JPS6385082A - Method for growing single crystal and apparatus thereof - Google Patents

Method for growing single crystal and apparatus thereof

Info

Publication number
JPS6385082A
JPS6385082A JP22847086A JP22847086A JPS6385082A JP S6385082 A JPS6385082 A JP S6385082A JP 22847086 A JP22847086 A JP 22847086A JP 22847086 A JP22847086 A JP 22847086A JP S6385082 A JPS6385082 A JP S6385082A
Authority
JP
Japan
Prior art keywords
crucible
interface
crystal growth
temperature
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22847086A
Other languages
Japanese (ja)
Other versions
JPH0764670B2 (en
Inventor
Hideo Nakanishi
秀男 中西
Hiroki Koda
拡樹 香田
Keigo Hoshikawa
圭吾 干川
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61228470A priority Critical patent/JPH0764670B2/en
Publication of JPS6385082A publication Critical patent/JPS6385082A/en
Publication of JPH0764670B2 publication Critical patent/JPH0764670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the control of the form of interface between solid and liquid over the whole crystal ingot in a vertical temperature gradient coagulation method for the production of a single crystal by solidifying a molten liquid in a crucible, by constantly maintaining the temperature of peripheral part contacting with the inner wall of the crucible to a level higher than the temperature of the core part in a cross-section of the molten liquid in the crucible at a definite height. CONSTITUTION:A molten liquid (or solution) 2 of a raw material is formed in a crucible 1, which is placed in an environment having a vertical temperature gradient higher at the upper part and lower at the bottom part. The molten liquid is slowly cooled and solidified from an end of the crucible to effect the growth of a single crystal having a shape corresponding to the inner shape of the crucible 1. In the above procedure, the peripheral temperature of the molten liquid contacting with the inner wall of the crucible is constantly maintained at a higher level than the core part in a cross-section of the molten liquid 2 at a definite height. The growing interface of the crystal is shifted from the bottom upward to effect the crystallization of the material while keeping the interface to a flat form or slightly upwards convex. The crystallization is carried out by the use of an interface form controlling means (a plate member 11, etc.) which is rotatable or vertically movable in the molten liquid and effective in controlling the thermal flow or molten liquid flow.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はるつぼ内で融液をそのまま固化し、るつほの形
状に対応した形状の単結晶をうる結晶成長法において、
例えば垂直ブリッジ法、垂直温度勾配凝固法において、
良質な単結晶をうるに不可欠な結晶成長界面(固液界面
)形状の制御をインゴット全体にわたって可能とする単
結晶の成長方法ならびに成長装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a crystal growth method in which a melt is solidified as it is in a crucible to obtain a single crystal with a shape corresponding to the shape of the crucible.
For example, in the vertical bridge method and vertical temperature gradient solidification method,
The present invention relates to a single crystal growth method and a growth apparatus that enable control of the shape of the crystal growth interface (solid-liquid interface) throughout the ingot, which is essential for obtaining a high-quality single crystal.

(従来技術および発明が解決しようとする問題点)融液
からのバルク結晶成長において、固液界面形状の制御は
、良質な単結晶を得る上で不可欠な基本技術の一つであ
る。光・電子デバイスの基板として用いられる引上法に
よる半得体率結晶の成長では、一般に、るつぼ回転によ
る融液流の制御、ホットシー/構造の工夫による熱流の
制御等の組合せにより固液界面形状の制御がなされてい
る。ま九、固液界面形状は良く知られているように、結
晶成長の進行に伴ない、時々刻々、変化するものである
から、例えば結晶回転数を結晶成長の進行とともに連続
的に変化させ、成長し次結晶インゴット全体にわたって
、固液界面形状を制御する方法等も提案されている。
(Prior Art and Problems to be Solved by the Invention) In bulk crystal growth from a melt, controlling the shape of the solid-liquid interface is one of the basic techniques essential for obtaining a high-quality single crystal. In the growth of semiobtainable crystals by the pulling method used as substrates for optical and electronic devices, the shape of the solid-liquid interface is generally controlled by a combination of controlling the melt flow by rotating the crucible and controlling the heat flow by devising the hot sea/structure. are under control. As is well known, the shape of the solid-liquid interface changes from time to time as crystal growth progresses, so for example, by continuously changing the crystal rotation speed as crystal growth progresses, A method of controlling the shape of the solid-liquid interface over the entire grown crystal ingot has also been proposed.

しかしながら、引上法とならんで、大口径バルク単結晶
の成長法として有望な垂直ブリッジマン法あるいは垂直
温度勾配凝固法等のるつぼ内で融液を固化させることに
より単結晶を得る成長法においては、本質的に回転媒体
を有しない成長法であるので、上記結晶回転による融液
流制御は望むべくもなく、ホットゾーン構造の改善によ
シ、結晶インゴットの一部においてのみ固液界面形状の
制御がなされているのが現状である。第6図はその一例
を示す(W、 A、 Gaultet al、 J、 
C,G 74 (198すp491〜506)o  る
つぼ1内に作製した融液2を種子結晶3から上方に向か
って固化さぜるI−V族化合物半導体の結晶成長におい
て、るつぼ1を保持するサセプター4′に縦方向に同心
円状の溝5′ヲ形成し、成長結晶からの熱の散逸を制御
することによシ、固液界面形状の制御を試みた例である
。第7図はその効果を溝のないサセプターを用いた場合
(第8図〕と比較して、模式的に示したものである。図
中、矢印は固液界面付近の熱流を示す。
However, in addition to the pulling method, growth methods that obtain single crystals by solidifying a melt in a crucible, such as the vertical Bridgman method or the vertical temperature gradient solidification method, are promising methods for growing large-diameter bulk single crystals. Since this is a growth method that essentially does not use a rotating medium, it is impossible to control the melt flow by the crystal rotation described above, and it is difficult to improve the hot zone structure by changing the solid-liquid interface shape only in a part of the crystal ingot. The current situation is that it is under control. Figure 6 shows an example (W, A, Gaultet al, J,
C, G 74 (198sp491-506) o Holding the crucible 1 during crystal growth of a group IV compound semiconductor in which the melt 2 prepared in the crucible 1 is solidified upward from the seed crystal 3 This is an example in which an attempt was made to control the shape of the solid-liquid interface by forming concentric grooves 5' in the vertical direction in the susceptor 4' to control the dissipation of heat from the growing crystal. Fig. 7 schematically shows the effect in comparison with the case of using a susceptor without grooves (Fig. 8). In the figure, arrows indicate heat flow near the solid-liquid interface.

第7図(a)、(b)は、それぞれ溝を設けたサセプタ
ーを用いた場合の成長初期および成長後期でありS第8
図(a)、■)は、それぞれ溝なしサセプターを用いた
場合の成長初期、後期に相当する。
Figures 7(a) and 7(b) show the early stage and late stage of growth when using a grooved susceptor, respectively.
Figures (a) and (■) correspond to the early and late stages of growth, respectively, when using a susceptor without grooves.

両口の比較よシ明らかなように成長初期においては、溝
を設は九サセプターを用いることによシ、結晶からの横
方向への熱の散逸を制御し得る。即ち、第6図中のA点
を考えると、横方向(X)への熱の流れは、溝の内部に
空隙があるので、゛断熱作用を受け、一方縦方向(下方
向:y)ヘの熱の流れは、溝と平行であるので断熱作用
を受けない。
As is clear from the comparison between the two sides, in the early stage of growth, the lateral dissipation of heat from the crystal can be controlled by using a grooved susceptor. That is, considering point A in Figure 6, the flow of heat in the horizontal direction (X) is affected by the adiabatic effect due to the void inside the groove, while the flow in the vertical direction (downward: y) is The heat flow is parallel to the groove, so it is not adiabatic.

従って、第7図(a)に示すように、横方向への熱の散
逸のみを抑制し得る。しかしながら、空隙部を設けたこ
のようなサセプターを介して結晶からの熱の散逸を制御
する方法では、その効果は当然サセプター近傍に限られ
、サセプターから遠く離れた場所では著しく小きくなる
。第71由)、第8図中)に示すように成長後期におい
ては、溝の有・無は結晶からの熱の散逸にほとんど影響
を及はさず、溝を設けたす七ブタ−を用いた場合におい
ても第7図(a)、Φ)と同様に、るつばの壁面を介し
て横方向によシ多くの熱量が散逸してしまう0ところで
、このような結晶成長方法においては、上方が高温で下
方が低温であるので、今、融液の一定の高さで見たとき
、るつぼ壁面を介して横方向に多量の熱量が散逸すると
、同−高嘔の中心部の融液温度に比べ周辺部の温度が低
下する0結晶成長界面の形状は、固化温度にある等湿部
を反映するものであるから、周辺部は、より上方まで固
化温度に融液温度が低下することになり、この結果、結
晶成長界面の形状は上に向かって凹となる。ここで、成
長界面の形状と結晶品質の関係において、経験的に上に
凹の場合には多結晶化が起こりやすく、又、応力歪が大
きく品質が悪くなることが周知である。その理由は、凹
形状であると、結晶の外側から徐冷される際に生ずる引
張り力が大きくなるため1品質が劣化するものであると
考えられている。
Therefore, as shown in FIG. 7(a), only the dissipation of heat in the lateral direction can be suppressed. However, in the method of controlling the dissipation of heat from the crystal through such a susceptor provided with a void, the effect is naturally limited to the vicinity of the susceptor, and becomes significantly smaller at locations far away from the susceptor. As shown in Fig. 71) and Fig. 8), in the late stage of growth, the presence or absence of grooves has almost no effect on the dissipation of heat from the crystal; 7(a), Φ), a large amount of heat is dissipated laterally through the wall surface of the crucible. However, in such a crystal growth method, the upper Since the temperature is high and the temperature below is low, when a large amount of heat is dissipated laterally through the crucible wall when viewed from a certain height of the melt, the temperature of the melt at the center of the crucible rises. The shape of the crystal growth interface, where the temperature at the periphery is lower compared to As a result, the shape of the crystal growth interface becomes concave upward. Here, regarding the relationship between the shape of the growth interface and the crystal quality, it is well known from experience that when the growth interface is concave upward, polycrystallization tends to occur, and the stress strain is large and the quality deteriorates. The reason for this is thought to be that if the crystal has a concave shape, the tensile force generated when the crystal is slowly cooled from the outside increases, resulting in a deterioration in quality.

一般に成長結晶は、表面の方が内部より早く冷えるから
、固液界面付近では中心部で高く、外周部で低いという
径方向温度分布を有し、中心部で圧縮応力を、外周部で
引張応力を受ける。
In general, growing crystals cool faster on the surface than on the inside, so near the solid-liquid interface they have a radial temperature distribution of high temperature at the center and low temperature at the periphery, with compressive stress at the center and tensile stress at the periphery. receive.

このような応力が、ある臨界値以上になると、応力を緩
和するため、外周部からサブグレインが発生し、多結晶
化に至る。
When such stress exceeds a certain critical value, subgrains are generated from the outer periphery to relieve the stress, leading to polycrystalization.

上記の結晶の径方向温度分布は、固液界面形状に強く依
存する0第9図は結晶子の固液界面付近の等温部を模式
的に示したものである。(a)は界面形状が融液の上に
向かって凹なる場合、(b)は平坦な場合、(C)は凸
なる場合である。
The radial temperature distribution of the crystal strongly depends on the shape of the solid-liquid interface. FIG. 9 schematically shows the isothermal part of the crystallite near the solid-liquid interface. (a) shows the case where the interface shape is concave toward the top of the melt, (b) shows the case where it is flat, and (C) shows the case where it becomes convex.

成長軸に垂直な断面内で中心と外周の温度差は、成長界
面が凹の場合(a)に最も大きく、申)。
The temperature difference between the center and the outer periphery in a cross section perpendicular to the growth axis is greatest when the growth interface is concave (a);

(c)と成長界面を平坦化、あるいは凸化することによ
り減少できる。すなわち、多結晶化を防げることがわか
る。
It can be reduced by flattening or convexing the growth interface with (c). In other words, it can be seen that polycrystalization can be prevented.

この九め、結晶界面の形状は、平坦か又は若干、上に凸
の状態を保持したまま全育成工程を行なうことが艮い。
Ninth, it is important to carry out the entire growth process while maintaining the shape of the crystal interface in a flat or slightly upwardly convex state.

従って、第6図に示す溝(空隙部ンを有する従来技術に
おいては、第7図(a)に示す成長初期の特性のみが改
良されるに過ぎず、結晶全体にわたって高品質なものを
得ることができないという欠点があった。
Therefore, in the conventional technology having the grooves (voids) shown in FIG. 6, only the characteristics at the initial stage of growth shown in FIG. The drawback was that it was not possible.

上記方法による単結晶成長は、インゴット長が長くなる
につれて、−層困難となる。一方でインゴット長の増大
化は、結晶の製造コストの低減をはかる上で必須の要求
であシ、結晶インゴットの一部だけでなく、インゴット
全体にわたった固液界面形状の制御を可能とする技術の
開発が強く望まれる所以である0 (発明の目的〕 本発明は上記の欠点を改善するために提案されたもので
、るつぼ内で融液を固化させ、単結晶を得る結晶成長に
おいて、従来困難でめった結晶インゴット全体にわたっ
た固液界面形状の制御を可能とするための新しい成長法
ならびに成長装置を提供することを目的とする。
Single crystal growth by the above method becomes more difficult as the ingot length increases. On the other hand, increasing the ingot length is an essential requirement in order to reduce crystal manufacturing costs, and makes it possible to control the solid-liquid interface shape not only in a part of the crystal ingot but also over the entire ingot. This is why the development of technology is strongly desired.0 (Objective of the Invention) The present invention has been proposed to improve the above-mentioned drawbacks. The purpose of this study is to provide a new growth method and growth apparatus that make it possible to control the solid-liquid interface shape over the entire crystal ingot, which has been difficult and rare in the past.

(問題点を解決するための手段〉 上記の目的を達成するため、本発明はるつぼ内に、加熱
溶融せしめた原料融液(または、溶液)を作り、前記る
つぼを垂直方向に上方が高温で下方が低温である温度勾
配を有した環境下に設置し、るつぼの一端から徐冷凝固
せしめてるつぼの内面形状に対応した形状の単結晶を成
長させる方法において、前記融液を一定高さの断面で見
た時、中心部よりも、るつぼ内壁面に接する周辺部の温
度を常時、高温に保ち、以て結晶成長界面を、中心部が
上に向って平坦もしくはわずかに凸の状態を保ちつつ、
該結晶成長界面を、下方よシ上方に移動せしめて結晶化
することを特徴とする単結晶の成長方法を発明の要旨と
するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention creates a heated melted raw material melt (or solution) in a crucible, and vertically places the crucible with a high temperature In this method, the melt is placed in an environment with a temperature gradient where the temperature is low at the bottom, and the melt is slowly solidified from one end of the crucible to grow a single crystal with a shape corresponding to the inner surface shape of the crucible. When viewed in cross section, the temperature of the peripheral area in contact with the inner wall of the crucible is always kept higher than that of the center, thereby maintaining the crystal growth interface in a flat or slightly convex state with the center facing upward. Tsutsu,
The gist of the invention is a method for growing a single crystal, characterized in that crystallization is carried out by moving the crystal growth interface downwardly and upwardly.

さらに本発明は最下部に微小種子結晶を設置すべき小口
径部を有したるつぼと、該るつぼ内に設けられた種子結
晶と、前記るつぼ内に充填された加熱溶融状態にある原
料融!(−1次は、溶液〕と、前記るつぼおよび原料融
液に垂直方向に上方が高温で下方が低温である温度勾配
を付与する加熱手段とを少なくとも有し、前記るつぼと
前記加熱手段との相対位置関係を変化せしめて、るつぼ
の一端から徐冷凝固せしめてるつぼの内面形状に対応し
た形状の単結晶を成長させる装置lllにおいて、結晶
成長界面の移動と連動して移動し、かつ溶融状態にある
原料融液中に置かれ、該融液を一定高さの断面で見た時
、中心部よりも、るつぼ内壁面に接する周辺部の方を常
時、高温に保ち、以て結晶成長界面を、中心部が上に凸
の状態を保つべく、界面形状制御手段を少なくとも有し
ていることを特徴とする単結晶の成長装置を発明の要旨
とするものである。
Further, the present invention provides a crucible having a small-diameter portion at the bottom in which a minute seed crystal is to be installed, a seed crystal provided in the crucible, and a raw material molten material filled in the crucible in a heated molten state. (-1st order is a solution); and a heating means for vertically imparting a temperature gradient such that the upper part is higher temperature and the lower part is lower temperature, and the crucible and the heating means are In an apparatus for growing a single crystal in a shape corresponding to the inner surface shape of the crucible by changing the relative positional relationship and slowly cooling and solidifying it from one end of the crucible, the device moves in conjunction with the movement of the crystal growth interface and is in a molten state. When placed in a raw material melt at The gist of the invention is a single-crystal growth apparatus characterized in that it has at least an interface shape control means so that the center portion thereof maintains an upwardly convex state.

しかして本発明による成長装置は、融液内で上下移動9
回転移動の’of能な熱流制御あるいは融液流制御のた
めの界面形状制御手段を有することを最も大きな特徴と
する。結晶成長の開始から終了に至るまで、上記界面形
状制御手段に含まれる板状部材の融液内での位置および
回転数を連続的に制1g1L s融液内の熱流あるいは
液流の変化を通して固液界面形状を制御する。この結果
、インゴット全体にわたって固液界面形状を制御した結
晶を得ることができ、結晶インゴットの一部においての
み、界面形状制御の可能な従来のホットゾーン構造の工
夫等による成長力法とは、その効果においても大きく異
なる0欠に本発明の実施例について説明する。
Therefore, the growth apparatus according to the present invention can move up and down 9 in the melt.
The most significant feature is that it has an interface shape control means for heat flow control or melt flow control that can be turned off by rotational movement. From the start to the end of crystal growth, the position and rotational speed of the plate member included in the interface shape control means in the melt are continuously controlled. Control the liquid surface shape. As a result, it is possible to obtain crystals in which the solid-liquid interface shape is controlled over the entire ingot, which is different from the conventional growth force method, which uses devising a hot zone structure, which allows the interface shape to be controlled only in a part of the crystal ingot. Examples of the present invention will be described in detail, which differ greatly in effects.

なお実施例は一つの例示であって1本発明の精神を逸脱
しない範凹で種々の変更あるいは改良を行ないうろこと
は言うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

、6第1図及び第2図は本発明の界面形状制御方法の2
つの方法の基本原理を説明する図である。
, 6 FIGS. 1 and 2 show 2 of the interface shape control method of the present invention.
FIG. 2 is a diagram explaining the basic principle of two methods.

ここで、1はるつぼ、2は育成すべき結晶の原料融液、
3は種子結晶、4はすでに成長(固化)した結晶部、5
は揮発性元素を用いる場合の液体封止剤、11は界面形
状制御手段の主要部でるる板状部材を示す。
Here, 1 is a crucible, 2 is a raw material melt of the crystal to be grown,
3 is a seed crystal, 4 is a crystal part that has already grown (solidified), and 5 is a crystal part that has already grown (solidified).
11 indicates a liquid sealant when a volatile element is used, and 11 indicates a plate-like member which is the main part of the interface shape control means.

ここで、以後の説明のために第1図を熱流制御方法、第
2図を融液流制御方法と呼ぶこととする。まず、第1図
の熱流制御方法について説明する。
Here, for the sake of the following explanation, FIG. 1 will be referred to as a heat flow control method, and FIG. 2 will be referred to as a melt flow control method. First, the heat flow control method shown in FIG. 1 will be explained.

(υ熱流制御による方法 図中矢印は熱流を示す。融液温度は上部で高く、下部で
低い縦方向分布となっており、融液内部では上から下に
向かって径方向にほぼ−様な熱流分布が存在する。この
ような融液の中に防熱効果を有する板状部材11を、支
持及び駆動機構に連結された支持棒12を介して結晶成
長界面40の上方融液中に近接させれば、板状部材11
の存在する位置より上では、上方から下方に向かう熱流
は一定であるが、板状部材11が空隙部社を残して、中
央部の熱流を遮断、若しくは低減化させているので、板
状部材11の位置するところより下側では、上方の高温
部から下方に向かう熱量は、るつぼ壁面に近い周辺部で
は多く、中心部で少ないように制御される。その結果、
同一高さの断面で見ると、るつぼ壁面に近い周辺部に比
べ、中心部が低温となり、結晶成長界面は平坦、若しく
は若干上に凸の形状となる。
(υMethod using heat flow control The arrows in the diagram indicate heat flow. The melt temperature is high in the upper part and low in the lower part, and has a vertical distribution in the radial direction from the top to the bottom. A heat flow distribution exists.A plate member 11 having a heat-insulating effect is placed in the melt above the crystal growth interface 40 via a support rod 12 connected to a support and drive mechanism. If so, the plate member 11
Above the position where the plate-like member 11 exists, the heat flow from above to the downward direction is constant, but the plate-like member 11 leaves a gap and blocks or reduces the heat flow in the central part. Below where 11 is located, the amount of heat flowing downward from the upper high temperature area is controlled so that it is large in the peripheral area near the crucible wall surface and small in the central area. the result,
When viewed in cross-section at the same height, the center part is lower in temperature than the peripheral part near the crucible wall surface, and the crystal growth interface has a flat or slightly upwardly convex shape.

この成長界面形状は、界面40と板状部材11間の距離
を変えることにより、又は板状部材11の厚さや径の寸
法、更に断面形状を変えることによシ制御可能である。
This growth interface shape can be controlled by changing the distance between the interface 40 and the plate-like member 11, or by changing the thickness, diameter, and cross-sectional shape of the plate-like member 11.

ここで、図示は省略するが、板状部材11と結晶成長界
面40間の距離を一定に保ちつつ、板状部材を上昇せし
め、るつぼの下端ニジ徐冷凝固せしめれば、るつほの内
面形状に対応した高品質単結晶が得られる。
Here, although not shown, if the plate member is raised while keeping the distance between the plate member 11 and the crystal growth interface 40 constant, and the lower end of the crucible is slowly cooled and solidified, the inner surface of the crucible High-quality single crystals that correspond to various shapes can be obtained.

次に、融液流制御方法について説明する。Next, a melt flow control method will be explained.

α)融液流制御による方法 第2図に示す方法においては、板状部材11は基本的に
は断熱効果を奏しない薄板であってもよい。結晶成長界
面上の融液中に設けられた板状部材11を図示のごとく
回転させると、各部の融液の粘性の大小関係から、主と
して板状部材11の下面であって、かつ板状部材の外周
に近い部分に位置する融液が板状部材11の回転に伴っ
て水平面内で回転を始める。この結果、ベルヌーイの効
果により、この部分の圧力が低下し、図中の矢印で示す
ように、空隙部を介して上方の高温融液が引き込まれ、
融液の流れが生じる。
α) Method using melt flow control In the method shown in FIG. 2, the plate member 11 may be a thin plate that basically does not have a heat insulating effect. When the plate-shaped member 11 provided in the melt on the crystal growth interface is rotated as shown in the figure, due to the magnitude relationship of the viscosity of the melt in each part, the lower surface of the plate-shaped member 11 and the plate-shaped member As the plate member 11 rotates, the melt located near the outer periphery of the plate member 11 begins to rotate in a horizontal plane. As a result, the pressure in this area decreases due to the Bernoulli effect, and the high temperature melt above is drawn in through the gap, as shown by the arrow in the figure.
A flow of melt occurs.

この結果、るつぼ壁付近の融液温度が上昇し、上記(I
)の場合と同様に結晶成長界面の形状が、平坦か若しく
は上方に凸の形状を実現できる。
As a result, the melt temperature near the crucible wall increases, and the above (I
), the shape of the crystal growth interface can be flat or upwardly convex.

この形状は板状部材の回転数、あるいは板状部材11と
結晶成長界面40間の距離によう制御可能である。なお
、(1)と同様に、板状部材11と結晶成長界面40間
の距離を一定に保ちつつ、板状部材を上昇せしめ、るつ
ほの下端よジ徐冷凝固せしめれば、るつぼ内面形状に対
応した高品質単結晶が得られる。
This shape can be controlled by the rotation speed of the plate member or the distance between the plate member 11 and the crystal growth interface 40. In addition, similarly to (1), if the plate-shaped member is raised while keeping the distance between the plate-shaped member 11 and the crystal growth interface 40 constant, and the lower end of the crucible is slowly cooled and solidified, the inner surface of the crucible High-quality single crystals that correspond to various shapes can be obtained.

以上、結晶成長界面形状を制御する2つの方法について
説明したが、これら2つを組み合わせた方法、すなわち
、断熱効果を有する板を用い、これを回転させる方法も
可能である。
Two methods for controlling the shape of the crystal growth interface have been described above, but a method that combines these two methods, that is, a method in which a plate having a heat insulating effect is used and the plate is rotated is also possible.

なお、上記(I)、CI[)において、板状部材の表面
が原料融液に対して不活性な素材であれば、融液の純度
を低下させないので、更に高品質化が可能となる。
Note that in (I) and CI[) above, if the surface of the plate member is made of a material that is inert to the raw material melt, the purity of the melt will not be lowered, so that higher quality can be achieved.

次に、wJa図を参照して、本発明の他の実施例につい
て説明する。この場合は第3図(a)〜(d)に示すご
とく、界面形状制御手段を構成する板状部材11が下方
に凸の断面形状を有し、最下部に位置するとき、微小種
子結晶が充填された小口径部3′を封止する形態に設定
されている外は前述の実施例と変わるところはない。即
ち、板状部材11は、結晶の成長に伴って垂直方向に移
動することtl−要するが、回転機能は有していても良
いし、有していなくともよい。この実施例の固有の効果
は、従来の製法第4図(a)〜(d)と本発明の第3図
[株])〜(d)を比較すれば明らかなように、るつぼ
1内の原料を加熱し溶融した場合に、完全に融液の組成
が育成すべき結晶(及び種子結晶)の組成に等しくなる
まで、種子結晶3と融液2との接触を防止できる機能を
有している点である。例えば、GaAsのような化合物
半導体であり、構成元素の融点が著しく異なるような組
成の場合に特に有効である。第4図(b)において、G
aの融点が邸℃であシ%GaAsの融点が1240℃以
上であることから、まずGaのみの融液ができ、これが
種子結晶と接触すれば種子結晶が溶は込み、その後の単
結晶化工程で所望の結晶学的方位の結晶が得られなくな
る(第4図(d))。
Next, other embodiments of the present invention will be described with reference to the wJa diagram. In this case, as shown in FIGS. 3(a) to 3(d), when the plate member 11 constituting the interface shape control means has a downwardly convex cross-sectional shape and is located at the lowest position, the minute seed crystals There is no difference from the previous embodiment except that the small-diameter portion 3' that is filled is sealed. That is, the plate member 11 is required to move in the vertical direction as the crystal grows, but it may or may not have a rotation function. The unique effects of this embodiment are clear from the comparison between the conventional manufacturing method (Fig. 4(a) to (d)) and the present invention (Fig. 3) to (d). When the raw material is heated and melted, it has a function of preventing contact between the seed crystal 3 and the melt 2 until the composition of the melt becomes completely equal to the composition of the crystal (and seed crystal) to be grown. The point is that there is. For example, it is particularly effective in the case of a compound semiconductor such as GaAs and a composition in which the constituent elements have significantly different melting points. In FIG. 4(b), G
Since the melting point of a is 1240°C or higher, a melt of only Ga is formed first, and when this comes into contact with the seed crystal, the seed crystal melts and then becomes a single crystal. During the process, crystals with the desired crystallographic orientation cannot be obtained (FIG. 4(d)).

この点を解決するために発明者らは、先に円柱棒により
m子結晶を入れた部分を封止する技術を提案したが(昭
和61年9月16日出願の化合物半導体単結晶の製造方
法およびその製造装置、発明者 宮澤信太部、中西秀男
、千用圭吾八本発明においては、先の出願の円柱棒を下
方に凸の板状部材で1it@かえ、種子結晶の封止機能
と引@続く結晶化工程(徐冷凝固工程)において、先に
述べた結晶界面形状制御機能とを併用させたものである
。第3図(d)以降においては、先に説明した方法によ
り結晶成長界面を上に凸(又は平坦)に保ちながら結晶
育成できるので、高品質結晶が得られる点は言うまでも
ない。
In order to solve this problem, the inventors previously proposed a technique of sealing the part containing the m-child crystal with a cylindrical rod (Method for Manufacturing Compound Semiconductor Single Crystal, filed on September 16, 1988). and its manufacturing device, inventors: Shintabe Miyazawa, Hideo Nakanishi, Keigo Senyo In the present invention, the cylindrical rod of the previous application is replaced with a downwardly convex plate-like member, and the function of sealing the seed crystal is @In the subsequent crystallization process (slow cooling and solidification process), the above-mentioned crystal interface shape control function is used in combination.From Fig. 3(d) onwards, the crystal growth interface is Needless to say, since the crystal can be grown while keeping it convex (or flat), high quality crystals can be obtained.

ここで、熱電対12で融液の温度Tを検出し、GaAs
の融点Tmとの差ムT = T −Tmに相当する電圧
△V = V、 −V。全制御信号として軸13の上下
移動を制御できるような機構になっているから、結晶成
長の全プロセスを通して、成長界面(固液界面) 40
と板状部材11との距離を任意に制御でき、インゴット
全体にわたって固液界面形状の制御された結晶を実現す
ることが可能である。
Here, the temperature T of the melt is detected with the thermocouple 12, and the temperature T of the GaAs
The voltage △V = V, -V, which corresponds to the difference between the melting point Tm and the voltage T = T - Tm. Since the mechanism is such that the vertical movement of the shaft 13 can be controlled as a total control signal, the growth interface (solid-liquid interface) 40 is maintained throughout the entire crystal growth process.
The distance between the ingot and the plate member 11 can be arbitrarily controlled, and it is possible to realize crystals with a controlled solid-liquid interface shape over the entire ingot.

上記の機能を有する成長装置をGaAs結晶の成長に使
用したところ、界面形状が適正化され、インゴット全体
にわたって単結晶を得るという期待通りの効果が確認で
きた。
When a growth apparatus having the above functions was used to grow a GaAs crystal, the expected effect of optimizing the interface shape and obtaining a single crystal over the entire ingot was confirmed.

(発明の効果り 以上説明したように、本発明による成長方法。(Effect of invention As explained above, the growth method according to the present invention.

結晶成長装置を用いることにより、るつぼ内で融液を固
化させ単結晶を得る垂直温度勾配凝固法あるいは垂直ブ
リッジマン法等において、インゴット全体にわたって固
液界面形状を制御できるという利点がある。これにより
従来、不十分な界面形状制御に起因して発生していた多
結晶化の問題を解決でき、インゴット全体にわたって種
子結晶と同一の成長方位を有する単結晶を得ることがで
きる。
The use of a crystal growth apparatus has the advantage that the shape of the solid-liquid interface can be controlled over the entire ingot in the vertical temperature gradient solidification method or the vertical Bridgman method, in which a melt is solidified in a crucible to obtain a single crystal. This makes it possible to solve the problem of polycrystalization that conventionally occurred due to insufficient control of the interface shape, and to obtain a single crystal having the same growth direction as the seed crystal throughout the ingot.

また、当然のことながら1本発明を不純物添加結晶の成
長へ適用すれば、インゴット全体にわたって界面形状の
平坦化をはかることによシ、径方向に均一な添加不純物
分布を有する単結晶を実現することも可能である。
Naturally, if the present invention is applied to the growth of impurity-doped crystals, by flattening the interface shape over the entire ingot, a single crystal with a uniform doped impurity distribution in the radial direction can be realized. It is also possible.

さらに、結晶育成に関しても、本発明に係わる制御板中
に装置した熱電対から得られる情報から、成長界面の位
置やその移動速度(結晶成ゝ − 長速匿)を高精度に知ることができ、効果的な制御が行
える効果を有するものである。
Furthermore, regarding crystal growth, the position of the growth interface and its movement speed (crystal growth - long speed storage) can be known with high precision from the information obtained from the thermocouple installed in the control board according to the present invention. , which has the effect of enabling effective control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の結晶成長方法の実施例、第2図及び第
3図は他の実施例、第4図は説明図。 第5図は本発明の単結晶成長装置の実施例、第6図乃至
第9図は従来例の説明図を示す。 1・・・・・・るつぼ 2・・・・・・QaAs融液 3・・・・・・種子結晶 4・・・・・・GaAs単結晶 5・・・・・・液体封止剤(BtOa)6・・・・・・
サセプター 7・・・・・・ベティスクル 8・・・・・・発熱体 9・・・・・・保温材 10・・・・・・高圧容器 11・・・・・・板状部材 ル・・・・・・熱電対 13・・・・・・軸 14・・・・−・スリップリング 15・・・・・・基準電圧発生器 16・・・・・・演算器 17・−・・・・駆動部制御機構 40 ・、、・・・成長界面 41・・・・・・空隙部 特許出願人  日本電信′IIC話株式会社第1図  
   第2図 41−  空隙部
FIG. 1 shows an embodiment of the crystal growth method of the present invention, FIGS. 2 and 3 show other embodiments, and FIG. 4 shows an explanatory diagram. FIG. 5 shows an embodiment of the single crystal growth apparatus of the present invention, and FIGS. 6 to 9 show explanatory diagrams of conventional examples. 1... Crucible 2... QaAs melt 3... Seed crystal 4... GaAs single crystal 5... Liquid sealant (BtOa )6・・・・・・
Susceptor 7...Beticle 8...Heating element 9...Heat insulating material 10...High pressure vessel 11...Plate member... ...Thermocouple 13 ... Shaft 14 ... - Slip ring 15 ... Reference voltage generator 16 ... Arithmetic unit 17 ... Drive unit control mechanism 40...Growth interface 41...Void portion Patent applicant Nippon Telegraph 'IIC Co., Ltd. Figure 1
Figure 2 41- Vacancy

Claims (8)

【特許請求の範囲】[Claims] (1)るつぼ内に、加熱溶融せしめた原料融液(または
、溶液)を作り、前記るつぼを垂直方向に上方が高温で
下方が低温である温度勾配を有した環境下に設置し、る
つぼの一端から徐冷凝固せしめてるつぼの内面形状に対
応した形状の単結晶を成長させる方法において、前記融
液を一定高さの断面で見た時、中心部よりも、るつぼ内
壁面に接する周辺部の温度を常時、高温に保ち、以て結
晶成長界面を、中心部が上に向つて平坦もしくはわずか
に凸の状態を保ちつつ、該結晶成長界面を、下方より上
方に移動せしめて結晶化することを特徴とする単結晶の
成長方法。
(1) Prepare a heated melted raw material melt (or solution) in a crucible, place the crucible vertically in an environment with a temperature gradient where the upper part is higher temperature and the lower part is lower temperature. In a method of growing a single crystal with a shape corresponding to the inner surface of a crucible by slow cooling and solidification from one end, when the melt is viewed in a cross section at a certain height, the peripheral part in contact with the inner wall surface of the crucible is smaller than the central part. The temperature of the crystal growth interface is kept at a high temperature at all times, and the crystal growth interface is moved from the bottom to the top while keeping the crystal growth interface in a flat or slightly convex state with the center facing upward to crystallize. A single crystal growth method characterized by:
(2)最下部に微小種子結晶を設置すべき小口径部を有
したるつぼと、該るつぼ内に設けられた種子結晶と、前
記るつぼ内に充填された加熱溶融状態にある原料融液(
または、溶液)と、前記るつぼおよび原料融液に垂直方
向に上方が高温で下方が低温である温度勾配を付与する
加熱手段とを少なくとも有し、前記るつぼと前記加熱手
段との相対位置関係を変化せしめて、るつぼの一端から
徐冷凝固せしめてるつぼの内面形状に対応した形状の単
結晶を成長させる装置において、結晶成長界面の移動と
連動して移動し、かつ溶融状態にある原料融液中に置か
れ、該融液を一定高さの断面で見た時、中心部よりも、
るつぼ内壁面に接する周辺部の方を常時、高温に保ち、
以て結晶成長界面を、中心部が上に凸の状態を保つべく
、界面形状制御手段を少なくとも有していることを特徴
とする単結晶の成長装置。
(2) A crucible having a small-diameter portion at the bottom in which a minute seed crystal is to be installed, a seed crystal provided in the crucible, and a raw material melt in a heated molten state filled in the crucible (
or a heating means for imparting a temperature gradient vertically to the crucible and the raw material melt such that the upper part is higher temperature and the lower part is lower temperature, and the relative positional relationship between the crucible and the heating means is controlled. In an apparatus for growing a single crystal with a shape corresponding to the inner surface shape of the crucible by slowly cooling and solidifying it from one end of the crucible, the raw material melt moves in conjunction with the movement of the crystal growth interface and is in a molten state. When the melt is placed in the center and viewed in a cross section at a certain height,
The peripheral area in contact with the inner wall of the crucible is always kept at a high temperature.
1. A single-crystal growth apparatus comprising at least an interface shape control means to maintain the crystal growth interface in a state in which the center thereof is convex upward.
(3)界面形状制御手段が、るつぼの断面で見るとき、
中心部を覆い、かつ、るつぼ内壁面との間に空隙部を有
する板状部材と、該板状部材に連接され、結晶成長界面
の移動と連動して前記板状部材を垂直方向に移動せしめ
る機構部とからなることを特徴とする特許請求の範囲第
2項記載の単結晶の成長装置。
(3) When the interface shape control means looks at the cross section of the crucible,
a plate-like member that covers the center portion and has a gap between it and the inner wall surface of the crucible; and a plate-like member that is connected to the plate-like member and moves in the vertical direction in conjunction with the movement of the crystal growth interface. 3. The single crystal growth apparatus according to claim 2, further comprising a mechanism section.
(4)板状部材の厚さが、中央部で厚く、周辺部で薄い
ことを特徴とする特許請求の範囲第3項記載の単結晶の
成長装置。
(4) The single crystal growth apparatus according to claim 3, wherein the thickness of the plate member is thick at the center and thin at the periphery.
(5)板状部材が、断熱性素材を原料融液に対して不活
性な素材で被覆した構造であることを特徴とする特許請
求の範囲第4項記載の単結晶の成長装置。
(5) The single crystal growth apparatus according to claim 4, wherein the plate member has a structure in which a heat insulating material is coated with a material inert to the raw material melt.
(6)界面形状制御手段が、るつぼの断面で見るとき、
中心部を覆い、かつ、るつぼ内壁面との間に空隙部を有
する板状部材と、該板状部材に連接され、結晶成長界面
の移動と連動して前記板状部材を垂直方向に移動せしめ
、かつ、前記板状部材を回転せしめる機構部とからなる
ことを特徴とする特許請求の範囲第2項記載の単結晶の
成長装置。
(6) When the interface shape control means looks at the cross section of the crucible,
a plate-like member that covers the center and has a gap between it and the inner wall surface of the crucible; and a plate-like member that is connected to the plate-like member and moves the plate-like member in a vertical direction in conjunction with movement of a crystal growth interface. 3. The single crystal growth apparatus according to claim 2, further comprising: a mechanical section for rotating said plate-like member.
(7)板状部材が、下方に凸の断面を有し、界面形状制
御手段が最下部にある時、微小種子結晶が充填された小
口径部を封止する形態に設定されていることを特徴とす
る特許請求の範囲第3項乃至第6項の何れかに記載され
た単結晶の成長装置。
(7) The plate member has a downwardly convex cross section and is configured to seal the small diameter portion filled with minute seed crystals when the interface shape control means is at the bottom. A single crystal growth apparatus according to any one of claims 3 to 6.
(8)界面形状制御手段に、原料融液の温度を検出する
ための温度検出手段が設けられていることを特徴とする
特許請求の範囲第2項乃至第7項の何れかに記載された
単結晶の成長装置。
(8) The interface shape control means is provided with temperature detection means for detecting the temperature of the raw material melt, as described in any one of claims 2 to 7. Single crystal growth equipment.
JP61228470A 1986-09-29 1986-09-29 Single crystal growth method and growth apparatus Expired - Lifetime JPH0764670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228470A JPH0764670B2 (en) 1986-09-29 1986-09-29 Single crystal growth method and growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228470A JPH0764670B2 (en) 1986-09-29 1986-09-29 Single crystal growth method and growth apparatus

Publications (2)

Publication Number Publication Date
JPS6385082A true JPS6385082A (en) 1988-04-15
JPH0764670B2 JPH0764670B2 (en) 1995-07-12

Family

ID=16876981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228470A Expired - Lifetime JPH0764670B2 (en) 1986-09-29 1986-09-29 Single crystal growth method and growth apparatus

Country Status (1)

Country Link
JP (1) JPH0764670B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212394A (en) * 1989-03-17 1993-05-18 Sumitomo Electric Industries, Ltd. Compound semiconductor wafer with defects propagating prevention means
EP0870855A1 (en) * 1997-04-09 1998-10-14 Commissariat A L'energie Atomique Crystal growth apparatus involving a piston
JP2005219946A (en) * 2004-02-04 2005-08-18 Nikon Corp Apparatus for manufacturing fluoride single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127632A (en) * 1974-08-30 1976-03-08 Hitachi Ltd KAHENSUTEEJISHIKIKIKAKI
JPS60122792A (en) * 1983-12-08 1985-07-01 Fujitsu Ltd Method and device for producing semiconductor crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127632A (en) * 1974-08-30 1976-03-08 Hitachi Ltd KAHENSUTEEJISHIKIKIKAKI
JPS60122792A (en) * 1983-12-08 1985-07-01 Fujitsu Ltd Method and device for producing semiconductor crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212394A (en) * 1989-03-17 1993-05-18 Sumitomo Electric Industries, Ltd. Compound semiconductor wafer with defects propagating prevention means
EP0870855A1 (en) * 1997-04-09 1998-10-14 Commissariat A L'energie Atomique Crystal growth apparatus involving a piston
FR2762021A1 (en) * 1997-04-09 1998-10-16 Commissariat Energie Atomique PISTON CRYSTALLOGENESIS DEVICE
JP2005219946A (en) * 2004-02-04 2005-08-18 Nikon Corp Apparatus for manufacturing fluoride single crystal
JP4608894B2 (en) * 2004-02-04 2011-01-12 株式会社ニコン Fluoride single crystal manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JPH0764670B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
WO1996015297A1 (en) Process for bulk crystal growth
JPS6385082A (en) Method for growing single crystal and apparatus thereof
US4784715A (en) Methods and apparatus for producing coherent or monolithic elements
JPS58135626A (en) Manufacture of compound semiconductor single crystal and manufacturing device thereof
EP0476389A2 (en) Method of growing single crystal of compound semiconductors
JP4344021B2 (en) Method for producing InP single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPH05194073A (en) Growth of compound semiconductor single crystal
JP3498330B2 (en) Single crystal growth equipment
JPH0380180A (en) Device for producing single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JP2001106597A (en) Method and device for producing single crystal
JPS62148389A (en) Method for growing single crystal
JPH0380181A (en) Device for producing single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH03193689A (en) Production of compound semiconductor crystal
JP5352245B2 (en) Compound semiconductor single crystal manufacturing method and crystal growth apparatus
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPH05124887A (en) Production of single crystal and device therefor
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPH01264989A (en) Device for growing single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term