JPH0380181A - Device for producing single crystal - Google Patents
Device for producing single crystalInfo
- Publication number
- JPH0380181A JPH0380181A JP21594389A JP21594389A JPH0380181A JP H0380181 A JPH0380181 A JP H0380181A JP 21594389 A JP21594389 A JP 21594389A JP 21594389 A JP21594389 A JP 21594389A JP H0380181 A JPH0380181 A JP H0380181A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- crystal
- single crystal
- crucible
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 89
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 239000000155 melt Substances 0.000 claims description 12
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910002804 graphite Inorganic materials 0.000 abstract description 4
- 239000010439 graphite Substances 0.000 abstract description 4
- 239000011810 insulating material Substances 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 239000012768 molten material Substances 0.000 abstract 2
- 238000001691 Bridgeman technique Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000002109 crystal growth method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は単結晶成長装置に係り、特にるつぼ内で融液を
そのまま固化させ単結晶を得る結晶成長法、例えば、垂
直ブリッジマン法において、良質な単結晶を得るための
温度環境を精度良く形成することを可能とする単結晶成
長装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single crystal growth apparatus, and particularly to a crystal growth method for obtaining a single crystal by solidifying a melt in a crucible, such as the vertical Bridgman method. The present invention relates to a single crystal growth apparatus that makes it possible to accurately form a temperature environment for obtaining high quality single crystals.
電界効果トランジスタ、ショットキーバリアダイオード
、集積回路(IC)等の各種半導体素子類の基板として
用いられる半導体単結晶の製造法としては融液からの結
晶成長法が主力である。融液からの結晶成長法において
は結晶成長面(固液界面〉の形状を結晶成長の開始時か
ら終了時まで精密に制御することが要求される。2. Description of the Related Art Crystal growth from a melt is the main method for manufacturing semiconductor single crystals used as substrates for various semiconductor devices such as field effect transistors, Schottky barrier diodes, and integrated circuits (ICs). In the crystal growth method from a melt, it is required to precisely control the shape of the crystal growth surface (solid-liquid interface) from the start to the end of crystal growth.
融液からの結晶成長法の1つである引上法ではるつぼの
回転速度や結晶の回転速度の制御、引上速度の制御等に
より結晶成長面の制御を行なっている。In the pulling method, which is one of the methods for growing crystals from a melt, the crystal growth surface is controlled by controlling the rotation speed of the crucible, the rotation speed of the crystal, and the pulling speed.
(2)
他の結晶成長法としては、るつぼ内で融液をそのまま固
化させ、単結晶を得る垂直ボート成長法が有力である。(2) As another crystal growth method, a vertical boat growth method in which a melt is solidified as it is in a crucible to obtain a single crystal is effective.
垂直ボート成長法には垂直ブリッジマン法(VB法)及
び温度勾配凝固法(VGF法)がある。前者のVB法は
主ヒーターと、るつぼとの相対的位置を機械的に変化さ
せて単結晶を成長させる方法であり、後者のVGF法は
ヒーターと、るつぼの位置開係を変化させずにヒーター
の温度分布を変化させて単結晶を成長させる方法である
。The vertical boat growth method includes the vertical Bridgman method (VB method) and the temperature gradient solidification method (VGF method). The former VB method is a method of growing a single crystal by mechanically changing the relative position of the main heater and the crucible, while the latter VGF method is a method of growing a single crystal by mechanically changing the relative position of the main heater and the crucible. This is a method of growing single crystals by changing the temperature distribution.
この垂直ブリッジマン法あるいはVGF法は大口径円形
ウェハの製造に適している。しかしながらこのボート法
は、成長中の結晶を回転させながら融液から引上げ、固
化させるという引上法と比べ、静的な状態変化を特徴と
するため、上記回転速度の制御等による結晶成長面の制
御は不可能であり、ホットゾーン構造の工夫により結晶
成長面の制御を行なっていた。This vertical Bridgman method or VGF method is suitable for manufacturing large diameter circular wafers. However, compared to the pulling method in which the growing crystal is pulled out of the melt and solidified while rotating, this boat method is characterized by static state changes, so the crystal growth surface can be adjusted by controlling the rotational speed, etc. Since this is impossible to control, the crystal growth surface has been controlled by devising a hot zone structure.
第4図にその一例を示す(III、八、Gault e
t、 alJ、C,G 74(1986) 491〜5
0G頁)。第4図においてるつぼ3a内に融液10を作
製し、るつぼ底部に収(3)
容した種結晶9より上方に向かって周期律表Ib族およ
びvb族元素からなる無機化合物半導体(以下rm−v
族化合物半導体」という)の単結晶を固化させる(結晶
101.S高成長方法(例えば垂直ブリッジマン法等)
において、るつぼ3aを保持するサセプター4aに溝1
2を形成し、サセプター4a近傍の熱環境および熱流の
制御を試みた例である。第5図(a)、 (b) 中
の矢印はそれぞれ結晶成長の初期および後期の熱流を示
したものである。溝12を設けたサセプター4aを用い
ることにより、結晶成長の初期において結晶からの熱の
散逸を制御することができる。すなわち、サセプターに
断熱部となる溝を設けることによりサセプターを通る熱
流のうち横方向への熱流を抑制し、結晶の横方向への熱
流を制御し得る。しかしながら、溝を設けたこのような
サセプターで熱流を制御する方法では、その効果は当然
サセプター近傍にかぎられ、サセプターから離れた場所
では著しく小さくなる。第5図(b)に示すように、サ
セプターから離れた、結晶成長の後期においては、(4
)
第5図(a>と比べ溝を設けたサセプターの効果はほと
んど無く、横方向にも大きな熱流が存在し、結晶成長の
初期と後期で結晶成長面を通る熱流に大きな差異が生じ
ている。An example is shown in Figure 4 (III, 8, Gault e
t, alJ, C, G 74 (1986) 491-5
0G page). In FIG. 4, a melt 10 is prepared in a crucible 3a, and an inorganic compound semiconductor (hereinafter referred to as rm- v
solidify a single crystal of a group compound semiconductor (crystal 101.S high growth method (e.g. vertical Bridgman method, etc.)
In this case, a groove 1 is formed in the susceptor 4a that holds the crucible 3a.
This is an example in which an attempt was made to control the thermal environment and heat flow near the susceptor 4a. The arrows in FIGS. 5(a) and 5(b) indicate the heat flow in the early and late stages of crystal growth, respectively. By using the susceptor 4a provided with the grooves 12, it is possible to control the dissipation of heat from the crystal at the initial stage of crystal growth. That is, by providing a groove serving as a heat insulating part in the susceptor, the heat flow in the lateral direction of the heat flow passing through the susceptor can be suppressed, and the heat flow in the lateral direction of the crystal can be controlled. However, in the method of controlling heat flow using such a susceptor provided with grooves, the effect is naturally limited to the vicinity of the susceptor, and becomes significantly smaller at locations away from the susceptor. As shown in Figure 5(b), in the late stage of crystal growth away from the susceptor, (4
) Figure 5 (Compared to a>, there is almost no effect of the grooved susceptor, and there is also a large heat flow in the lateral direction, and there is a large difference in the heat flow passing through the crystal growth surface between the early and late stages of crystal growth.) .
ところで、融液からの結晶成長において、結晶成長面の
形状は結晶成長面近傍の熱流に大きく依存しており、結
晶成長面の形状を制御するためには、結晶成長全体にわ
たって熱流も制御することが必要である。By the way, in crystal growth from melt, the shape of the crystal growth surface is largely dependent on the heat flow near the crystal growth surface, and in order to control the shape of the crystal growth surface, it is necessary to control the heat flow throughout the entire crystal growth. is necessary.
上記方法による結晶成長では結晶成長後期における熱流
の制御が困難であり、結晶の品質向上のため結晶成長全
体にわたった熱流の制御方法が強く望まれている。In crystal growth using the above method, it is difficult to control heat flow in the latter stages of crystal growth, and there is a strong desire for a method of controlling heat flow throughout crystal growth in order to improve crystal quality.
融液からの結晶成長においては、結晶の成長面を結晶成
長全体にわたって精密に制御することが、均一で高品質
な結晶を得るために不可欠であり、そのためには結晶を
通る熱流、特に結晶成長面(固液界面)近傍を通る熱流
を精密に制御するこ(5)
とが必要である。In crystal growth from melt, precise control of the crystal growth plane throughout the crystal growth is essential to obtain uniform, high-quality crystals. It is necessary to precisely control the heat flow passing near the surface (solid-liquid interface) (5).
しかしながら従来の方法では上記問題点を解決するのは
困難であった。However, it has been difficult to solve the above problems with conventional methods.
本発明は均一で高品質な単結晶を製造するための単結晶
製造装置を提供することを目的とする。An object of the present invention is to provide a single crystal manufacturing apparatus for manufacturing a uniform and high quality single crystal.
上記課題は本発明によれば垂直に配置されたるつぼの底
部に種結晶を収容し、その上方に原料を充填し該原料を
加熱・溶融し、この融液を固化させ単結晶を得る垂直ブ
リッジマン法あるいはVGF法を実施するための単結晶
製造装置において、前記原料を加熱・溶融する主発熱体
の内側に該主発熱体に対し独立して発熱量を制御するこ
とが可能な補助発熱体を設置したことを特徴とする単結
晶製造装置によって解決される。According to the present invention, the above problem is solved by a vertical bridge in which a seed crystal is housed in the bottom of a vertically arranged crucible, a raw material is filled above the crucible, the raw material is heated and melted, and the melt is solidified to obtain a single crystal. In a single crystal manufacturing apparatus for carrying out the Mann method or the VGF method, an auxiliary heating element is provided inside the main heating element that heats and melts the raw material, and the amount of heat generated can be controlled independently of the main heating element. The problem is solved by a single crystal production apparatus characterized by the following.
上記補助発熱体はその発熱部と結晶の成長面との相対的
な位置開係を結晶成長開始時から終了時まで制御するこ
とが可能な機構を有していることが結晶成長面(固液界
面)の形状を制御する上で(6)
好ましい。The above-mentioned auxiliary heating element has a mechanism that allows the relative positional relationship between the heating part and the crystal growth surface to be controlled from the start to the end of crystal growth. (6) is preferable in controlling the shape of the interface).
本発明によればるつぼの周囲に主発熱体の他に補助発熱
体を設けることによって結晶体内の熱流を制御すること
ができるため歪の少ない単結晶を得ることができる。According to the present invention, by providing an auxiliary heating element in addition to the main heating element around the crucible, the heat flow within the crystal body can be controlled, so that a single crystal with less distortion can be obtained.
以下本発明の実施例を図面に基づいて詳細に説明する。 Embodiments of the present invention will be described in detail below based on the drawings.
第1図は本発明の1実施例を示す垂直ブリッジマン法の
単結晶製造装置の縦断面模式図であり、第2図は本発明
に係る結晶成長中の熱流を説明するための模式図である
。FIG. 1 is a schematic longitudinal cross-sectional view of a vertical Bridgman method single crystal manufacturing apparatus showing one embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining heat flow during crystal growth according to the present invention. be.
第1図に示すように本発明の単結晶製造装置は公知の垂
直ブリッジマン法にはゾ類似しているが、るつぼ内の原
料を溶融する発熱体の内側にるつぼにより近接した補助
発熱体を設ける点が異なっている。As shown in FIG. 1, the single crystal production apparatus of the present invention is similar to the known vertical Bridgman method, but an auxiliary heating element is placed closer to the crucible inside the heating element that melts the raw material in the crucible. The difference is that they are provided.
(7)
本発明の単結晶装置はグラファイトフェルト等の保温材
2を有する気密容器1内に等方性グラファイト製のサセ
プター4内に外径800mm、高さ150mmの石英製
のるつぼ3を載置し、支持軸7によりサセプター4と共
にるつぼ3を上下させる。(7) In the single crystal device of the present invention, a crucible 3 made of quartz with an outer diameter of 800 mm and a height of 150 mm is placed inside a susceptor 4 made of isotropic graphite in an airtight container 1 having a heat insulating material 2 such as graphite felt. Then, the crucible 3 is moved up and down together with the susceptor 4 by the support shaft 7.
るつぼ側辺には従来の主発熱体5の他に補助発熱体6を
設けた。In addition to the conventional main heating element 5, an auxiliary heating element 6 was provided on the side of the crucible.
発熱体は等方性グラファイト製で主発熱体5の高さは2
0cm、補助発熱体6の高さは4cmのものを使用した
。The heating element is made of isotropic graphite, and the height of the main heating element 5 is 2.
0 cm, and the height of the auxiliary heating element 6 was 4 cm.
上記ホットゾーンに外径80mm、高さ150mmの石
英製のるつぼを用いて結晶成長を行なった。原料は高純
度のGaAs多結晶IL、 5 kg 、820330
0 gを用いた。Crystal growth was performed in the hot zone using a quartz crucible with an outer diameter of 80 mm and a height of 150 mm. The raw material is high purity GaAs polycrystalline IL, 5 kg, 820330
0 g was used.
原料融解後7気圧のアルゴン雰囲気で成長速度3mm/
hで3インチ径の結晶を成長させることができた。After melting the raw materials, the growth rate was 3 mm/in an argon atmosphere of 7 atm.
It was possible to grow crystals with a diameter of 3 inches.
第1図は結晶育成中の図であり、るつぼ内の下方から種
結晶(GaAs) 8、結晶9及び原料融液10であり
、そしてその上に封止材11が配置されている。FIG. 1 is a diagram during crystal growth, showing a seed crystal (GaAs) 8, a crystal 9, and a raw material melt 10 from the bottom inside the crucible, and a sealing material 11 is placed on top of them.
(8)
補助発熱体6は第2図により拡大して示したように原料
融液10と結晶9の界面(固液界面)Aのや\下になる
ように、結晶成長全体にわたってその位置を制御した。(8) The auxiliary heating element 6 is positioned over the entire crystal growth so that it is slightly below the interface (solid-liquid interface) A between the raw material melt 10 and the crystal 9, as shown in an enlarged view in FIG. controlled.
第3図は本発明に係る結晶成長での発熱体の発熱量の変
化を示す図であり、
結晶成長が進行すると固化した結晶からの放熱が大きく
なるため、側面からの放熱を打ち消すために、補助発熱
体の発熱量を増加させ、結晶成長面近傍の熱量を制御し
、安定して結晶成長を行うことができた。FIG. 3 is a diagram showing changes in the amount of heat generated by the heating element during crystal growth according to the present invention. As the crystal growth progresses, heat radiation from the solidified crystal increases, so in order to cancel the heat radiation from the sides, By increasing the amount of heat generated by the auxiliary heating element and controlling the amount of heat near the crystal growth surface, we were able to achieve stable crystal growth.
〔発明の効果〕
結晶性の評価として、(100)面内の転位密度を測定
した。[Effects of the Invention] As an evaluation of crystallinity, the dislocation density in the (100) plane was measured.
以上説明したように本発明によれば、得られたGaAs
結晶は(100)面内のエッチピット密度(BPD)が
結晶全体にわたり2 XIO’ cm−2を超える領域
が減少した。しかも面内のEPDの平均値は約1×10
’ cm−2であり、従来の引上法によるGaAs単結
晶(9)
の115以下となり、良好な特性を有し、歩留りが高い
半導体装置の製造に大きく寄与することが可能となる。As explained above, according to the present invention, the obtained GaAs
In the crystal, the region in which the etch pit density (BPD) in the (100) plane exceeds 2 XIO' cm-2 was reduced over the entire crystal. Moreover, the average value of EPD within the plane is approximately 1 × 10
'cm-2, which is less than 115 that of GaAs single crystal (9) produced by the conventional pulling method, making it possible to greatly contribute to the manufacture of semiconductor devices with good characteristics and high yield.
第1図は本発明の1実施例を示す垂直ブリ・フジマン法
の単結晶製造装置の縦断面模式図であり、第2図は本発
明による結晶成長中の熱流を説明するための模式図であ
り、
第3図は本発明による結晶成長での発熱体の発熱量の変
化を示す図であり、
第4図は従来例を説明するための縦断面模式図であり、
第5図(a)及び(b)は従来のそれぞれ結晶成長の初
期及び後期の熱流を示す模式図である。
1・・・気密容器、 2・・・保温材、3・・
・るつぼ、 4・・・サセプター5・・・発
熱体、 6・・・補助発熱体、7・・・支持
軸、 8・・・種結晶、9・・・結晶、
10・・・原料融液、1■・・・封止材、
12・・・溝。
(10)
第
1
図
6・・・補助発熱体
第
図
特開平3
80181(5)FIG. 1 is a schematic vertical cross-sectional view of a vertical Buri-Fujiman single crystal production apparatus showing one embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining heat flow during crystal growth according to the present invention. 3 is a diagram showing the change in the calorific value of the heating element during crystal growth according to the present invention, FIG. 4 is a schematic vertical cross-sectional view for explaining the conventional example, and FIG. 5(a) and (b) are conventional schematic diagrams showing the heat flow at the initial stage and the latter stage of crystal growth, respectively. 1... Airtight container, 2... Heat insulating material, 3...
- Crucible, 4... Susceptor 5... Heating element, 6... Auxiliary heating element, 7... Support shaft, 8... Seed crystal, 9... Crystal,
10... Raw material melt, 1■... Sealing material,
12...Groove. (10) 1st Figure 6... Auxiliary heating element diagram JP-A-3-80181 (5)
Claims (1)
その上方に原料を充填し、該原料を加熱・溶融し、この
融液を固化させ単結晶を得る垂直ボート成長法を実施す
るための単結晶製造装置において、 前記原料を加熱・溶融する主発熱体の内側に該主発熱体
に対し独立して発熱量を制御することが可能な補助発熱
体を設置したことを特徴とする単結晶製造装置。 2、前記補助発熱体はその発熱部と結晶の成長面との相
対的な位置開係を結晶成長開始時から終了時まで制御す
ることが可能な機構を有していることを特徴とする、特
許請求の範囲第1項記載の単結晶製造装置。[Claims] 1. A seed crystal is housed at the bottom of a vertically arranged crucible;
In a single crystal manufacturing apparatus for carrying out a vertical boat growth method in which a raw material is filled above the raw material, the raw material is heated and melted, and the melt is solidified to obtain a single crystal, the main heat generating device heats and melts the raw material. 1. A single-crystal manufacturing apparatus, characterized in that an auxiliary heating element is installed inside the main heating element, and the amount of heat generated can be controlled independently of the main heating element. 2. The auxiliary heating element is characterized in that it has a mechanism capable of controlling the relative positional relationship between the heating part and the crystal growth surface from the start to the end of crystal growth. A single crystal manufacturing apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1215943A JP2758038B2 (en) | 1989-08-24 | 1989-08-24 | Single crystal manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1215943A JP2758038B2 (en) | 1989-08-24 | 1989-08-24 | Single crystal manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0380181A true JPH0380181A (en) | 1991-04-04 |
JP2758038B2 JP2758038B2 (en) | 1998-05-25 |
Family
ID=16680830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1215943A Expired - Fee Related JP2758038B2 (en) | 1989-08-24 | 1989-08-24 | Single crystal manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2758038B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006298672A (en) * | 2005-04-18 | 2006-11-02 | Sumitomo Electric Ind Ltd | Apparatus for manufacturing compound semiconductor crystal |
JP2014525385A (en) * | 2011-08-31 | 2014-09-29 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | System with additional lateral heat source for making crystalline materials by directional solidification |
CN118064960A (en) * | 2024-03-05 | 2024-05-24 | 安徽科瑞思创晶体材料有限责任公司 | Continuous growth horizontal Bridgman furnace |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930795A (en) * | 1982-08-10 | 1984-02-18 | Sumitomo Electric Ind Ltd | Apparatus for pulling up single crystal |
JPS6283877U (en) * | 1985-10-30 | 1987-05-28 | ||
JPS63270379A (en) * | 1987-04-28 | 1988-11-08 | Furukawa Electric Co Ltd:The | Production of compound semiconductor single crystal and apparatus therefor |
-
1989
- 1989-08-24 JP JP1215943A patent/JP2758038B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930795A (en) * | 1982-08-10 | 1984-02-18 | Sumitomo Electric Ind Ltd | Apparatus for pulling up single crystal |
JPS6283877U (en) * | 1985-10-30 | 1987-05-28 | ||
JPS63270379A (en) * | 1987-04-28 | 1988-11-08 | Furukawa Electric Co Ltd:The | Production of compound semiconductor single crystal and apparatus therefor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006298672A (en) * | 2005-04-18 | 2006-11-02 | Sumitomo Electric Ind Ltd | Apparatus for manufacturing compound semiconductor crystal |
JP4513638B2 (en) * | 2005-04-18 | 2010-07-28 | 住友電気工業株式会社 | Compound semiconductor crystal manufacturing equipment |
JP2014525385A (en) * | 2011-08-31 | 2014-09-29 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | System with additional lateral heat source for making crystalline materials by directional solidification |
CN118064960A (en) * | 2024-03-05 | 2024-05-24 | 安徽科瑞思创晶体材料有限责任公司 | Continuous growth horizontal Bridgman furnace |
CN118064960B (en) * | 2024-03-05 | 2024-08-30 | 安徽科瑞思创晶体材料有限责任公司 | Continuous growth horizontal Bridgman furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2758038B2 (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09175889A (en) | Single crystal pull-up apparatus | |
JPH0380181A (en) | Device for producing single crystal | |
JP4344021B2 (en) | Method for producing InP single crystal | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JP2542434B2 (en) | Compound semiconductor crystal manufacturing method and manufacturing apparatus | |
JPH0380180A (en) | Device for producing single crystal | |
JP2977297B2 (en) | Crystal manufacturing method | |
JP2734820B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPH03193689A (en) | Production of compound semiconductor crystal | |
JP3042168B2 (en) | Single crystal manufacturing equipment | |
JP3806793B2 (en) | Method for producing compound semiconductor single crystal | |
JP2004277266A (en) | Method for manufacturing compound semiconductor single crystal | |
JP3624295B2 (en) | Single crystal manufacturing method and manufacturing apparatus thereof | |
JP2757865B2 (en) | Method for producing group III-V compound semiconductor single crystal | |
JPH0341432B2 (en) | ||
JPH10212192A (en) | Method for growing bulk crystal | |
JPH0559873B2 (en) | ||
JPH0725533B2 (en) | Method for producing silicon polycrystalline ingot | |
JPS6111913B2 (en) | ||
JP2573655B2 (en) | Method for producing non-doped compound semiconductor single crystal | |
CN115558984A (en) | Method for preparing large-size semiconductor crystal without crucible | |
JPH0367996B2 (en) | ||
JPH09227269A (en) | Production of compound semiconductor single crystal and apparatus therefor | |
JPH05178684A (en) | Production of semiconductor single crystal | |
JPH05132391A (en) | Method for growing single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |