JP2005219946A - Apparatus for manufacturing fluoride single crystal - Google Patents

Apparatus for manufacturing fluoride single crystal Download PDF

Info

Publication number
JP2005219946A
JP2005219946A JP2004027569A JP2004027569A JP2005219946A JP 2005219946 A JP2005219946 A JP 2005219946A JP 2004027569 A JP2004027569 A JP 2004027569A JP 2004027569 A JP2004027569 A JP 2004027569A JP 2005219946 A JP2005219946 A JP 2005219946A
Authority
JP
Japan
Prior art keywords
crucible
conical
heat flux
heating furnace
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004027569A
Other languages
Japanese (ja)
Other versions
JP2005219946A5 (en
JP4608894B2 (en
Inventor
Ikuo Kitamura
郁夫 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004027569A priority Critical patent/JP4608894B2/en
Publication of JP2005219946A publication Critical patent/JP2005219946A/en
Publication of JP2005219946A5 publication Critical patent/JP2005219946A5/ja
Application granted granted Critical
Publication of JP4608894B2 publication Critical patent/JP4608894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a fluoride single crystal by a vertical Bridgman method, which can manufacture a large diameter single crystal suitable for an optical member of an aligner by suppressing polycrystallization during crystal growth. <P>SOLUTION: The apparatus for manufacturing the fluoride single crystal by a vertical Bridgman method is equipped with a heat flux control plate for allowing heat flux to permeate to a conical part of a crucible from an upper part of a heating furnace when the conical part of the crucible passes the partition part of the heating furnace and for blocking the heat flux from the conical part of the crucible to the lower part of the heating furnace, and a heat flux blocking plate for blocking the heat flux from the upper part to the lower part of the heating furnace when the crucible is located in the upper part of the heating furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般光学機器や光リソグラフィー装置用の光学系に用いて好適な大口径のフッ化物単結晶の製造装置に関するものである。   The present invention relates to an apparatus for producing a large-diameter fluoride single crystal suitable for use in an optical system for general optical equipment or an optical lithography apparatus.

近年、ウエハ上に集積回路パターンを描画するリソグラフィー技術が急速に発展している。集積回路の高集積化の要求は年々高まっており、その実現のためには投影露光装置の投影光学系の解像力を上げる必要がある。投影光学系の解像力は、使用する光の波長と投影光学系のNA(開口数)により決定される。即ち、使用する光の波長をより短く、また、投影光学系のNAがより大きいほど解像力を上げることができる。   In recent years, lithography technology for drawing an integrated circuit pattern on a wafer has been rapidly developed. The demand for higher integration of integrated circuits is increasing year by year, and in order to achieve this, it is necessary to increase the resolution of the projection optical system of the projection exposure apparatus. The resolution of the projection optical system is determined by the wavelength of light used and the NA (numerical aperture) of the projection optical system. That is, the resolution can be increased as the wavelength of light used is shorter and the NA of the projection optical system is larger.

まず、光の短波長化については、投影露光装置に使用する光源の波長は、すでにg線(波長436nm)、i線(波長365nm)、KrFエキシマレーザー光(波長248nm)と変遷してきている。そして今後、更に波長の短いArFエキシマレーザー光(波長193nm)やF2レーザー光(波長157nm)等を用いるには、投影光学系等の結像光学系のレンズ材料として、一般の多成分系の光学ガラスを使用することは、透過率低下が大きくなるため不可能である。このため、エキシマレーザー投影露光装置の光学系には、石英ガラスまたはフッ化物結晶、例えばフッ化カルシウム単結晶を光学部材として使用することが一般的である。   First, regarding the shortening of the wavelength of light, the wavelength of the light source used in the projection exposure apparatus has already changed to g-line (wavelength 436 nm), i-line (wavelength 365 nm), and KrF excimer laser light (wavelength 248 nm). In the future, in order to use ArF excimer laser light (wavelength 193 nm), F2 laser light (wavelength 157 nm), etc., which has a shorter wavelength, as a lens material for an imaging optical system such as a projection optical system, It is impossible to use glass because the reduction in transmittance becomes large. For this reason, it is common to use quartz glass or a fluoride crystal, for example, a calcium fluoride single crystal as an optical member in the optical system of an excimer laser projection exposure apparatus.

次に、NAを大きくすることについて述べる。NAを大きくするには光学部材の直径を大きくする必要がある。投影露光装置の高性能化に伴って、最近は直径φ120 mm〜φ350mm程度の大きなサイズのフッ化カルシウム単結晶が要求されるようになってきた。このようなフッ化カルシウム単結晶は、一般の光学ガラスや石英ガラスに比べて屈折率が小さく分散(屈折率の波長依存性)も小さい。そのため、石英ガラス等の材料からなる光学部材と併用することで色収差を補正できるというメリットもある。また、最近では、フッ化カルシウム単結晶以外のフッ化物単結晶であるフッ化バリウムやフッ化ストロンチウムの単結晶も同じ立方晶系に属していて性質が類似しているという点で、次世代の光学材料として注目されている。   Next, increasing NA is described. In order to increase NA, it is necessary to increase the diameter of the optical member. Along with the improvement in performance of projection exposure apparatuses, a calcium fluoride single crystal having a large size of about φ120 mm to φ350 mm has recently been required. Such a calcium fluoride single crystal has a smaller refractive index and smaller dispersion (wavelength dependence of the refractive index) than general optical glass or quartz glass. Therefore, there is an advantage that chromatic aberration can be corrected by using together with an optical member made of a material such as quartz glass. In addition, recently, single crystals of barium fluoride and strontium fluoride, which are fluoride single crystals other than calcium fluoride single crystals, belong to the same cubic system and have similar properties. It is attracting attention as an optical material.

フッ化物単結晶の工業的な製造方法としては、垂直ブリッジマン法が広く用いられている(特許文献1参照)。以下、垂直ブリッジマン法によるフッ化カルシウム単結晶の製造方法の一例を示す。  The vertical Bridgman method is widely used as an industrial production method for fluoride single crystals (see Patent Document 1). Hereinafter, an example of the manufacturing method of the calcium fluoride single crystal by the vertical Bridgman method is shown.

紫外ないし真空紫外域で用いるためのフッ化カルシウム単結晶の製造には、その原料として化学的に合成された高純度なフッ化カルシウム原料を用いる。粉末状の原料から直接単結晶を製造すると、原料の熔融に伴う体積減少が大きいため大きな単結晶を得に難いので、まず、粉末原料から半熔融品やその粉砕品を作り、これらを再び熔融して単結晶を製造するのが一般的である。   In the production of a calcium fluoride single crystal for use in the ultraviolet or vacuum ultraviolet region, a chemically purified high-purity calcium fluoride raw material is used as the raw material. If a single crystal is produced directly from a powdery raw material, it is difficult to obtain a large single crystal because of the large volume reduction associated with the melting of the raw material. First, make a semi-molten product or a pulverized product from the powdered raw material, and then melt these again. In general, a single crystal is manufactured.

具体的には次のような工程でフッ化カルシウム単結晶を製造する。即ち、単結晶製造装置の中に半熔融品、あるいは、その粉砕品を充填したルツボをセットして、製造装置内を10-3〜10-4Paの真空雰囲気に維持する。次に、製造装置内の上部側ヒーターにより加熱し、ルツボ内の温度をフッ化カルシウムの融点以上(1370℃〜1450℃)まで上げて半熔融品、あるいは、その粉砕品を熔融する。次に、予め上部側ヒーターよりも低温に設定された下部側ヒーターの領域に向けて、0.1 〜5mm/h 程度の速度でルツボを引き下げることにより、ルツボの下部から徐々に結晶を成長させ、融液の最上部まで結晶化したところで終了する。製造された単結晶(インゴット)は割れないように室温近傍まで徐冷し、その後、製造装置内を大気開放してインゴットを取り出す。 Specifically, a calcium fluoride single crystal is produced by the following process. That is, a semi-molten product or a crucible filled with the pulverized product is set in the single crystal production apparatus, and the inside of the production apparatus is maintained in a vacuum atmosphere of 10 −3 to 10 −4 Pa. Next, it heats with the upper side heater in a manufacturing apparatus, raises the temperature in a crucible to the melting | fusing point of calcium fluoride or more (1370 degreeC-1450 degreeC), and melts a semi-molten product or its ground product. Next, by gradually lowering the crucible at a speed of about 0.1 to 5 mm / h toward the lower heater area that has been set to a lower temperature than the upper heater in advance, crystals are gradually grown from the lower crucible and melted. The process ends when the liquid crystallizes to the top. The produced single crystal (ingot) is gradually cooled to near room temperature so as not to break, and then the inside of the production apparatus is opened to the atmosphere and the ingot is taken out.

ルツボの材料としてはカーボン材を使用するのが一般的である。ルツボは上部が円筒形で下部は円錐形の、いわゆるペンシル型になっている。ルツボ下端の円錐形の先端部には引き下げ棒が取り付けられるようになっていて、結晶成長段階では引き下げ棒によりルツボを引き下げる。従って、ルツボ下端の円錐形の先端から結晶の成長が開始して徐々に結晶化が進み最終的にペンシル型のインゴットが得られる。   As a material for the crucible, a carbon material is generally used. The crucible has a so-called pencil shape in which the upper part is cylindrical and the lower part is conical. A pull-down rod is attached to the conical tip at the lower end of the crucible, and the crucible is pulled down by the pull-down rod in the crystal growth stage. Accordingly, the crystal growth starts from the conical tip at the lower end of the crucible, and the crystallization gradually proceeds, so that a pencil-type ingot is finally obtained.

インゴットの結晶面方位を制御する目的で先端部分に種結晶を入れることもある。しかし、大きなフッ化物結晶を垂直ブリッジマン法により育成する場合、結晶成長方位には法則性がなく、結晶育成を行なう毎にインゴットの結晶方向はランダムになると考えられている。特に、直径がφ120mmを越えるような比較的大きな単結晶インゴットでは結晶面方位の制御は極めて難しい。   In order to control the crystal plane orientation of the ingot, a seed crystal may be put in the tip portion. However, when a large fluoride crystal is grown by the vertical Bridgman method, there is no law in the crystal growth orientation, and it is considered that the crystal direction of the ingot becomes random every time the crystal is grown. In particular, control of crystal plane orientation is extremely difficult for a relatively large single crystal ingot having a diameter exceeding φ120 mm.

単結晶製造後、ルツボから取り出したインゴットには大きな残留応力が存在するため、インゴット形状のままで簡単な熱処理を行ない、残留応力を低減する。
このようにして得られたフッ化カルシウム単結晶のインゴットは、目的の製品に応じて適当な大きさに切断加工される。
Since a large residual stress exists in the ingot taken out from the crucible after the production of the single crystal, a simple heat treatment is performed in the ingot shape to reduce the residual stress.
The calcium fluoride single crystal ingot thus obtained is cut into a suitable size according to the target product.

結晶面方位が問題とされない光学素子を製造する場合には、より効率よく素材をインゴットから切り出すために、インゴットは水平に平行平板状に切断(輪切り)される。切断された素材は、所望の結像性能(屈折率の均質性と複屈折)を得るために熱処理が施される。   In the case of manufacturing an optical element in which the crystal plane orientation is not a problem, the ingot is horizontally cut into a parallel plate shape (rounded) in order to cut the material from the ingot more efficiently. The cut material is subjected to heat treatment in order to obtain desired imaging performance (refractive index homogeneity and birefringence).

結晶面方位を考慮しなければならない光学素子を製造する場合、例えば、光軸を{111}結晶面に垂直とする場合には、フッ化物単結晶インゴットの{111}結晶面を測定により決定し、{111}面が平行二平面となるように素材を切り出した後、更に熱処理を行なう。   When manufacturing an optical element in which the crystal plane orientation must be taken into account, for example, when the optical axis is perpendicular to the {111} crystal plane, the {111} crystal plane of the fluoride single crystal ingot is determined by measurement. , {111} plane is cut into two parallel planes, and then heat treatment is performed.

ところで、垂直ブリッジマン法による単結晶製造においては、ルツボ内で一旦熔融させた材料をルツボの底の部分からゆっくり固化させることにより単結晶を成長させる。そこで、結晶化が起こっている部分には温度勾配を持たせる必要がある。そのため、結晶製造装置のヒーターは上部側ヒーターと下部側ヒーターの二つのゾーンに分けて、それぞれ別個に温度制御するようになっているが、更に、上部側ヒーターと下部側ヒーターの間に仕切板を設置したり、また、ルツボ下部の円錐形部分全面を熱伝導のよい支持部材(水冷することもある)により支持することで、温度勾配をより大きくする方法が提案されている。
特開平11−292696号公報
By the way, in manufacturing a single crystal by the vertical Bridgman method, a single crystal is grown by slowly solidifying a material once melted in a crucible from a bottom portion of the crucible. Therefore, it is necessary to give a temperature gradient to the portion where crystallization occurs. For this reason, the heater of the crystal manufacturing apparatus is divided into two zones, an upper side heater and a lower side heater, and the temperature is controlled separately. In addition, a partition plate is provided between the upper side heater and the lower side heater. Further, a method has been proposed in which the temperature gradient is further increased by supporting the entire conical portion of the lower part of the crucible with a support member having good heat conductivity (sometimes water-cooled).
Japanese Patent Laid-Open No. 11-292696

露光装置の光学部材に使用するフッ化物単結晶は、大口径でかつ全体が均質な単結晶であることが求められる。しかしながら従来の垂直ブリッジマン法による単結晶製造装置で単にルツボ径を拡大した場合、結晶成長の途中で多結晶化が起こることが多く、特に口径φ350mmを超えるフッ化物単結晶を製造することは極めて困難であった。   The fluoride single crystal used for the optical member of the exposure apparatus is required to be a single crystal having a large diameter and uniform throughout. However, when the crucible diameter is simply enlarged with a conventional single crystal manufacturing apparatus using the vertical Bridgman method, polycrystallization often occurs during crystal growth, and it is extremely difficult to produce a fluoride single crystal with a diameter of more than 350 mm. It was difficult.

本発明は、露光装置の光学部材に適した、大口径で全体が均質なフッ化物単結晶を製造できる単結晶製造装置を提供するものである。
すなわち本発明は第1に、垂直ブリッジマン法によるフッ化物単結晶の製造装置において、仕切部によって上部と下部とに仕切られた加熱炉と、該加熱炉内に配置された上部が円筒形で下部が円錐形のルツボと、該ルツボの円錐形部分を囲んで配置された熱流束制御板と、該ルツボの円錐形部分の下端に配置された熱流束遮断板とを備え、前記熱流束制御板は、前記ルツボの円錐形部分が前記加熱炉の仕切部を通過する際に、該加熱炉の上部から該ルツボの円錐形部分への熱流束を透過させ、かつ該ルツボの円錐形部分から該加熱炉の下部への熱流束を遮断する構造を有し、前記熱流束遮断板は、前記ルツボが前記加熱炉の上部に位置する際に、該加熱炉の上部から該加熱炉の下部への熱流束を遮断する構造を有することを特徴とする。
The present invention provides a single crystal manufacturing apparatus suitable for an optical member of an exposure apparatus and capable of manufacturing a fluoride single crystal having a large diameter and the whole as a whole.
That is, according to the first aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method, a heating furnace partitioned into an upper part and a lower part by a partition part, and an upper part disposed in the heating furnace are cylindrical. A crucible having a conical lower portion; a heat flux control plate disposed around the conical portion of the crucible; and a heat flux blocking plate disposed at a lower end of the conical portion of the crucible, the heat flux control The plate transmits heat flux from an upper portion of the heating furnace to the conical portion of the crucible when the conical portion of the crucible passes through the partition of the heating furnace, and from the conical portion of the crucible. The heat flux blocking plate has a structure that blocks a heat flux to a lower portion of the heating furnace, and the heat flux blocking plate moves from an upper portion of the heating furnace to a lower portion of the heating furnace when the crucible is positioned at the upper portion of the heating furnace. It has the structure which interrupts | blocks the heat flux of this.

また本発明は第2に、垂直ブリッジマン法によるフッ化物単結晶の製造装置において、仕切部によって上部と下部とに仕切られた加熱炉と、該加熱炉内に配置された上部が円筒形で下部が円錐形のルツボと、該ルツボの円錐形部分を囲んで配置された、上方に開いた円錐状の板状部材と、該ルツボの下端部に配置された円板状またはカップ状の部材とを有し、前記上方に開いた円錐状の板状部材および、前記円板状またはカップ状の部材の外径は、前記ルツボの円筒形部分の外径とほぼ等しいことを特徴とする。   In addition, the present invention secondly, in a fluoride single crystal manufacturing apparatus by the vertical Bridgman method, a heating furnace partitioned into an upper part and a lower part by a partitioning part, and an upper part disposed in the heating furnace is cylindrical. A crucible having a conical lower portion, a conical plate-like member opened upward surrounding the conical portion of the crucible, and a disc-like or cup-like member arranged at the lower end of the crucible The outer diameter of the conical plate-shaped member opened upward and the disk-shaped or cup-shaped member is substantially equal to the outer diameter of the cylindrical portion of the crucible.

また本発明は第3に、請求項2に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記上方に開いた円錐状の板状部材を複数備え、該複数の板状部材は円錐の頂角が互いに等しく、かつ鉛直方向に積層して配置されたことを特徴とする。   According to a third aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to claim 2, the plurality of conical plate-like members opened upward are provided, wherein the plurality of plate-like members are The apex angles of the cones are equal to each other and are stacked in the vertical direction.

また本発明は第4に、請求項2または請求項3に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材と、前記ルツボとの間が、熱絶縁されていることを特徴とする。   According to a fourth aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to claim 2 or claim 3, the conical plate-like member and / or the disc opened upward. A heat-insulated portion is formed between the crucible or cup-shaped member and the crucible.

また本発明は第5に、請求項2ないし請求項4のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材と、前記ルツボとの間が、断熱材を介して接続されていることを特徴とする。   According to a fifth aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to any one of claims 2 to 4, the conical plate-like member opened upward and / or Alternatively, the disk-shaped or cup-shaped member and the crucible are connected via a heat insulating material.

また本発明は第6に、請求項5に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記断熱材がカーボンフェルトであることを特徴とする。
また本発明は第7に、請求項2ないし請求項6のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材が、カーボン材で構成されたことを特徴とする。
According to a sixth aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to the fifth aspect, the heat insulating material is carbon felt.
According to a seventh aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to any one of claims 2 to 6, the conical plate-like member opened upward and / or Alternatively, the disk-shaped or cup-shaped member is made of a carbon material.

また本発明は第8に、請求項2ないし請求項7のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置において、前記上方に開いた円錐状の板状部材の頂角は、前記ルツボの円錐形部分の頂角よりも大きいかまたは等しいことを特徴とする。   In addition, according to an eighth aspect of the present invention, in the apparatus for producing a fluoride single crystal by the vertical Bridgman method according to any one of claims 2 to 7, the top of the conical plate-like member opened upward is used. The angle is characterized in that it is greater than or equal to the apex angle of the conical part of the crucible.

本発明に係る製造装置によれば、エキシマレーザーを光源とする露光装置に好適に使用しうる、大口径でかつ全体が均質なフッ化物単結晶を製造することができる。   The production apparatus according to the present invention can produce a fluoride single crystal having a large diameter and uniform throughout, which can be suitably used in an exposure apparatus using an excimer laser as a light source.

図1は本発明に係る単結晶製造装置の一例について、その主要部を示す概略図である。
加熱炉1は仕切部10によって上部9と下部11とに仕切られており、仕切部10の内側には仕切板13が略水平に張り出している。加熱炉の上部9は上部ヒーター3により、また加熱炉の下部11は下部ヒーター4によりそれぞれ独立に温度制御され、下部11は上部9よりも低温に保たれる。加熱炉全体は断熱部材12によって囲まれ、真空排気可能な容器内に設置される。
FIG. 1 is a schematic view showing the main part of an example of a single crystal production apparatus according to the present invention.
The heating furnace 1 is divided into an upper part 9 and a lower part 11 by a partition part 10, and a partition plate 13 projects substantially horizontally inside the partition part 10. The temperature of the upper part 9 of the heating furnace is independently controlled by the upper heater 3 and the lower part 11 of the heating furnace is independently controlled by the lower heater 4, and the lower part 11 is kept at a lower temperature than the upper part 9. The entire heating furnace is surrounded by a heat insulating member 12 and is installed in a container that can be evacuated.

上部が円筒形で下部が円錐形のルツボ5は加熱炉内1内に配置され、その下端はルツボ支持棒6に支持されており、図示しない駆動機構によって上下に駆動される。
ルツボ5の円錐形部分の周囲には熱流束制御板8が、ルツボ5の下端には熱流束遮断板7が配置される。熱流束制御板8および熱流束遮断板7の外径は、いずれもルツボ5の円錐形部分の外径とほぼ等しく、前記駆動機構によって、ルツボ5と一体として加熱炉1内で上下に可動する。
The crucible 5 having a cylindrical upper portion and a conical lower portion is disposed in the heating furnace 1, and a lower end thereof is supported by a crucible support rod 6 and is driven up and down by a drive mechanism (not shown).
A heat flux control plate 8 is disposed around the conical portion of the crucible 5, and a heat flux blocking plate 7 is disposed at the lower end of the crucible 5. The outer diameters of the heat flux control plate 8 and the heat flux blocking plate 7 are both substantially equal to the outer diameter of the conical portion of the crucible 5 and can be moved up and down in the heating furnace 1 integrally with the crucible 5 by the drive mechanism. .

本発明において熱流束遮断板の果たす役割は次のとおりである。
垂直ブリッジマン法による単結晶製造工程では、はじめにルツボ5を加熱炉上部9に位置させた状態でルツボ5内の原料を加熱し、熔融させる。このとき熱流束遮断板7は加熱炉上部9(高温部)から加熱炉下部11(低温部)への熱流束を遮断して、ルツボ5全体の温度を原料の融点以上に保つ作用がある。一方ルツボ下端部のみはルツボ支持棒6を通じて放熱するため温度がやや低いので、ルツボの引き下げを開始すれば、ルツボ下端部の種結晶を唯一の開始点として単結晶を成長させることができる。
The role played by the heat flux blocking plate in the present invention is as follows.
In the single crystal manufacturing process by the vertical Bridgman method, first, the raw material in the crucible 5 is heated and melted in a state where the crucible 5 is positioned in the upper part 9 of the heating furnace. At this time, the heat flux blocking plate 7 functions to block the heat flux from the heating furnace upper part 9 (high temperature part) to the heating furnace lower part 11 (low temperature part) and keep the temperature of the entire crucible 5 at or above the melting point of the raw material. On the other hand, since only the lower end of the crucible dissipates heat through the crucible support rod 6, the temperature is slightly low. Therefore, if the crucible is started to be lowered, a single crystal can be grown with the seed crystal at the lower end of the crucible as the only starting point.

熱流束遮断板7の構造は、ルツボ5が加熱炉上部9に位置する際に、加熱炉上部9から加熱炉下部11への熱流束を遮断する構造を有するものである。具体的には外径がルツボ5の円筒形部分の外径とほぼ等しい円板状部材が好適であり、また円板状部材の周辺を鉛直上方に折り曲げたカップ状部材も好ましい。このような構造を有する部材は、ルツボ5が加熱炉最上部にあるときに、加熱炉上部9から下部11への熱流束を十分に遮断し、結晶成長開始前のルツボ5の温度を一様に保つことができるためである。なおカップ状部材を用いる場合は、該部材の鉛直面(円筒面)の高さを調整することにより、後述するルツボ円錐形部への熱流束制御機能を併せ持たせることができる。   The structure of the heat flux blocking plate 7 has a structure that blocks the heat flux from the heating furnace upper part 9 to the heating furnace lower part 11 when the crucible 5 is located in the heating furnace upper part 9. Specifically, a disk-shaped member having an outer diameter substantially equal to the outer diameter of the cylindrical portion of the crucible 5 is preferable, and a cup-shaped member in which the periphery of the disk-shaped member is bent vertically upward is also preferable. When the crucible 5 is at the uppermost part of the heating furnace, the member having such a structure sufficiently blocks the heat flux from the upper part 9 to the lower part 11 of the heating furnace, so that the temperature of the crucible 5 before the start of crystal growth is uniform. It is because it can be kept at. In addition, when using a cup-shaped member, the heat flux control function to the crucible cone-shaped part mentioned later can be given together by adjusting the height of the vertical surface (cylindrical surface) of this member.

次に熱流束制御板について説明する。
垂直ブリッジマン法による単結晶製造工程では、ルツボ5に充填した原料を熔融した後、単結晶を成長させるためルツボ5の引き下げを開始する。このとき、まずルツボ下端部が、つづいて円錐形部が加熱炉1の下部11(低温部)に進入する。そしてルツボ下端部の種結晶を開始点として単結晶が成長していく。
Next, the heat flux control plate will be described.
In the single crystal manufacturing process by the vertical Bridgman method, after melting the raw material filled in the crucible 5, the lowering of the crucible 5 is started to grow the single crystal. At this time, the crucible lower end first enters the lower part 11 (low temperature part) of the heating furnace 1 and then the conical part enters. A single crystal grows starting from the seed crystal at the lower end of the crucible.

本来結晶成長はルツボ下端部の種結晶から開始され、周囲に向かって成長していくことが必要であり、そのためにルツボ5内の融液温度は中心が最も低く、周辺に行くほど高くなければならない。なぜならルツボ周辺部の融液温度の方が低くなると周辺の至るところを開始点として結晶が成長し始め、種結晶とは無関係な方位が発生し、最終的にルツボ内の結晶が多結晶体となってしまうからである。このような現象を回避して種結晶からの結晶成長を維持するためには、結晶成長中において常にルツボ中心が周辺よりも温度が低い状態を保つ必要がある。ルツボ中心の温度が周辺より低ければ、結晶は中心から周辺に向かって成長するため、多結晶化が起こる恐れがないためである。   Originally, crystal growth starts from a seed crystal at the lower end of the crucible and needs to grow toward the periphery. For this reason, the melt temperature in the crucible 5 is the lowest at the center and must be as high as it goes to the periphery. Don't be. This is because when the melt temperature at the periphery of the crucible becomes lower, the crystal begins to grow starting from the periphery, and an orientation unrelated to the seed crystal is generated. Finally, the crystal in the crucible becomes a polycrystal. Because it becomes. In order to avoid such a phenomenon and maintain the crystal growth from the seed crystal, it is necessary to always keep the temperature of the crucible center lower than that of the periphery during the crystal growth. This is because if the temperature at the center of the crucible is lower than that at the periphery, the crystal grows from the center toward the periphery, so that there is no fear of polycrystallization.

ところがルツボの円錐形部に熱流束制御板を持たない従来の単結晶製造装置では、結晶成長開始時にルツボが降下を始めると、まず円錐形部分が仕切部を越えて低温部に移動し、円錐形部の温度が急激に低下する。このため種結晶から周辺に向かう結晶成長に先行して、温度が低下した円錐形部の周辺で多くの結晶が生成し、全体が多結晶化してしまうのである。上記の現象は、大口径の単結晶を製造するために直径の大きいルツボを用いた場合、特に顕著に発現する。   However, in a conventional single crystal manufacturing apparatus that does not have a heat flux control plate in the conical part of the crucible, when the crucible starts to descend at the start of crystal growth, the conical part first moves over the partition to the low temperature part, and the cone The temperature of the shape part drops rapidly. Therefore, prior to crystal growth from the seed crystal toward the periphery, many crystals are generated around the conical portion where the temperature is lowered, and the whole crystallizes. The above phenomenon is particularly noticeable when a crucible having a large diameter is used to produce a single crystal having a large diameter.

本発明が提供する製造装置の特徴である熱流束制御板8は、このような結晶成長開始時におけるルツボ円錐形部の急激な温度低下を抑制する効果を有するものである。すなわち該熱流束制御板は、ルツボ5の円錐形部分が加熱炉の仕切部10を通過する際に、加熱炉上部9から該円錐形部分への熱流束を透過させ、かつ該円錐形部分から加熱炉下部11への熱流束を遮断する構造を有する。このため結晶成長開始時において円錐形部分が加熱炉下部11に進入した際に、高温の加熱炉上部9からの熱流束を円錐形部分に流入させ、かつ該円錐形部分から低温の加熱炉下部11への熱流束を遮断することによって、該円錐形部分の温度を高く維持し、周辺からの結晶成長を抑制することができるのである。   The heat flux control plate 8, which is a feature of the manufacturing apparatus provided by the present invention, has an effect of suppressing such a rapid temperature drop of the crucible cone portion at the start of crystal growth. That is, the heat flux control plate allows the heat flux from the heating furnace upper part 9 to pass through the conical part when the conical part of the crucible 5 passes through the partition 10 of the heating furnace, and from the conical part. It has a structure for blocking the heat flux to the lower part 11 of the heating furnace. For this reason, when the conical portion enters the heating furnace lower portion 11 at the start of crystal growth, the heat flux from the high temperature heating furnace upper portion 9 is caused to flow into the conical shape portion, and from the conical portion to the low temperature heating furnace lower portion. By cutting off the heat flux to 11, the temperature of the conical portion can be kept high and crystal growth from the periphery can be suppressed.

図4は、単結晶成長時において、ルツボの円錐形部分5aが加熱炉の仕切部10を通過する状態を模式的に示した図である。ここでは熱流束制御板として円錐状の板状部材8aを5枚積層したものを、また熱流束遮断板7として円板状部材を用いた例を示す。   FIG. 4 is a diagram schematically showing a state where the conical portion 5a of the crucible passes through the partition 10 of the heating furnace during single crystal growth. Here, an example in which five conical plate-like members 8a are stacked as the heat flux control plate and a disk-like member is used as the heat flux blocking plate 7 is shown.

ルツボ引き下げにより結晶成長を開始した後、図4に示した時点において、加熱炉上部9は上部ヒーター3により相対的に高温に保たれている。加熱炉上部9からの熱流束は、熱流束制御板8を構成する5枚の板状部材8aの間隙14を透過し、ルツボの円錐形部分5aに到達する。一方ルツボの円錐形部分5aからの熱流束は、熱流束制御板8によって遮断され、下部ヒーター4により相対的に低温に保たれている加熱炉下部11に流入することが妨げられる。したがって円錐形部分5aが加熱炉下部11に進入した後も、円錐形部分5aの温度は高温に維持され、円錐形部分5aの温度低下によって周辺部から内部に向かって多結晶が発生することが妨げられる。   After starting the crystal growth by pulling down the crucible, the upper portion 9 of the heating furnace is kept at a relatively high temperature by the upper heater 3 at the time shown in FIG. The heat flux from the upper part 9 of the heating furnace passes through the gap 14 between the five plate-like members 8a constituting the heat flux control plate 8, and reaches the conical portion 5a of the crucible. On the other hand, the heat flux from the conical part 5 a of the crucible is blocked by the heat flux control plate 8 and is prevented from flowing into the lower furnace 11 which is kept at a relatively low temperature by the lower heater 4. Therefore, even after the conical portion 5a enters the lower part 11 of the heating furnace, the temperature of the conical portion 5a is maintained at a high temperature, and polycrystals are generated from the peripheral portion toward the inside due to the temperature drop of the conical portion 5a. Be disturbed.

熱流束制御板は上記のようにルツボの円錐形部分への熱流束を制御できる構造を有するものであって、具体的構造としては、上方に開いた円錐状の板状部材であって、外径がルツボの円筒形部分の外径とほぼ等しいものが好適である。円錐状の板状部材は単一の部材であっても良いが、円錐の頂角が等しい複数の板状部材を積層したものであれば、ルツボの円錐形部が加熱炉の仕切部を通過する際に、ルツボ位置の変動に伴う熱流束の変化が少なく、より安定した熱流束制御を行うことができる。   The heat flux control plate has a structure capable of controlling the heat flux to the conical portion of the crucible as described above. The specific structure is a conical plate-like member opened upward, It is preferable that the diameter is substantially equal to the outer diameter of the cylindrical portion of the crucible. The conical plate-like member may be a single member, but if a plurality of plate-like members having the same cone apex angle are stacked, the conical part of the crucible passes through the partition part of the heating furnace. In doing so, there is little change in the heat flux accompanying fluctuations in the crucible position, and more stable heat flux control can be performed.

また該円錐状の板状部材において、その頂角は、ルツボの円錐形部分の頂角よりも大きいかまたは等しいことが望ましい。該円錐状の板状部材の頂角がルツボの円錐形部分の頂角よりも小さい場合には、加熱炉上部からルツボの円錐形部分への熱流束に対する開口面積が小さく、温度維持効果が不十分となるからである。
円錐状の板状部材はルツボ5の円錐形部分を取り囲むように配置されるため、その中心にはルツボ5を通すための開口部が設けられる。該開口部とルツボ5との空隙は、熱の漏れを最低限に止めるためできるだけ小さいことが望ましい。
In the conical plate-like member, the apex angle is preferably larger than or equal to the apex angle of the conical portion of the crucible. When the apex angle of the conical plate-like member is smaller than the apex angle of the conical portion of the crucible, the opening area for the heat flux from the upper part of the heating furnace to the conical portion of the crucible is small, and the temperature maintaining effect is not good. This is enough.
Since the conical plate-like member is disposed so as to surround the conical portion of the crucible 5, an opening for passing the crucible 5 is provided at the center thereof. The gap between the opening and the crucible 5 is desirably as small as possible in order to minimize heat leakage.

以上の構造を有する円錐状の板状部材は、加熱炉およびルツボとの間に存在する空隙を最小限とすることができ、該空隙を通しての熱の漏れを抑制して、制御効率の高い熱流束制御板として作用する。またルツボの円錐形部分の周囲に存在する空間を利用することによって、大幅な改造を必要とせずに従来の単結晶製造装置に取り付けられるという利点がある
なお、ルツボの円錐形部分への熱供給バランスを最適に調整するためには、熱流束制御板が単一の板状部材からなる場合はその頂角を、また複数の板状部材を積層したものである場合は頂角に加えて積層間隔を調整すればよい。
The conical plate-like member having the above-described structure can minimize the gap between the heating furnace and the crucible, suppress heat leakage through the gap, and achieve a heat flow with high control efficiency. Acts as a bundle control plate. The space around the conical part of the crucible also has the advantage that it can be attached to conventional single crystal manufacturing equipment without requiring major modifications. In order to adjust the balance optimally, if the heat flux control plate is composed of a single plate-like member, the apex angle is added. What is necessary is just to adjust an interval.

本発明に係る単結晶製造装置において、多結晶の生成を抑制するためには、熱流束制御板8および/または熱流束遮断板7と、ルツボ5の下端部との間は熱絶縁されていることが望ましい。熱流束制御板8または熱流束遮断板7が受けた熱流束がルツボ下端部へ導かれると、ルツボ下端部すなわち種結晶側の温度が相対的に上昇し、相対的に温度が低下したルツボ周辺部からの結晶成長を引き起こして、多結晶化につながる恐れが高いからである。熱流束制御板8および/または熱流束遮断板7をルツボ5の下端部から熱絶縁するためには、これらの部材間が断熱材を介して接続されるようにすれば良い。断熱材としては、高温に耐え、単結晶に対する汚染源となる不純物を放出せず、かつ熱伝導率の低い材質が好ましく、具体的にはカーボンフェルトが好適である。   In the single crystal manufacturing apparatus according to the present invention, in order to suppress the formation of polycrystals, the heat flux control plate 8 and / or the heat flux blocking plate 7 and the lower end of the crucible 5 are thermally insulated. It is desirable. When the heat flux received by the heat flux control plate 8 or the heat flux blocking plate 7 is guided to the lower end of the crucible, the temperature at the lower end of the crucible, i.e., the seed crystal side, rises relatively, and the temperature around the crucible where the temperature is relatively lowered This is because there is a high risk of causing crystal growth from the portion and leading to polycrystallization. In order to thermally insulate the heat flux control plate 8 and / or the heat flux blocking plate 7 from the lower end of the crucible 5, these members may be connected via a heat insulating material. The heat insulating material is preferably a material that can withstand high temperatures, does not emit impurities that become a source of contamination to the single crystal, and has low thermal conductivity. Specifically, carbon felt is preferable.

熱流束制御板8および熱流束遮断板7の材質は、フッ化物の融点以上の高温に耐えることができ、かつ成長中の単結晶を汚染するような不純物を放出することが少ない材質が好ましく、具体的にはカーボン材が好適である。   The material of the heat flux control plate 8 and the heat flux blocking plate 7 is preferably a material that can withstand a high temperature that is higher than the melting point of fluoride and that emits less impurities that contaminate the growing single crystal. Specifically, a carbon material is suitable.

実施例1では、本発明に係る単結晶製造装置を用いてフッ化カルシウム単結晶を製造する。
図2は、本実施例で用いる単結晶製造装置について、その主要部を図示したものである。図示しない部分については図1の装置と同様であるので説明を省略する。
In Example 1, a calcium fluoride single crystal is manufactured using the single crystal manufacturing apparatus according to the present invention.
FIG. 2 shows the main part of the single crystal manufacturing apparatus used in this embodiment. The parts not shown are the same as in the apparatus of FIG.

図2の装置はルツボ5の直径=400mm、円錐形部分の頂角θ1=105度、熱流束制御板18の頂角θ2=140度とした。熱流束制御板18は、外径がルツボ5の円筒形部分の外径と等しい円錐状の板状部材を4枚積層した構造とした。また各板状部材の中心にある開口部の径は、ルツボ5との間に僅かな隙間が空くように調整した。熱流束遮断板23については、円板状部材の周辺を鉛直上側に折り曲げたカップ状構造とし、ルツボ支持棒6の上端に固定した。ルツボ支持棒6を介し外部から熱が流入することによって、ルツボ5の下端部すなわち種結晶部の温度が上昇しないよう、ルツボ支持棒6の外周にはカーボンフェルト製の断熱材24を配した。ルツボ5、熱流束制御板18および熱流束遮断板23の材質はいずれもカーボン材である。   In the apparatus shown in FIG. 2, the diameter of the crucible 5 is 400 mm, the apex angle θ1 of the conical portion is 105 degrees, and the apex angle θ2 of the heat flux control plate 18 is 140 degrees. The heat flux control plate 18 has a structure in which four conical plate-like members having an outer diameter equal to the outer diameter of the cylindrical portion of the crucible 5 are laminated. The diameter of the opening at the center of each plate-like member was adjusted so that a slight gap was left between the crucible 5 and the opening. About the heat flux interruption | blocking board 23, it was set as the cup-shaped structure which bent the circumference | surroundings of the disk-shaped member vertically upwards, and was fixed to the upper end of the crucible support bar 6. FIG. A heat insulating material 24 made of carbon felt was arranged on the outer periphery of the crucible support rod 6 so that the temperature of the lower end portion of the crucible 5, that is, the seed crystal portion, would not rise due to heat flowing in from the outside through the crucible support rod 6. The materials of the crucible 5, the heat flux control plate 18 and the heat flux blocking plate 23 are all carbon materials.

原料として高純度フッ化カルシウム粉末を用意し、スカベンジャーとしてフッ化鉛(PbF2)1mol%を添加してから一旦熔融・凝固させ、嵩密度を上げた前処理品を製造した。
次に、この前処理品を図2に示した単結晶製造装置のルツボ5に充填し、装置内を真空排気した。装置内の真空度が10-4Paに達したらルツボ5を加熱炉最上部に位置させ、加熱炉上部を1450℃、加熱炉下部を1300℃に設定して原料を熔融した。原料が十分に熔融した後、0.2mm/時の一定速度でルツボ5を引き下げ、単結晶を成長させた。ルツボ5の内容物が完全に固化してから室温近傍まで徐冷し、その後、製造装置内を大気開放してインゴットを取り出した。
A high-purity calcium fluoride powder was prepared as a raw material, and 1 mol% of lead fluoride (PbF 2 ) was added as a scavenger and then once melted and solidified to produce a pretreated product with an increased bulk density.
Next, this pretreated product was filled in the crucible 5 of the single crystal manufacturing apparatus shown in FIG. 2, and the inside of the apparatus was evacuated. When the degree of vacuum in the apparatus reached 10 −4 Pa, the crucible 5 was positioned at the top of the heating furnace, the upper part of the heating furnace was set to 1450 ° C., and the lower part of the heating furnace was set to 1300 ° C. to melt the raw material. After the raw material was sufficiently melted, the crucible 5 was pulled down at a constant speed of 0.2 mm / hour to grow a single crystal. After the contents of the crucible 5 were completely solidified, it was gradually cooled to near room temperature, and then the inside of the production apparatus was opened to the atmosphere and the ingot was taken out.

続いてインゴットが単結晶かどうかを評価する評価方法について説明する。インゴット先端の円錐形部分(コーン部と称する)と、その反対側の端面部分(トップ部と称する)を30mm程度の厚さに切断して、結晶面方位測定用のテストピースとする。これらのテストピースの結晶面方位測定をラウエ法にて行ない、インゴットの結晶面方位を特定する。   Next, an evaluation method for evaluating whether the ingot is a single crystal will be described. A conical portion (referred to as a cone portion) at the tip of the ingot and an end surface portion (referred to as a top portion) on the opposite side are cut into a thickness of about 30 mm to obtain a test piece for measuring crystal plane orientation. The crystal plane orientation of these test pieces is measured by the Laue method, and the crystal plane orientation of the ingot is specified.

結晶面方位の評価方法には、X線による方法、機械的方法、光学的方法等がある。これらの中でX線による方法は、短時間で高精度に、しかも非破壊で測定することができる。X線による方法の中でも、特にラウエ法は本発明に適している。   The crystal plane orientation evaluation method includes an X-ray method, a mechanical method, an optical method, and the like. Among these methods, the X-ray method can measure with high accuracy and non-destructiveness in a short time. Among the X-ray methods, the Laue method is particularly suitable for the present invention.

コーン部とトップ部において、それぞれの全面において結晶面方位が一様であること、及びこれらの両者の結晶面方位が一致していることで、インゴットが単結晶であるかどうかを判断できる。   Whether the ingot is a single crystal or not can be determined by the fact that the crystal plane orientation is uniform over the entire surface of the cone portion and the top portion, and that the crystal plane orientations of both of them coincide.

上記方法により複数のインゴットを製造し評価を行なった。その結果、単結晶が得られた確率は88%であり、高い確率で高品質な単結晶が得られることがわかった。  A plurality of ingots were produced by the above method and evaluated. As a result, the probability that a single crystal was obtained was 88%, and it was found that a high-quality single crystal was obtained with a high probability.

実施例2は熱流束制御板および熱流束遮断板の取り付け構造に関するものである。
図3は実施例2に係る単結晶製造装置の主要部を示す概略図であり、図示しない部分については実施例1の装置と同一である。実施例2では、カップ状部材からなる熱流束遮断板25は、断熱部材としてのカーボンフェルト21を介してルツボ支持棒6に固定される。また熱流束制御板18を構成する円錐状の板状部材はカーボン材からなる段付き棒25によって熱流束遮断板25に固定される。
Example 2 relates to a mounting structure for a heat flux control plate and a heat flux blocking plate.
FIG. 3 is a schematic view showing the main part of the single crystal manufacturing apparatus according to the second embodiment. The parts not shown are the same as those of the first embodiment. In Example 2, the heat flux blocking plate 25 made of a cup-shaped member is fixed to the crucible support rod 6 via a carbon felt 21 as a heat insulating member. The conical plate-like member constituting the heat flux control plate 18 is fixed to the heat flux blocking plate 25 by a stepped bar 25 made of a carbon material.

本実施例の単結晶製造装置では、熱流束遮断板25とルツボ5とがカーボンフェルト21によって熱的に絶縁されているため、熱流束遮断板25が受けた熱がルツボ5の下端部に伝達されにくく、種結晶側の温度が常に低く保たれる。その結果、周辺部からの多結晶生成が抑制され、大口径の単結晶を収率良く製造することができる。   In the single crystal manufacturing apparatus of the present embodiment, the heat flux blocking plate 25 and the crucible 5 are thermally insulated by the carbon felt 21, so that the heat received by the heat flux blocking plate 25 is transmitted to the lower end of the crucible 5. The temperature on the seed crystal side is always kept low. As a result, the formation of a polycrystal from the peripheral portion is suppressed, and a large-diameter single crystal can be produced with high yield.

また本実施例の製造装置では、熱流束制御板18が熱流束遮断板25に固定されており、熱流束遮断板25は上記のとおりルツボ5との間が熱絶縁されているので、熱流束制御板18が受けた熱もルツボ5の下端部に伝達されにくく、大口径の単結晶を収率良く製造することができる。   In the manufacturing apparatus of the present embodiment, the heat flux control plate 18 is fixed to the heat flux blocking plate 25, and the heat flux blocking plate 25 is thermally insulated from the crucible 5 as described above. The heat received by the control plate 18 is not easily transmitted to the lower end of the crucible 5, and a large-diameter single crystal can be produced with high yield.

比較例Comparative example

実施例1で使用した単結晶製造装置の熱流束制御板を取り外し、その他は実施例1と同一の条件でフッ化カルシウム単結晶を製造した。実施例1と同一の評価方法で結晶性の評価を行なった結果、単結晶の得られた確率は43%であり、本発明の優位性が実証された。   A calcium fluoride single crystal was produced under the same conditions as in Example 1 except that the heat flux control plate of the single crystal production apparatus used in Example 1 was removed. As a result of evaluating the crystallinity by the same evaluation method as in Example 1, the probability of obtaining a single crystal was 43%, demonstrating the superiority of the present invention.

本発明に係る単結晶製造装置の一例について、主要部を示す概略図である。It is the schematic which shows the principal part about an example of the single-crystal manufacturing apparatus which concerns on this invention. 実施例1に係る単結晶製造装置について、主要部を示す概略図である。1 is a schematic view showing a main part of a single crystal manufacturing apparatus according to Example 1. FIG. 実施例2に係る単結晶製造装置について、主要部を示す概略図である。FIG. 4 is a schematic view showing a main part of a single crystal production apparatus according to Example 2. 本発明に係る単結晶製造装置の一例について、単結晶成長時の主要部を示す概略図である。It is the schematic which shows the principal part at the time of a single crystal growth about an example of the single crystal manufacturing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1:加熱炉、3:上部ヒーター、4:下部ヒーター、5:ルツボ、6:ルツボ支持棒、7熱流束遮断板、8:熱流束制御板、9:加熱炉上部、10:仕切部、11:加熱炉下部、12:断熱部材、13:仕切板、18:熱流束制御板、21:カーボンフェルト、23:熱流束遮断板、24:断熱材、25:段付き棒   1: heating furnace, 3: upper heater, 4: lower heater, 5: crucible, 6: crucible support rod, 7 heat flux blocking plate, 8: heat flux control plate, 9: heating furnace upper portion, 10: partition part, 11 : Heating furnace lower part, 12: Heat insulation member, 13: Partition plate, 18: Heat flux control plate, 21: Carbon felt, 23: Heat flux block plate, 24: Heat insulation material, 25: Stepped rod

Claims (8)

仕切部によって上部と下部とに仕切られた加熱炉と、該加熱炉内に配置された上部が円筒形で下部が円錐形のルツボと、該ルツボの円錐形部分を囲んで配置された熱流束制御板と、該ルツボの円錐形部分の下端に配置された熱流束遮断板とを備え、
前記熱流束制御板は、前記ルツボの円錐形部分が前記加熱炉の仕切部を通過する際に、該加熱炉の上部から該ルツボの円錐形部分への熱流束を透過させ、かつ該ルツボの円錐形部分から該加熱炉の下部への熱流束を遮断する構造を有し、
前記熱流束遮断板は、前記ルツボが前記加熱炉の上部に位置する際に、該加熱炉の上部から該加熱炉の下部への熱流束を遮断する構造を有することを特徴とする垂直ブリッジマン法によるフッ化物単結晶の製造装置。
A heating furnace partitioned into an upper part and a lower part by a partitioning part, a crucible whose upper part is cylindrical and whose lower part is conical, and a heat flux arranged around the conical part of the crucible A control plate, and a heat flux blocking plate disposed at the lower end of the conical portion of the crucible,
The heat flux control plate transmits the heat flux from the upper part of the heating furnace to the conical part of the crucible when the conical part of the crucible passes through the partition of the heating furnace, and Having a structure for cutting off the heat flux from the conical portion to the lower part of the heating furnace,
The heat flux blocking plate has a structure for blocking a heat flux from an upper part of the heating furnace to a lower part of the heating furnace when the crucible is located at the upper part of the heating furnace. Equipment for producing fluoride single crystals by the method.
仕切部によって上部と下部とに仕切られた加熱炉と、該加熱炉内に配置された上部が円筒形で下部が円錐形のルツボと、該ルツボの円錐形部分を囲んで配置された、上方に開いた円錐状の板状部材と、該ルツボの下端部に配置された円板状またはカップ状の部材とを有し、
前記上方に開いた円錐状の板状部材および、前記円板状またはカップ状の部材の外径は、前記ルツボの円筒形部分の外径とほぼ等しいことを特徴とする垂直ブリッジマン法によるフッ化物単結晶の製造装置。
A heating furnace partitioned into an upper part and a lower part by a partition, a crucible whose upper part is cylindrical and whose lower part is conical, and an upper part disposed around the conical part of the crucible A conical plate-like member that is open to the bottom, and a disc-like or cup-like member disposed at the lower end of the crucible,
The outer diameter of the conical plate-shaped member opened upward and the disk-shaped or cup-shaped member is substantially equal to the outer diameter of the cylindrical portion of the crucible, and is based on the vertical Bridgman method. Chemical single crystal manufacturing equipment.
前記上方に開いた円錐状の板状部材を複数備え、該複数の板状部材は円錐の頂角が互いに等しく、かつ鉛直方向に積層して配置されたことを特徴とする請求項2に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 3. The plurality of conical plate-like members opened upward are provided, and the plurality of plate-like members are arranged such that the apex angles of the cones are equal to each other and are stacked in the vertical direction. Production equipment for fluoride single crystals by the vertical Bridgman method. 前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材と、前記ルツボとの間が、熱絶縁されていることを特徴とする請求項2または請求項3に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 4. The thermal insulation is provided between the crucible plate-like member and / or the disc-like or cup-like member opened upward and the crucible. For producing a fluoride single crystal by the vertical Bridgman method described in 1. 前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材と、前記ルツボとの間が、断熱材を介して接続されていることを特徴とする請求項2ないし請求項4のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 3. The conical plate-like member and / or the disc-like or cup-like member opened upward and the crucible are connected via a heat insulating material. The manufacturing apparatus of the fluoride single crystal by the vertical Bridgman method as described in any one of thru | or 4. 前記断熱材がカーボンフェルトであることを特徴とする請求項5に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 The said heat insulating material is a carbon felt, The manufacturing apparatus of the fluoride single crystal by the vertical Bridgman method of Claim 5 characterized by the above-mentioned. 前記上方に開いた円錐状の板状部材および/または、前記円板状またはカップ状の部材が、カーボン材で構成されたことを特徴とする請求項2ないし請求項6のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 The conical plate-like member and / or the disc-like or cup-like member opened upward is made of a carbon material. An apparatus for producing a fluoride single crystal by the described vertical Bridgman method. 前記上方に開いた円錐状の板状部材の頂角は、前記ルツボの円錐形部分の頂角よりも大きいかまたは等しいことを特徴とする請求項2ないし請求項7のいずれか一項に記載の垂直ブリッジマン法によるフッ化物単結晶の製造装置。 The apex angle of the conical plate-like member that opens upward is larger than or equal to the apex angle of the conical portion of the crucible. Production equipment for fluoride single crystals by the vertical Bridgman method.
JP2004027569A 2004-02-04 2004-02-04 Fluoride single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP4608894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027569A JP4608894B2 (en) 2004-02-04 2004-02-04 Fluoride single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027569A JP4608894B2 (en) 2004-02-04 2004-02-04 Fluoride single crystal manufacturing apparatus and manufacturing method

Publications (3)

Publication Number Publication Date
JP2005219946A true JP2005219946A (en) 2005-08-18
JP2005219946A5 JP2005219946A5 (en) 2007-01-11
JP4608894B2 JP4608894B2 (en) 2011-01-12

Family

ID=34995877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027569A Expired - Fee Related JP4608894B2 (en) 2004-02-04 2004-02-04 Fluoride single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP4608894B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385082A (en) * 1986-09-29 1988-04-15 Nippon Telegr & Teleph Corp <Ntt> Method for growing single crystal and apparatus thereof
JPH05117072A (en) * 1991-10-30 1993-05-14 Sony Corp Production of single crystal
JPH05238870A (en) * 1992-02-28 1993-09-17 Furukawa Electric Co Ltd:The Production of single crystal of compound semiconductor and device therefor
JPH0797298A (en) * 1993-09-13 1995-04-11 Sanyo Electric Co Ltd Production of multi-component oxide single crystal
JPH11292696A (en) * 1998-04-15 1999-10-26 Nikon Corp Fluorite production unit
JP2005035824A (en) * 2003-07-18 2005-02-10 Nikon Corp Fluoride crystal growth equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385082A (en) * 1986-09-29 1988-04-15 Nippon Telegr & Teleph Corp <Ntt> Method for growing single crystal and apparatus thereof
JPH05117072A (en) * 1991-10-30 1993-05-14 Sony Corp Production of single crystal
JPH05238870A (en) * 1992-02-28 1993-09-17 Furukawa Electric Co Ltd:The Production of single crystal of compound semiconductor and device therefor
JPH0797298A (en) * 1993-09-13 1995-04-11 Sanyo Electric Co Ltd Production of multi-component oxide single crystal
JPH11292696A (en) * 1998-04-15 1999-10-26 Nikon Corp Fluorite production unit
JP2005035824A (en) * 2003-07-18 2005-02-10 Nikon Corp Fluoride crystal growth equipment

Also Published As

Publication number Publication date
JP4608894B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4195222B2 (en) Method and apparatus for growing large volume oriented monocrystals.
US7476274B2 (en) Method and apparatus for making a highly uniform low-stress single crystal by drawing from a melt and uses of said crystal
JP2008031019A (en) Method of manufacturing sapphire single crystal
JP2004262742A (en) Method for growing oriented calcium fluoride single crystal
JP2008508187A (en) Method for growing a single crystal from a melt
JP4147595B2 (en) Method for producing fluorite single crystal
JP4569872B2 (en) Fluorite single crystal production apparatus and fluorite single crystal production method using the same
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP2000128696A (en) Fluoride single crystal-made raw material for making optical element and production of the same raw material
JP4608894B2 (en) Fluoride single crystal manufacturing apparatus and manufacturing method
CN103717790A (en) Crucible for manufacturing compound crystal, apparatus for manufacturing compound crystal, and method for manufacturing compound crystal using crucible
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JP2005035824A (en) Fluoride crystal growth equipment
JPH11292696A (en) Fluorite production unit
JP2007051013A (en) Method for producing calcium fluoride crystal
JP4821623B2 (en) Single crystal growth crucible and fluoride crystal grown by this crucible
JP2012036015A (en) Crystal growth method
JP2006117442A (en) Method and apparatus for producing single crystal
JP6400946B2 (en) Method for producing Si-Ge solid solution single crystal
JP2005089204A (en) Apparatus and method for producing crystal
JP2006335587A (en) Method for manufacturing single crystal, and pretreatment apparatus for single crystal growth
JP2006143516A (en) Crystal manufacturing apparatus
JP4158189B2 (en) Single crystal manufacturing method
JP3542444B2 (en) Crystal manufacturing apparatus and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees