体的生长速度。1) It can effectively reduce the volatilization of the melt, improve the stability of the system during the crystal growth process, prevent the formation of miscellaneous crystals and dendrites, and improve the growth rate of the crystal.
2)可以明显降低溶液的粘度,较低的粘度益于溶质输运,有利于生长高质量的晶体。2) The viscosity of the solution can be significantly reduced, and the lower viscosity is beneficial to the transport of solutes and is conducive to the growth of high-quality crystals.
3)在本助熔剂体系中Pb17O8Cl18晶体的结晶温度区间范围更广,便于寻找合适的饱和点,避免杂晶、枝晶生成,容易生长出大尺寸晶体。3) In this flux system, the crystallization temperature range of Pb 17 O 8 Cl 18 crystal is wider, which is convenient to find a suitable saturation point, avoid the formation of miscellaneous crystals and dendrites, and easily grow large-sized crystals.
具体实施方式Detailed ways
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。In order to make the present invention more obvious and easy to understand, preferred embodiments are hereby described in detail as follows.
实施例1Example 1
按化学计量比称取PbO和PbCl2,充分研磨、混匀后转移至氧化铝陶瓷坩埚中。在马弗炉中、先在420℃下烧结24小时。冷却至室温后,将得到的产物再次研磨后转移至氧化铝陶瓷坩埚中,再在马弗炉中于480℃下烧结24小时。自然冷却至室温后取出,得到Pb17O8Cl18多晶原料。将Pb17O8Cl18多晶原料与助熔剂PbCl2、LiF2按照摩尔比65:35混合均匀,将称取的原料研磨混合均匀后,直接熔化于Φ100mm×75mm的铂金坩锅中,将上述盛有熔料的坩锅放入熔盐炉中,用保温材料把位于炉顶部的开口封上,在炉顶部与坩锅中心位置对应处留一可供籽晶杆出入的小孔,升温至530℃,使上述熔料完全熔化,在该温度下保温24小时,使熔体充分融化均匀。用洗晶试种法寻找晶体生长的饱和温度为521℃,将上述高温溶液降温至526℃(高于饱和温度5℃),将Pb17O8Cl18籽晶用铂丝固定在籽晶杆下端,从炉顶部小孔将籽晶缓慢导入生长炉内,使籽晶下端伸入液面1mm左右,籽晶以25转/分的速率旋转,恒温240分钟后,立即降温至521℃,然后以0.3℃/天的速率降温,进行晶体生长。生长过程中,籽晶的转速随晶体的逐渐长大而减慢。待晶体生长结束后,使晶体脱离液面,以15℃/h的速率降至室温,在空气中退火获得Pb17O8Cl18晶体。Weigh PbO and PbCl 2 according to the stoichiometric ratio, fully grind and mix them, and then transfer them to an alumina ceramic crucible. In a muffle furnace, it was first sintered at 420°C for 24 hours. After cooling to room temperature, the obtained product was ground again, transferred to an alumina ceramic crucible, and sintered in a muffle furnace at 480° C. for 24 hours. After being naturally cooled to room temperature, it was taken out to obtain Pb 17 O 8 Cl 18 polycrystalline raw material. Mix the Pb 17 O 8 Cl 18 polycrystalline raw materials with the fluxes PbCl 2 and LiF 2 according to the molar ratio of 65:35. After grinding and mixing the weighed raw materials, they are directly melted in a platinum crucible of Φ100mm×75mm. The above-mentioned crucible containing the molten material is put into the molten salt furnace, the opening at the top of the furnace is sealed with a heat insulating material, and a small hole for the seed rod to enter and exit is left on the top of the furnace and the center of the crucible corresponding to the position, and the temperature rises. At 530°C, the above melt is completely melted, and the temperature is kept for 24 hours to make the melt fully melt and uniform. Use the crystal washing test method to find that the saturation temperature of crystal growth is 521°C, cool the above-mentioned high temperature solution to 526°C (5°C higher than the saturation temperature), and fix the Pb 17 O 8 Cl 18 seed crystal on the seed rod with platinum wire At the lower end, slowly introduce the seed crystal into the growth furnace from the small hole at the top of the furnace, so that the lower end of the seed crystal protrudes into the liquid surface about 1mm, the seed crystal rotates at a rate of 25 rpm, and after 240 minutes of constant temperature, it is immediately cooled to 521 ℃, and then The temperature was lowered at a rate of 0.3°C/day for crystal growth. During the growth process, the rotational speed of the seed crystal slows down with the gradual growth of the crystal. After the crystal growth was completed, the crystal was removed from the liquid surface, lowered to room temperature at a rate of 15°C/h, and annealed in air to obtain a Pb 17 O 8 Cl 18 crystal.
实施例2Example 2
用化学计量比的PbO和PbCl2粉末混合均匀,装入氧化铝陶瓷坩埚中,加盖置于马弗炉中,在470℃的条件下保温48小时,自然冷却至室温后取出,进行充分研磨后,得到Pb17O8Cl18多晶原料。将Pb17O8Cl18多晶原料与PbF2、PbCl2按照摩尔比55:45混合均匀,将称取的原料研磨混合均匀后,将研磨好的POC多晶料装入Φ100mm×75mm铂金坩埚中,将装料后的坩埚置于熔盐炉中,在坩埚的上口盖上坩埚盖,控制炉温为575℃,将原料完全融化,恒温18小时,使高温溶液完全均匀。用洗晶试种法寻找晶体生长的饱和温度为512℃,将上述高温溶液降温至520℃(高于饱和温度8℃),将Pb17O8Cl18籽晶用铂丝固定在籽晶杆下端,从炉顶部小孔将籽晶缓慢导入生长炉内,使籽晶下端伸入液面1mm左右,籽晶以45转/分的速率旋转,恒温120分钟后,立即降温至512℃,然后以0.3℃/天的速率降温,提拉速度0.1mm/天进行晶体生长。生长过程中,籽晶的转速随晶体的逐渐长大而减慢。待晶体生长结束后,使晶体拉离液面,以40℃/h的速率降至室温,在空气气氛中退火,获得Pb17O8Cl18晶体。Mix evenly with stoichiometric ratio of PbO and PbCl 2 powder, put it into an alumina ceramic crucible, put it in a muffle furnace with a cover, keep it at 470 ° C for 48 hours, naturally cool it to room temperature, take it out, and fully grind it After that, the polycrystalline raw material of Pb 17 O 8 Cl 18 was obtained. Mix the Pb 17 O 8 Cl 18 polycrystalline raw material with PbF 2 and PbCl 2 in a molar ratio of 55:45. After the weighed raw materials are ground and mixed uniformly, the ground POC polycrystalline material is placed in a Φ100mm×75mm platinum crucible. , place the loaded crucible in a molten salt furnace, put the crucible cover on the top of the crucible, control the furnace temperature to 575°C, melt the raw materials completely, and keep the temperature constant for 18 hours to make the high-temperature solution completely uniform. Use the crystal washing test method to find that the saturation temperature of crystal growth is 512 ° C, the above high temperature solution is cooled to 520 ° C (8 ° C higher than the saturation temperature), and the Pb 17 O 8 Cl 18 seed crystal is fixed on the seed rod with platinum wire. At the lower end, slowly introduce the seed crystal into the growth furnace from the small hole at the top of the furnace, so that the lower end of the seed crystal protrudes into the liquid surface by about 1mm, the seed crystal rotates at a rate of 45 rpm, and after 120 minutes of constant temperature, the temperature is immediately lowered to 512 ° C, and then The temperature was lowered at a rate of 0.3°C/day, and the crystal growth was carried out at a pulling rate of 0.1 mm/day. During the growth process, the rotational speed of the seed crystal slows down with the gradual growth of the crystal. After the crystal growth was completed, the crystal was pulled away from the liquid surface, lowered to room temperature at a rate of 40° C./h, and annealed in an air atmosphere to obtain a Pb 17 O 8 Cl 18 crystal.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010380449.0A CN111379014A (en) | 2020-05-08 | 2020-05-08 | A kind of flux for crystal growth and crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010380449.0A CN111379014A (en) | 2020-05-08 | 2020-05-08 | A kind of flux for crystal growth and crystal growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111379014A true CN111379014A (en) | 2020-07-07 |
Family
ID=71214221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010380449.0A Pending CN111379014A (en) | 2020-05-08 | 2020-05-08 | A kind of flux for crystal growth and crystal growth method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111379014A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114250514A (en) * | 2021-12-15 | 2022-03-29 | 上海应用技术大学 | Fluxing agent for beta-gallium oxide crystal growth and crystal growth method based on same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101245490A (en) * | 2007-02-15 | 2008-08-20 | 中国科学院理化技术研究所 | CsLiB6O10Flux growth method of crystal |
CN101775652A (en) * | 2010-02-08 | 2010-07-14 | 中国科学院理化技术研究所 | K3Al2(PO4)3Preparation and use of nonlinear optical crystal |
CN103173860A (en) * | 2011-12-21 | 2013-06-26 | 中国科学院理化技术研究所 | K3YB6O12Compound, K3YB6O12Nonlinear optical crystal and its preparation method and use |
CN110685006A (en) * | 2019-10-31 | 2020-01-14 | 上海应用技术大学 | Intermediate infrared nonlinear optical crystal POC and preparation method thereof |
-
2020
- 2020-05-08 CN CN202010380449.0A patent/CN111379014A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101245490A (en) * | 2007-02-15 | 2008-08-20 | 中国科学院理化技术研究所 | CsLiB6O10Flux growth method of crystal |
CN101775652A (en) * | 2010-02-08 | 2010-07-14 | 中国科学院理化技术研究所 | K3Al2(PO4)3Preparation and use of nonlinear optical crystal |
CN103173860A (en) * | 2011-12-21 | 2013-06-26 | 中国科学院理化技术研究所 | K3YB6O12Compound, K3YB6O12Nonlinear optical crystal and its preparation method and use |
CN110685006A (en) * | 2019-10-31 | 2020-01-14 | 上海应用技术大学 | Intermediate infrared nonlinear optical crystal POC and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
HUI ZHANG: "Pb17O8Cl18:A promising IR Nonlinear optical material with large laser damage threshold synthesized in an open system", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114250514A (en) * | 2021-12-15 | 2022-03-29 | 上海应用技术大学 | Fluxing agent for beta-gallium oxide crystal growth and crystal growth method based on same |
CN114250514B (en) * | 2021-12-15 | 2023-08-04 | 上海应用技术大学 | Flux for beta-gallium trioxide crystal growth and crystal growth method based on flux |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101245490B (en) | CsLiB6O10Flux growth method of crystal | |
CN102251281B (en) | Process for producing Zno single crystal according to method of liquid phase growth | |
CN107699950A (en) | One kind mixes scandium terbium aluminium garnet magneto-optical crystal and preparation method thereof | |
CN1225572C (en) | Integrated melt method for crystal growth | |
JPS62212298A (en) | Method of increasing ti-al203 synchronizable laser crystal fluorescence by controlling crystal growth atomosphere | |
CN111379014A (en) | A kind of flux for crystal growth and crystal growth method | |
CN100494513C (en) | Flux Growth Method of TriGallium Phosphate Crystal | |
CN110079861A (en) | Yttrium phosphate strontium crystal and the preparation method and application thereof | |
CN1966782A (en) | Process for preparing lead tungstate crystal | |
CN117385462A (en) | A kind of synthesis method of lithium yttrium fluoride laser crystal | |
CN101787558B (en) | K2Al2B2O7Flux growth method of crystal | |
CN1216185C (en) | Method for growing near-stoichiometric lithium niobate single crystal by using Bridgman method | |
Tsai et al. | Zone-levelling Czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals | |
CN108193270A (en) | A kind of ternary brass ore deposit semiconductor crystal arsenic germanium cadmium preparation method | |
CN106958041B (en) | A kind of xTeO2·P2O5(x=2,4) preparation method and preparation facilities of crystal | |
CN208776874U (en) | A kind of crucible for growing lithium niobate crystal with near stoichiometric ratio | |
CN114411251A (en) | A method for growing high-quality CLLB crystals using a moving heater method | |
CN102485976A (en) | Method and device for near stoichiometric lithium niobate single crystal growth | |
CN110685006A (en) | Intermediate infrared nonlinear optical crystal POC and preparation method thereof | |
JP3207983B2 (en) | Method for producing single crystals of I-III-VI2 group compounds | |
CN103060911A (en) | Large-size and high-quality factor carbon-doped titanium gem laser crystal and preparation method thereof | |
JP3136812B2 (en) | Single crystal manufacturing method | |
CN114457423B (en) | A kind of growth method of Zn4B6O13 single crystal | |
CN118087014A (en) | A method for growing a tunable laser crystal | |
CN119571434A (en) | A flux for growing β-Ga2O3 crystals and a crystal growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200707 |