JPS61174189A - Method and device for production of single crystal - Google Patents
Method and device for production of single crystalInfo
- Publication number
- JPS61174189A JPS61174189A JP1101885A JP1101885A JPS61174189A JP S61174189 A JPS61174189 A JP S61174189A JP 1101885 A JP1101885 A JP 1101885A JP 1101885 A JP1101885 A JP 1101885A JP S61174189 A JPS61174189 A JP S61174189A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- raw material
- single crystal
- melt
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は単結晶の製造方法及び装置に関し、詳しくはB
1.、sIO,、LIMbOl、 B量、 Gaムs、
Gap。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing a single crystal, and in detail, B.
1. , sIO, , LIMbOl, B amount, Gams,
Gap.
工nP等の引上げ法により育成される酸化物単結晶や半
導体不純物中K、偏析係数が1より小さい不純物を均一
は添加する、あるいは工n1−4s。Oxide single crystals grown by a pulling method such as nP or semiconductor impurities include uniform addition of impurities with a segregation coefficient of less than 1, or n1-4s.
Ga1−!ムシエム8 のような三元系化合物半導体単
結晶の組成を均一にする製造方法及び装置に関するもの
である。Ga1-! The present invention relates to a manufacturing method and apparatus for making the composition of a ternary compound semiconductor single crystal, such as Musiem 8, uniform.
不純物を添加した原料融液より単結晶を育成する場合、
単結晶の成長に伴い、不純物の偏析係数が1よ〕小さい
ときは、原料融液内の不純物濃度が増加するため、不純
物濃度が均一な単結晶を得ることが難しい。このことは
三元系化合物単結晶における第3の成分についても同様
のことが言える。When growing a single crystal from a raw material melt containing impurities,
When the segregation coefficient of impurities is smaller than 1 as the single crystal grows, the impurity concentration in the raw material melt increases, making it difficult to obtain a single crystal with a uniform impurity concentration. The same can be said of the third component in the ternary compound single crystal.
このような問題点を解決するための従来技術としては、
引き上げ法で育成される単結晶に不純物を均一に添加す
る方法が提案されておシ例えばW、 G、 Pfann
著、 「Zone meltlng J(1978)p
、204〜p、206に示されているように1原料融液
中に底に細孔を有する浮きるつぼ設置し、浮きるつぼ内
に不純物を添加しておき、浮きるつぼの外側には無添加
の原料融液を入れ、結晶成長に伴い、不純物濃度が高く
なる浮きるつぼ内融液を、細孔を通して外部の無添加融
液でもって希釈し、浮きるつぼ内の融液濃度を一定に保
つ方法がある。Conventional techniques for solving these problems include:
A method of uniformly adding impurities to a single crystal grown by a pulling method has been proposed, for example, by W, G, Pfann.
Author, “Zone Meltlng J (1978) p.
, 204-p., 206, a floating crucible with pores at the bottom is placed in the melt of one raw material, impurities are added inside the floating crucible, and additive-free material is placed outside the floating crucible. A method is to keep the concentration of the melt in the floating crucible constant by filling the raw material melt and diluting the melt in the floating crucible, where the impurity concentration increases as the crystals grow, with the external additive-free melt through the pores. be.
あるいは、成長に伴い増加する不純物濃度を一定に保つ
ため、外部よりネ鈍物無添加の原料融液を適量づつ加え
ていく方法もある。Alternatively, in order to keep the impurity concentration, which increases with growth, constant, there is also a method of adding an appropriate amount of a raw material melt without additives from the outside.
しかしながら、上記した前者の浮きるつぼによる方法に
おいては、細孔の孔径や浮きるつぼ形状の設定が非常に
難しく、また添加時期が早すぎると浮るつぼ内部と外部
の融液が拡散により均−化してしまうため不純物添加の
時期が難しいという欠点があった。However, in the former method using a floating crucible described above, it is very difficult to set the pore diameter and the shape of the floating crucible, and if the addition time is too early, the melt inside and outside the floating crucible will become equalized by diffusion. It has the disadvantage that it is difficult to determine when to add impurities because it is stored away.
また後者の外部より原料融液を追加し希釈する方法は、
その追加方法が難しく、炉の構成が複雑になり、炉内の
熱分布を乱すという問題があった。The latter method of adding raw material melt from the outside and diluting it is
The addition method is difficult, the furnace configuration becomes complicated, and there are problems in that the heat distribution within the furnace is disturbed.
本発明の目的はこれ等の欠点を解決し、簡単な装置で、
原料融液の不純物濃度を一定に保ち安定した単結晶の製
造が可能である方法及び装置を提供することにある。The purpose of the present invention is to overcome these drawbacks and to provide a simple device that
An object of the present invention is to provide a method and an apparatus that can maintain a constant impurity concentration in a raw material melt and produce stable single crystals.
本発明は、偏析係数が1より小さい不純物を添加した単
結晶あるいは、偏析係数が1より小さい第3の成分を含
む三元系化合物単結晶を育成するにあたり、るつぼ内に
充填した原料の上部のみを溶融し、結晶成長に伴い溶融
原料内の不純物あるいは第3成分の濃度上昇をるつぼ内
の下部の固体原料部分を加熱することにより補償し、原
料融液内の不純物あるいは第3成分の濃度を一定に保ち
ながら単結晶を育成することを特徴とする単結晶の製造
方法である。さらに本発明はるつぼ並びに該るつぼ内に
嵌挿された下部に細孔を有する可動るつぼ、上記るつぼ
の上部を加熱する手段、上記るつぼの下部を加熱する手
段、及び上記るつぼ内の原料から育成した単結晶を引き
上げる手段を有してなる単結晶の製造装置およびるつ÷
−f1該るつぼの下部と細孔で連通する補助るつぼ、上
記るつぼを加熱する手段、上記補助るつぼを加熱する手
段、及び上記るつぼ及び補助るつぼ内の原料から育成し
た単結晶を引き上げる手段を有してなる単結晶の製造装
置に関する。In the present invention, when growing a single crystal containing an impurity with a segregation coefficient of less than 1 or a ternary compound single crystal containing a third component with a segregation coefficient of less than 1, only the upper part of the raw material filled in a crucible is grown. The increase in the concentration of impurities or the third component in the molten raw material due to crystal growth is compensated for by heating the lower solid raw material part in the crucible, and the concentration of impurities or the third component in the raw material melt is reduced. This is a method for producing a single crystal, which is characterized by growing a single crystal while maintaining constant growth. Furthermore, the present invention provides a crucible, a movable crucible fitted into the crucible and having a pore in the lower part, a means for heating the upper part of the crucible, a means for heating the lower part of the crucible, and a method for growing raw materials from the raw material in the crucible. A single crystal manufacturing apparatus and a melt having means for pulling a single crystal
-f1: an auxiliary crucible communicating with the lower part of the crucible through a pore, means for heating the crucible, means for heating the auxiliary crucible, and means for pulling up the single crystal grown from the crucible and the raw material in the auxiliary crucible This invention relates to a single crystal manufacturing device.
すなわち本発明の方法は、単結晶の成長を行うるつぼ上
部の原料のみを融解させ、不純物を添加した後、原料が
固液共存の状態で単結晶の育成を開始し、結晶成長とと
も不純物を含まないあるいは低濃度の固体原料を溶融さ
せ原料融液の不純物濃度を一定に保つようにしたもので
ある。In other words, in the method of the present invention, only the raw material in the upper part of the crucible for growing a single crystal is melted, and after adding impurities, the single crystal growth is started with the raw material coexisting with solid and liquid, and the impurities are removed as the crystal grows. The impurity concentration of the raw material melt is kept constant by melting a solid raw material that does not contain or has a low concentration.
以下本発明の方法を図面に基いて詳細に説明する。第1
図は本発明の実施態様を説明する図であって、図中1は
PBXあるいはカーボン、白金等のるつぼ、2は底に孔
のあいたBN、 AtN等の可動るつぼ、3は不純物無
添加あるいは低濃度原料固体、4は不純物添加原料融液
、5は単結晶、6は主ヒータ、7は補助ヒータ、8は上
軸、9はチャンバ、10は下軸、11はロードセル、1
2は不活性液体(封止剤)である。The method of the present invention will be explained in detail below with reference to the drawings. 1st
The figure is a diagram explaining an embodiment of the present invention, and in the figure, 1 is a crucible made of PBX or carbon, platinum, etc., 2 is a movable crucible made of BN, AtN, etc. with holes in the bottom, and 3 is a crucible with no or low impurity addition. Concentrated raw material solid, 4 impurity-added raw material melt, 5 single crystal, 6 main heater, 7 auxiliary heater, 8 upper shaft, 9 chamber, 10 lower shaft, 11 load cell, 1
2 is an inert liquid (sealant).
単結晶育成方法は、まするつぼ1に不純物無添加の原料
を充填しヒータ6.7により加熱。To grow a single crystal, a crucible 1 is filled with raw materials without any impurities and heated by heaters 6 and 7.
溶融する。次に補助ヒータ7の出力を調整し原料融液の
下部より固化させる。このとき原料融液の上部は融液の
状態にしておく。この状態でるつぼ1の内径と近い外径
をもつ可動るつぼ2を融液中に沈めると固体原料の上で
静止する。melt. Next, the output of the auxiliary heater 7 is adjusted to solidify the raw material melt starting from the lower part. At this time, the upper part of the raw material melt is kept in a melt state. In this state, when the movable crucible 2, which has an outer diameter close to the inner diameter of the crucible 1, is submerged in the melt, it comes to rest on top of the solid raw material.
なお、可動るつぼ2の重量は融液中に沈むように重りな
どにより調整する。単結晶の育成を開始する前に不純物
を添加しておき、成長を始める。The weight of the movable crucible 2 is adjusted using a weight or the like so that it sinks into the melt. Before starting single crystal growth, impurities are added and growth begins.
ただし、不純物は原料溶融前に予め加えておいてもよい
。なぜならば、偏析係数が1より小さいため、最初に固
化させるるつぼ下部の原料内へ偏析する不純物量は融液
内のものより少なく、結晶育成に伴って上昇する融液内
の不純物濃度を充分補償することができる。However, impurities may be added in advance before melting the raw materials. This is because the segregation coefficient is smaller than 1, so the amount of impurities that segregate into the raw material at the bottom of the crucible that is first solidified is smaller than that in the melt, which sufficiently compensates for the impurity concentration in the melt that increases with crystal growth. can do.
単結晶成長とともに原料融液4中の不純物濃度が高くな
っていくのを補償するため、補助ヒータ7の出力を調整
し、成長した単結晶とほぼ同量あるいは(T−偏析係数
)×結晶重量の量だけ、原料固体3の上部を融かす。原
料固体5の融解量は、可動るつぼ2の位置あるいは、原
料固体3と液体の密度差より求められる融液表面の位置
より推定できる。In order to compensate for the increase in impurity concentration in the raw material melt 4 as the single crystal grows, the output of the auxiliary heater 7 is adjusted so that the amount of impurities is approximately the same as that of the grown single crystal, or (T - segregation coefficient) x crystal weight. Melt the upper part of raw material solid 3 by the amount of . The melting amount of the raw material solid 5 can be estimated from the position of the movable crucible 2 or the position of the melt surface determined from the density difference between the raw material solid 3 and the liquid.
また可動るつぼ2は固定されていてもよく、その場合は
融液表面位置より原料固体3の融解量がわかる。Further, the movable crucible 2 may be fixed, and in that case, the amount of melted raw material solid 3 can be determined from the position of the melt surface.
第2図に可動るつぼ2が固定された構成の実施態様を示
す。るつぼは、その底部の1部が、るつぼ1の下部に設
けられた補助るつぼ13と、連通している。補助ヒータ
7で補助るつぼ1′5を加熱し原料固体の溶融量を調整
する。FIG. 2 shows an embodiment in which the movable crucible 2 is fixed. A portion of the bottom of the crucible communicates with an auxiliary crucible 13 provided at the bottom of the crucible 1. The auxiliary crucible 1'5 is heated by the auxiliary heater 7 to adjust the amount of melted raw material solid.
従来の浮きるつぼを利用して、結晶育成中の原料融液の
不純物濃度を一定に保つ原理は、浮きるつぼ底に設けら
れた細孔を通しての不純物あるいは無添加原料融液の拡
散を利用したものであるが、拡散速度の制御が極めて困
難であるとともに、不純物を添加してから単結晶育成終
了までの時間の制限が大きく、早すぎると充分拡散が起
らないし、一方時間がかかシすぎると融液全体(浮るつ
ぼの内と外)が均一化してしまう。The principle of keeping the impurity concentration of the raw material melt constant during crystal growth using a conventional floating crucible is to use the diffusion of impurities or additive-free raw material melt through the pores provided at the bottom of the floating crucible. However, it is extremely difficult to control the diffusion rate, and there is a large limit on the time from the time the impurity is added until the end of single crystal growth.If it is too early, sufficient diffusion will not occur, and on the other hand, it takes too long. The entire melt (inside and outside of the floating crucible) becomes uniform.
本発明におけるように可動るつぼの外側の無添加の原料
を、固体状態にしておき必要量だけ溶融させれば上記の
ような時間の制限を受けないし、るつぼ底の孔径を大き
くしておけば融解とほぼ同時に浮るつぼ内の融液と混シ
合い均一にすることが可能である。As in the present invention, if the additive-free raw material outside the movable crucible is kept in a solid state and only the required amount is melted, there is no time limit as described above, and if the pore size at the bottom of the crucible is made large, melting can be achieved. It is possible to mix it with the melt in the floating crucible almost simultaneously and make it uniform.
また本方法によれば、単結晶育成重量とほぼ同量の原料
固体が融解され可動るつぼ内に流入するため、原料融液
の深さを常に一定にすることができ、対流の効果を一定
条件で単結晶の育成が可能となる。In addition, according to this method, the raw material solid in an amount approximately equal to the single crystal growth weight is melted and flows into the movable crucible, so the depth of the raw material melt can always be kept constant, and the effect of convection can be controlled under certain conditions. This makes it possible to grow single crystals.
第1図の構成を用い、In を不純物として添加したG
aAs 単結晶の育成を行った。Using the configuration shown in Figure 1, G with In added as an impurity
An aAs single crystal was grown.
るつぼ1にGaAs 原料約5ゆおよびB、03液体
封止剤2001を充填し、ヒータ6.7により約125
0℃に加熱して全体を溶融した後冷却し、固体B、03
上にBN製でMoのおもシを備えた可動るつぼ2をのせ
再びヒータ6.7により加熱した。このときヒータ6.
7のパワーを調整し、可動るつぼ2の位置を観察しなが
ら原料の上半分のみを溶融した。次にIn を約20を
添加した後上軸8および下軸10の回転数1〜10rp
m、引き上げ速度5〜10■/hで育成を開始し、上軸
8につけられたロードセル11の信号より引き上げ重量
を計算し、該重量に相当する量だけ原料固体3を、可動
るつぼ2の位置を観察しつつ、補助ヒータ出力を調整す
ることにより溶融しながら、結晶成長を継続した。The crucible 1 was filled with about 5 ml of GaAs raw material and B, 03 liquid sealant 2001, and heated to about 125 yen by heater 6.7.
After heating to 0°C to melt the entire body, cool it to form solid B, 03
A movable crucible 2 made of BN and equipped with a Mo weight was placed on top and heated again by the heater 6.7. At this time, heater 6.
7 and melted only the upper half of the raw material while observing the position of the movable crucible 2. Next, after adding about 20 In, the rotation speed of the upper shaft 8 and lower shaft 10 is 1 to 10 rpm.
Start growing at a lifting speed of 5 to 10 cm/h, calculate the lifting weight from the signal of the load cell 11 attached to the upper shaft 8, and move the raw material solid 3 in an amount corresponding to the weight to the position of the movable crucible 2. While observing this, the crystal growth was continued while melting by adjusting the output of the auxiliary heater.
育成された単結晶は重量的1.5 kg、長さ約100
−の良好なものであり、In 濃度が約1.5WJ で
あり結晶内のIn#度の変動は20%以内であった。ま
た結晶内部にIn の析出は見られず、結晶の肩部よ
り後端部までEPDが100〜500個/ m ”以下
であり、電気絶縁性も良好なものであった。The grown single crystal weighs 1.5 kg and is approximately 100 mm long.
-, the In concentration was about 1.5 WJ, and the variation in the In# degree within the crystal was within 20%. Further, no precipitation of In was observed inside the crystal, and the EPD from the shoulder to the rear end of the crystal was 100 to 500/m'' or less, and the electrical insulation was good.
以上の実施例はIn を不純物として添加したGaA
s 単結晶の育成の場合を示したが、混晶単結晶の育成
の実施例も上記実施例と同一であり、混晶の単結晶の育
成にも適用できる。The above examples are GaA with In added as an impurity.
s Although the case of growing a single crystal is shown, the example of growing a mixed crystal single crystal is also the same as the above example, and can also be applied to growing a mixed crystal single crystal.
以上説明したように原料融液の組成あるいは不純物濃度
を一定に保つために供給する原料を固体状態にしておき
必要量だけを加熱溶融し供給することにより制御性よく
高精度に原料融液組成あるbは不純物濃度を一定にする
ことが可能であり、育成された単結晶内の組成あるいは
不純物濃度を均一にすることが可能となった。As explained above, in order to keep the composition or impurity concentration of the raw material melt constant, the raw material to be supplied is kept in a solid state, and only the necessary amount is heated and melted and supplied, thereby controlling the composition of the raw material melt with high precision. b makes it possible to keep the impurity concentration constant, making it possible to make the composition or impurity concentration in the grown single crystal uniform.
第1図および第2図は本発明の方法の実施態様を説明す
る図であって、第1図はるつぼ内に可動るつぼを設けた
場合、第2図はるつぼ下部に補助るつぼを設けた場合を
示す。Figures 1 and 2 are diagrams illustrating embodiments of the method of the present invention, where Figure 1 shows a case where a movable crucible is provided within the crucible, and Figure 2 shows a case where an auxiliary crucible is provided below the crucible. shows.
Claims (3)
あるいは、偏析係数が1より小さい第3の成分を含む三
元系化合物単結晶を育成するにあたり、るつぼ内に充填
した原料の上部のみを溶融し、結晶成長に伴い溶融原料
内の不純物あるいは第3成分の濃度上昇をるつぼ内の下
部の固体原料部分を加熱することにより補償し、原料融
液内の不純物あるいは第3成分の濃度を一定に保ちなが
ら単結晶を育成することを特徴とする単結晶の製造方法
。(1) When growing a single crystal containing an impurity with a segregation coefficient of less than 1 or a ternary compound single crystal containing a third component with a segregation coefficient of less than 1, only the upper part of the raw material filled in the crucible is grown. The increase in the concentration of impurities or the third component in the molten raw material due to crystal growth is compensated for by heating the lower solid raw material part in the crucible, and the concentration of impurities or the third component in the raw material melt is kept constant. A method for producing a single crystal, which is characterized by growing a single crystal while maintaining a constant temperature.
を有する可動るつぼ、上記るつぼの上部を加熱する手段
、上記るつぼの下部を加熱する手段、及び上記るつぼ内
の原料から育成した単結晶を引き上げる手段を有してな
る単結晶の製造装置。(2) A crucible, a movable crucible fitted into the crucible and having a pore at the bottom, a means for heating the upper part of the crucible, a means for heating the lower part of the crucible, and a unit grown from the raw material in the crucible. A single crystal production device comprising means for pulling a crystal.
つぼ、上記るつぼを加熱する手段、上記補助るつぼを加
熱する手段、及び上記るつぼ及び補助るつぼ内の原料か
ら育成した単結晶を引き上げる手段を有してなる単結晶
の製造装置。(3) a crucible, an auxiliary crucible communicating with the lower part of the crucible through a pore, a means for heating the crucible, a means for heating the auxiliary crucible, and a means for pulling the single crystal grown from the raw materials in the crucible and the auxiliary crucible. A single crystal production device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60011018A JPH0633219B2 (en) | 1985-01-25 | 1985-01-25 | Method and apparatus for producing single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60011018A JPH0633219B2 (en) | 1985-01-25 | 1985-01-25 | Method and apparatus for producing single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61174189A true JPS61174189A (en) | 1986-08-05 |
JPH0633219B2 JPH0633219B2 (en) | 1994-05-02 |
Family
ID=11766371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60011018A Expired - Lifetime JPH0633219B2 (en) | 1985-01-25 | 1985-01-25 | Method and apparatus for producing single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633219B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101333791B1 (en) * | 2013-01-30 | 2013-11-29 | 한국세라믹기술원 | Apparatus for growing single crystal |
-
1985
- 1985-01-25 JP JP60011018A patent/JPH0633219B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0633219B2 (en) | 1994-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4040895A (en) | Control of oxygen in silicon crystals | |
JPH02133389A (en) | Production device of silicon single crystal | |
JPS6046998A (en) | Pulling up of single crystal and its device | |
EP0388503A1 (en) | Method for pulling single crystals | |
US4944925A (en) | Apparatus for producing single crystals | |
JPH09175889A (en) | Single crystal pull-up apparatus | |
JPS63252989A (en) | Production of semiconductor single crystal by pull-up method | |
JPS61174189A (en) | Method and device for production of single crystal | |
JPH0480875B2 (en) | ||
JPS5964591A (en) | Apparatus for pulling up single crystal | |
JPH069290A (en) | Method for growing compound semiconductor single crystal | |
JPH01294592A (en) | Growth of single crystal | |
JPH07133185A (en) | Production of single crystal | |
JPH0543384A (en) | Method for crystal growth | |
JPH0341432B2 (en) | ||
JPH06239686A (en) | Vertical vessel for growing compound semiconductor crystal | |
JPH051236B2 (en) | ||
JPH0380181A (en) | Device for producing single crystal | |
JPH05319973A (en) | Single crystal production unit | |
JPH0680495A (en) | Method for crystal growth | |
JPH03215384A (en) | Crystal-growing device | |
JP2717685B2 (en) | Method and apparatus for crystal growth by Czochralski method | |
JPH02217393A (en) | Production of compound semiconductor single crystal | |
JPS6042293A (en) | Manufacture of single crystal | |
JPH04214091A (en) | Method for growing crystal |