JP3542444B2 - Crystal manufacturing apparatus and method - Google Patents

Crystal manufacturing apparatus and method Download PDF

Info

Publication number
JP3542444B2
JP3542444B2 JP24044496A JP24044496A JP3542444B2 JP 3542444 B2 JP3542444 B2 JP 3542444B2 JP 24044496 A JP24044496 A JP 24044496A JP 24044496 A JP24044496 A JP 24044496A JP 3542444 B2 JP3542444 B2 JP 3542444B2
Authority
JP
Japan
Prior art keywords
crucible
manufacturing apparatus
crystal manufacturing
crystal
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24044496A
Other languages
Japanese (ja)
Other versions
JPH1087391A (en
Inventor
修一 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24044496A priority Critical patent/JP3542444B2/en
Publication of JPH1087391A publication Critical patent/JPH1087391A/en
Application granted granted Critical
Publication of JP3542444B2 publication Critical patent/JP3542444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレンズ等の光学部材に用いられる石英、蛍石等の結晶材料(硝材)を製造する為の結晶製造装置、及び結晶製造方法に関するものである。
【0002】
【従来の技術】
光学部材は、望遠鏡、カメラ、あるいは半導体集積回路製造用の露光装置等に用いられてる。とりわけ、露光装置では高品質の光学部材が望まれている。近年、半導体集積回路の高集積化にともない、超微細パタ−ン形成への要求がますます高まっている。微細パタ−ンをウェハ上に転写する装置としては、ステップ・アンド・リピ−ト方式の縮小投影小型露光装置(ステッパ−)が多用されている。高集積化するためには、ステッパ−投影レンズの解像度を上げる必要がある。そして、投影レンズの解像力を上げるには、短波長の露光光を用い、投影レンズの開口数を大きく(大口径化)する必要がある。
【0003】
又、露光光の短波長化は、g線(波長436nm)、i線(波長365nm)と進んできており、今後は、KrFエキシマレ−ザ−光(波長248nm)、ArFエキシマレ−ザ−光(波長193nm)の使用が有望視されている。i線までの波長域では、光学系に従来の光学レンズを使用することが可能であったが、KrF、ArF各エキシマレ−ザ−光の波長域では、透過率が低く、従来の光学ガラスを使用することは不可能である。このため、エキシマレ−ザ−露光装置の光学系には、短波長光の透過率が高い石英ガラスまたは蛍石を使用するのが一般的になっている。光学系の色収差補正のためには、屈折率の異なる2つ以上の硝材があることが望ましい。
【0004】
また、ステッパ−投影レンズを構成する各レンズは、極限の面精度で研磨されるが、多結晶になっていると結晶方位によって研磨速度が異なるため、レンズの面精度を確保することが困難になる。更に多結晶の場合には、結晶界面に不純物が偏析し易く、屈折率の均一性を損ねたり、レ−ザ−照射により蛍光を発したりする。
【0005】
このような理由で、エキシマレ−ザ−露光装置の投影レンズでは、大口径の単結晶蛍石が望まれている。
【0006】
例えば、蛍石は従来、坩堝降下法(ブリッジマン法)で製造されており、その製造装置には図5に示す1室タイプと図6に示す2室タイプ(米国特許2、214、976参照)がある。
【0007】
図5は、従来の1室タイプの蛍石製造装置の1例を模式的に示す断面図である。この装置は、主として、炉室4aを形成する炉本体4と炉室内に配置されたグラファイト製の側面ヒ−タ−3とで構成される。炉本体4の底を貫いて、坩堝支持棒2の上部が炉室4aに達し、この支持棒2の上端に坩堝1が取りつけられる。この坩堝1に原料を入れ、炉内を真空にし、炉温を蛍石の融点以上、通常摂氏1390〜1450度まで上げ、熔融する。結晶成長させる時は、0.1〜5mm/時ぐらいの速度で坩堝1を降下させ、下部の方から結晶化させていく。
【0008】
図6に示す2室タイプは、炉内の温度分布を調整可能にするために開発されたものである。図5、6両面の左側のグラフは、炉の中心部の鉛直方向に沿った温度を示すが、1室タイプでは炉の中心に沿った温度分布が、図5左側に示すように1つ山型となるのに対し、2室タイプでは図6左側に示すように2つ山型となる。
【0009】
高品質の単結晶を作るには、結晶速度を遅くする、坩堝内面を滑らかに仕上げる、結晶起点を坩堝最下端の一点にするなど、幾つかの配慮すべき点がある。本発明者の知見によれば、結晶融液の温度分布で、等温線をできるだけ水平に保つことが重要である。
図5や、図6のようなの装置では、大口径に伴い、結晶融液の炉壁近傍と中心部との間に温度差が生じ、温度分布の制御が困難になる。その対策として炉液の上部または下部にヒ−タ−を付加し温度制御する装置が提案されている(特開平4−349198、特開平4−349199参照)。しかしながら、こうした装置は、その構造が複雑になる。そこで単純な方法として、坩堝の構造を工夫し、結晶融液の温度分布の改良を図ったものに、図7に示すような装置がある(チェレドフ・V・N.,ニェオルガニ−チェスキ−マテリアル ,No.3,vol.28,(1992),pp550−553)。
【0010】
図7において、坩堝は5つの坩堝(11〜15)からなり、ネジ部(16〜19)により連結されている。各坩堝12〜15の底面12a〜15aは、上下の坩堝の仕切り板になっており、その中央には小孔12b〜15bが開けてある。20は支持棒である。
【0011】
【発明が解決しようとする課題】
しかしながら、本発明者が詳しく検討した結果、上記図7の従来例でも、最近要求されるような大口径(例えば直径250mm以上)の結晶になると、坩堝を冷却する領域での、坩堝側壁からの放熱による半径方向の温度差が無視できなくなり、高品質の大口径の結晶蛍石は得にくいことが判明した。
【0012】
本発明の目的は、高品質の大口径の結晶を製造できる、構造の簡単な結晶製造装置、及び方法を提供することにある。
【0013】
【課題を解決するための手段】
上記の課題を解決し、上述した目的を達成するために、本発明は、円筒形の坩堝中で熔融させた結晶性物質の原料を冷却することで結晶化させる結晶製造装置において、前記坩堝は、前記原料を収容する領域の上下に設けられた仕切り板と、円筒側面に設けられた断熱手段とを有することを特徴とする結晶製造装置、および結晶成長方法を提供する。
【0014】
(作用)
本発明によれば、坩堝の内側円筒面に断熱手段を設けたことにより、坩堝を冷却する領域での、坩堝側面からの放熱が遮断され、半径方向の温度差が抑えられて、良質な大口径の結晶の製造が可能となる。
【0015】
【発明の実施の形態】
(第一の実施の形態)
図1は、本発明の第一の実施例にかかわる結晶製造装置の坩堝の模式的な断面図である。第一の実施の形態は、坩堝円筒面に断熱材を有する形態である。図1において、坩堝は5つの円筒状の側壁を持つディスク状の坩堝11〜15からなり、結晶物質の原料を収容し、熔融し結晶化させる領域41〜45を形成している。そして、各ディスク状の坩堝11〜15は、ネジ部16〜19により連結されている。各ディスク状坩堝12〜15の下の底面12a〜15aは、上下の領域間の仕切り板からなり、その仕切り板の中央には小孔12b〜15bが開けてある。20は坩堝全体を支える支持棒、21〜25は領域11〜15の円筒状側面の内側に設けられた断熱手段である。
【0016】
図1の構成において、結晶化の過程は次のように説明できる。
【0017】
各坩堝11〜15に原料を入れ熔融する。坩堝を降下させると、まず最下端の坩堝11の下部から結晶化が始まる。坩堝が降下するに従い結晶化が進み、やがて小孔12bが結晶化する。次に、この小孔12b内の結晶が起点となり、坩堝12内が結晶化していく。この時、坩堝材自体の熱伝導性により、底面12aがほぼ一様温度の低温面、底面13aがほぼ一様温度の高温面として作用し、坩堝12内の結晶融液は等温線がほぼ水平な温度分布に維持される。結晶化が小孔13bに達すると、それが結晶起点となり、坩堝内が結晶化していく。このようにして順次最上端の坩堝15間で結晶化させる。なお、通常最下端の坩堝11内の結晶はダミ−とされ、坩堝12から上の坩堝内の結晶が製品とされる。そこで、例えば、坩堝が冷却ゾ−ンに入った時、坩堝材の熱伝導性により、底面12aがほぼ一様温度の低温面、底面13aがほぼ一様温度の高温面として作用し、かつ、断熱材22の効果により側面からの放熱が遮断されるため、大口径になっても坩堝12内の結晶融液は半径方向の温度差が抑えられて等温線がほぼ水平な温度分布に維持される。したがって、良質な大口径の蛍石単結晶の製造が可能となる。
【0018】
なお、断熱材21〜25の材料は、坩堝11〜15に対して熱伝導率が小さいもの、例えば、MgO、セラミック、金属メッシュ、耐熱耐火煉瓦、多孔質カ−ボンや、MoとMgO、Moとセラミック、Moと金属メッシュの各組み合わせから選択される材料であるが、これを、炉の半径、炉の縦方向の厚さを考慮に入れて任意に選択すれば良い。
【0019】
断熱手段がない場合は、融液温度を示す等温線が仕切り板を中心に等方の放射状に上に凸の円弧を描く形で現れる。その結果、結晶体中に原子配列の乱れが大きく生じ、高性能の大口径結晶体を得ることが難しかった。このように等温線が上に凸に現れる現象は、熱が炉の内側壁から放出し、その結果、融液温度は、炉の内側壁近傍と仕切り板中心部との間で温度差が生じる為と説明できる。
【0020】
本発明者が詳しく検討した結果、この問題を解決する好適な方法は融液温度を示す等温線を仕切り板に対して平行に維持することである。即ち、炉の内側壁から放出される熱を減らし、主に下部の仕切り板から熱を放出させることで、融液の等温線が仕切り板に沿って異方性を持っように制御することできる。
【0021】
(第二の実施の形態)
図2は、本発明の第二の実施の形態にかかわる結晶製造装置の坩堝の模式的な断面図である。第二の実施の形態は、坩堝の円筒側面に空間を有する形態である。図2において、図1の装置同様に坩堝は5つのディスク状の坩堝11〜15からなり、31〜35は各ディスク状の坩堝11〜15の外周円筒壁の内側に設けた内側円筒壁部、31a〜35aは外周円筒壁と内側円筒壁部との間に構成された円筒状の空間である。原料は領域41〜45の中に収容する。
【0022】
第二の実施の形態では、第一の実施の形態で用いたの断熱材21〜25の代わりに断熱手段として二重円筒構造31〜35にすることにより断熱効果を図っている。内側円筒壁部31〜35の壁厚より空間層31a〜35aの厚さを厚くすることで、壁が有する高い熱伝導性が失われ、同時に、空間の有する非常に低い熱伝導性により大きな断熱効果が期待できる。また、内側円筒壁部31〜35は、坩堝との一体物として加工することができる。
【0023】
(第三の実施の形態)
図3は、本発明の第三の実施の形態にかかわる結晶製造装置の坩堝の模式的な断面図である。第三の実施の形態は、坩堝円筒面に断熱材を設け、更に、原料を収容する領域の上下にある伝熱部材を分断したものである。図3において、坩堝は5つのディスク状領域41〜45からなり、21〜25はディスク状領域41〜45の内側円筒壁面に配置された断熱材、51〜56はディスク状領域41〜45の上下面51a〜56a及び外周円筒面をなす伝熱部材である。
【0024】
図3の構成において、各伝熱部材51〜56は分断されているために、伝熱部材51〜56間の上下の熱伝導が遮断される。したがって、例えば、ディスク状領域42が冷却ゾ−ンに入った時、伝熱部材52の熱伝導性により面52aが一様温度の低温面、伝熱部材53の熱伝導性により面53aが一様温度の高温面として作用するが、伝熱部材52、53間の熱伝導が遮断されるため、面52はより確実に一様低温面として機能する。これと、側面の断熱材22の効果により、結晶成長時の潜熱を確実に、かつ一様に下方に逃すことができ、ディスク状領域42内の結晶融液は等温線が水平な温度分布に維持され、良質な大口径蛍石単結晶の製造が可能となる。
【0025】
(第四の実施の形態)
図4は、本発明の第四の実施の形態にかかわる結晶製造装置の坩堝とヒ−タ−の模式的な断面図である。第四の実施の形態は、第三の実施の形態中の伝熱部材にそれぞれ独立したヒ−タ−を設けた形態である。図4において、坩堝は図3の装置と同じで5つのディスク状領域41〜45からなり、21〜25はディスク状領域41〜45の内側円筒面を形成する断熱材、51〜56はディスク状領域41〜45の上下面51a〜56a及び外周円筒面を形成する伝熱部材である。26は坩堝全体を支持し、装置の基台50に固定する断熱材、61〜66はそれぞれ伝熱部材51〜56を加熱する独立したヒ−タ−である。
【0026】
図4の構成において、まず、各ヒ−タ−61〜66に不図示の電源より電流を供給し、通電発熱させて高温に各坩堝を維持し、原料を熔融する。次に、最下部のヒ−タ−61の通電を止めるか、電流を小さくしてヒ−タ−61の温度を下げることにより、面51aの温度を下げ、ディスク状領域41の下部から結晶化させる。同様にして、ヒ−タ−62から66間で順次温度を下げることにより、ディスク状領域42から45間で順に結晶化させる。
【0027】
図4に表す第四の実施の形態は、図1、2、3、5、6の実施形態と異なり、結晶化の過程で坩堝を動かさないので結晶成長に悪影響を及ぼす振動を無くすことができ、かつ、装置の小型化が実現できる。また、ヒ−タ−61〜66は独立に温度制御可能なので、各ディスク状領域41〜45を結晶化する過程で、面51a〜56aを低温面あるいは高温面として、よりきめ細かな温度制御ができるという利点がある。
【0028】
【発明の効果】
以上説明したように、本発明によれば、坩堝の側面に断熱手段を設けるという簡単な方法で、坩堝を冷却する際に坩堝側面からの放熱を抑制し、半径方向の温度差を抑えて、良質な大口径の蛍石等の結晶を製造できる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態に係る結晶製造装置の坩堝の模式的な断面図である。
【図2】本発明の第二の実施形態に係る結晶製造装置の坩堝の模式的な断面図である。
【図3】本発明の第三の実施形態に係る結晶製造装置の坩堝の模式的な断面図である。
【図4】本発明の第四の実施形態に係る結晶製造装置の坩堝とヒ−タ−の模式的な断面図である。
【図5】従来の1室タイプの結晶製造装置の模式的な断面図である。
【図6】従来の2室タイプの結晶製造装置の模式的な断面図である。
【図7】従来の別のタイプの結晶製造装置の坩堝の模式的な断面図である。
【符号の説明】
1 坩堝
2 支持棒
3 ヒ−タ−
3b 高温側炉室
3c 低温側ヒ−タ−
4 炉本体
4a 炉室
4b 高温側炉室
4c 低温側炉室
11〜15 ディスク状坩堝
12a〜15a 底面
12b〜15b 小孔
16〜19 ネジ部
20 支持棒
21〜26 断熱材
31〜35 内側円筒部
31a〜35a 空間層
41〜45 ディスク状領域
50 基台
51〜56 伝熱部材
51a〜56a 上下面
61〜66 ヒ−タ−
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crystal manufacturing apparatus and a crystal manufacturing method for manufacturing crystal materials (glass materials) such as quartz and fluorite used for optical members such as lenses.
[0002]
[Prior art]
The optical member is used for a telescope, a camera, an exposure apparatus for manufacturing a semiconductor integrated circuit, and the like. In particular, a high quality optical member is desired for an exposure apparatus. 2. Description of the Related Art In recent years, as semiconductor integrated circuits have become more highly integrated, there has been an increasing demand for the formation of ultrafine patterns. As an apparatus for transferring a fine pattern onto a wafer, a step-and-repeat type reduced projection small exposure apparatus (stepper) is frequently used. For high integration, it is necessary to increase the resolution of the stepper-projection lens. In order to increase the resolving power of the projection lens, it is necessary to increase the numerical aperture (increase the diameter) of the projection lens by using exposure light having a short wavelength.
[0003]
The wavelength of exposure light has been shortened to g-line (wavelength 436 nm) and i-line (wavelength 365 nm). In the future, KrF excimer laser light (wavelength 248 nm) and ArF excimer laser light ( The use of a wavelength of 193 nm) is promising. In the wavelength range up to the i-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of KrF and ArF excimer laser light, the transmittance was low, and the conventional optical glass was used. It is impossible to use. For this reason, it is common to use quartz glass or fluorite, which has a high transmittance for short-wavelength light, in the optical system of the excimer laser exposure apparatus. In order to correct the chromatic aberration of the optical system, it is desirable that there are two or more glass materials having different refractive indexes.
[0004]
Further, each lens constituting the stepper-projection lens is polished with the ultimate surface accuracy. However, since the polishing speed is different depending on the crystal orientation in the case of polycrystal, it is difficult to secure the surface accuracy of the lens. Become. Further, in the case of a polycrystal, impurities are easily segregated at the crystal interface, which impairs the uniformity of the refractive index and emits fluorescence by laser irradiation.
[0005]
For these reasons, a large diameter single crystal fluorite is desired for a projection lens of an excimer laser exposure apparatus.
[0006]
For example, fluorite is conventionally manufactured by a crucible descent method (Bridgeman method), and the manufacturing apparatus thereof has a one-chamber type shown in FIG. 5 and a two-chamber type shown in FIG. 6 (see US Pat. No. 2,214,976). ).
[0007]
FIG. 5 is a sectional view schematically showing one example of a conventional one-chamber type fluorite manufacturing apparatus. This apparatus mainly includes a furnace main body 4 forming a furnace chamber 4a and a graphite side heater-3 disposed in the furnace chamber. The upper part of the crucible support rod 2 reaches the furnace chamber 4a through the bottom of the furnace body 4, and the crucible 1 is attached to the upper end of the support rod 2. The raw material is put in the crucible 1, the inside of the furnace is evacuated, and the furnace temperature is raised to the melting point of fluorite or more, usually to 1390 to 1450 degrees Celsius, and is melted. When growing a crystal, the crucible 1 is lowered at a speed of about 0.1 to 5 mm / hour and crystallized from the lower part.
[0008]
The two-chamber type shown in FIG. 6 has been developed to make it possible to adjust the temperature distribution in the furnace. The graphs on the left side of both sides of FIGS. 5 and 6 show the temperature along the vertical direction at the center of the furnace. In the case of the one-chamber type, the temperature distribution along the center of the furnace has one peak as shown on the left side of FIG. In contrast to the two-chamber type, the two-chamber type has two mountain shapes as shown on the left side of FIG.
[0009]
In order to produce a high-quality single crystal, there are several points to consider, such as slowing down the crystallization speed, smoothing the inner surface of the crucible, and setting the crystal starting point at one point at the lowermost end of the crucible. According to the findings of the present inventors, it is important to keep the isotherm as horizontal as possible in the temperature distribution of the crystal melt.
In the apparatus as shown in FIG. 5 or FIG. 6, a temperature difference occurs between the vicinity of the furnace wall of the crystal melt and the central portion due to the large diameter, and it becomes difficult to control the temperature distribution. As a countermeasure, a device has been proposed in which a heater is added to the upper or lower part of the furnace liquid to control the temperature (see JP-A-4-349198 and JP-A-4-349199). However, such devices have a complicated structure. Therefore, as a simple method, a device as shown in FIG. 7 is used in which the structure of the crucible is devised to improve the temperature distribution of the crystal melt (Cheredov V.N., Nieorgany-Cesky Material, No. 3, vol.28, (1992), pp550-553).
[0010]
In FIG. 7, the crucible is composed of five crucibles (11 to 15) and is connected by screw portions (16 to 19). The bottom surfaces 12a to 15a of the crucibles 12 to 15 are partition plates for upper and lower crucibles, and small holes 12b to 15b are opened in the center. Reference numeral 20 denotes a support bar.
[0011]
[Problems to be solved by the invention]
However, as a result of a detailed study by the present inventor, even in the conventional example shown in FIG. 7, when a crystal having a large diameter (for example, a diameter of 250 mm or more) as recently required is formed, the crystal from the crucible side wall in the region for cooling the crucible is cooled. It was found that the temperature difference in the radial direction due to heat radiation could not be ignored, and it was difficult to obtain high-quality large-diameter crystalline fluorite.
[0012]
An object of the present invention is to provide an apparatus and a method for producing a crystal having a simple structure and capable of producing a high-quality large-diameter crystal.
[0013]
[Means for Solving the Problems]
In order to solve the above problems and achieve the above-described object, the present invention relates to a crystal manufacturing apparatus that crystallizes a crystalline substance melted in a cylindrical crucible by cooling the raw material. A crystal production apparatus and a crystal growth method, comprising: a partition plate provided above and below a region for accommodating the raw material; and a heat insulating means provided on a side surface of the cylinder.
[0014]
(Action)
According to the present invention, by providing the heat insulating means on the inner cylindrical surface of the crucible, heat radiation from the side of the crucible in the region for cooling the crucible is cut off, the temperature difference in the radial direction is suppressed, and good quality large The production of a crystal having a diameter becomes possible.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
FIG. 1 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a first embodiment of the present invention. The first embodiment is an embodiment in which a heat insulating material is provided on the crucible cylindrical surface. In FIG. 1, the crucible is composed of disk-shaped crucibles 11 to 15 having five cylindrical side walls, and forms regions 41 to 45 for accommodating a crystalline material and melting and crystallizing. The disk-shaped crucibles 11 to 15 are connected by screw portions 16 to 19. The bottom surfaces 12a to 15a below each of the disk-shaped crucibles 12 to 15 are composed of a partition between upper and lower regions, and small holes 12b to 15b are formed in the center of the partition. Reference numeral 20 denotes a support rod for supporting the entire crucible, and reference numerals 21 to 25 denote heat insulating means provided inside the cylindrical side surfaces of the regions 11 to 15.
[0016]
In the configuration of FIG. 1, the crystallization process can be described as follows.
[0017]
Raw materials are put into each of the crucibles 11 to 15 and melted. When the crucible is lowered, crystallization starts at the bottom of the crucible 11 at the lowermost end. Crystallization proceeds as the crucible descends, and the small holes 12b crystallize soon. Next, the crystals in the small holes 12b serve as starting points, and the inside of the crucible 12 is crystallized. At this time, due to the thermal conductivity of the crucible material itself, the bottom surface 12a acts as a low-temperature surface with a substantially uniform temperature, and the bottom surface 13a acts as a high-temperature surface with a substantially uniform temperature. Temperature distribution is maintained. When the crystallization reaches the small hole 13b, it becomes a crystallization starting point, and the inside of the crucible is crystallized. In this manner, the crystallization is sequentially performed between the uppermost crucibles 15. Usually, the crystal in the crucible 11 at the lowermost end is crushed, and the crystal in the crucible above the crucible 12 is a product. Therefore, for example, when the crucible enters the cooling zone, the bottom surface 12a acts as a low-temperature surface with a substantially uniform temperature, the bottom surface 13a acts as a high-temperature surface with a substantially uniform temperature due to the thermal conductivity of the crucible material, and Since the heat radiation from the side surface is blocked by the effect of the heat insulating material 22, even if the diameter of the crystal melt becomes large, the temperature difference of the crystal melt in the crucible 12 in the radial direction is suppressed, and the isotherm is maintained in a substantially horizontal temperature distribution. You. Therefore, it is possible to produce a high-quality large-diameter fluorite single crystal.
[0018]
The materials of the heat insulating materials 21 to 25 have low thermal conductivity to the crucibles 11 to 15, for example, MgO, ceramic, metal mesh, heat-resistant refractory brick, porous carbon, Mo and MgO, Mo. And ceramic, and a material selected from each combination of Mo and metal mesh, which may be arbitrarily selected in consideration of the radius of the furnace and the thickness of the furnace in the longitudinal direction.
[0019]
In the case where there is no heat insulating means, an isotherm indicating the temperature of the melt appears in a form of drawing an upwardly projecting circular arc isotropically around the partition plate. As a result, the atomic arrangement was largely disturbed in the crystal, and it was difficult to obtain a high-performance large-diameter crystal. The phenomenon in which the isotherm appears convex upward is that heat is released from the inner wall of the furnace, and as a result, a temperature difference occurs between the vicinity of the inner wall of the furnace and the center of the partition plate. I can explain it.
[0020]
As a result of detailed studies by the present inventors, a preferred method of solving this problem is to maintain an isotherm indicating the melt temperature parallel to the partition. That is, by reducing the heat released from the inner wall of the furnace and releasing the heat mainly from the lower partition plate, it is possible to control the isotherm of the melt to have anisotropy along the partition plate. .
[0021]
(Second embodiment)
FIG. 2 is a schematic cross-sectional view of a crucible of a crystal manufacturing apparatus according to a second embodiment of the present invention. The second embodiment is a mode in which a space is provided on the cylindrical side surface of the crucible. 2, the crucible is composed of five disk-shaped crucibles 11 to 15 as in the apparatus of FIG. 1, and 31 to 35 are inner cylindrical wall portions provided inside the outer cylindrical wall of each disk-shaped crucible 11 to 15, 31a to 35a are cylindrical spaces formed between the outer cylindrical wall and the inner cylindrical wall. Raw materials are stored in the regions 41 to 45.
[0022]
In the second embodiment, a heat insulating effect is achieved by using a double cylindrical structure 31 to 35 as heat insulating means instead of the heat insulating materials 21 to 25 used in the first embodiment. By making the thickness of the space layers 31a to 35a thicker than the wall thickness of the inner cylindrical wall portions 31 to 35, the high thermal conductivity of the wall is lost, and at the same time, the large thermal insulation due to the very low thermal conductivity of the space The effect can be expected. Further, the inner cylindrical wall portions 31 to 35 can be processed as an integral body with the crucible.
[0023]
(Third embodiment)
FIG. 3 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a third embodiment of the present invention. In the third embodiment, a heat insulating material is provided on the crucible cylindrical surface, and the heat transfer members above and below the region for accommodating the raw materials are separated. In FIG. 3, the crucible is composed of five disk-shaped regions 41 to 45, 21 to 25 are heat insulators arranged on the inner cylindrical wall surfaces of the disk-shaped regions 41 to 45, and 51 to 56 are formed on the disk-shaped regions 41 to 45. It is a heat transfer member that forms the lower surfaces 51a to 56a and the outer cylindrical surface.
[0024]
In the configuration of FIG. 3, since each of the heat transfer members 51 to 56 is divided, the upper and lower heat conduction between the heat transfer members 51 to 56 is shut off. Therefore, for example, when the disc-shaped region 42 enters the cooling zone, the surface 52a has a uniform temperature at a low temperature surface due to the thermal conductivity of the heat transfer member 52, and the surface 53a has one surface due to the thermal conductivity of the heat transfer member 53. Although it acts as a high-temperature surface of similar temperature, heat conduction between the heat transfer members 52 and 53 is cut off, so that the surface 52 more reliably functions as a uniform low-temperature surface. Due to this and the effect of the heat insulating material 22 on the side surface, the latent heat during crystal growth can be reliably and uniformly released downward, and the crystal melt in the disk-shaped region 42 has a horizontal temperature distribution with isotherms. Maintained, it is possible to produce high-quality large-diameter fluorite single crystals.
[0025]
(Fourth embodiment)
FIG. 4 is a schematic sectional view of a crucible and a heater of a crystal manufacturing apparatus according to a fourth embodiment of the present invention. In the fourth embodiment, the heat transfer members in the third embodiment are provided with independent heaters. In FIG. 4, the crucible is the same as the apparatus of FIG. 3, and is composed of five disk-shaped regions 41 to 45. Heat transfer members that form the upper and lower surfaces 51a to 56a and the outer peripheral cylindrical surface of the regions 41 to 45. Reference numeral 26 denotes a heat insulator supporting the entire crucible and fixed to the base 50 of the apparatus. Reference numerals 61 to 66 denote independent heaters for heating the heat transfer members 51 to 56, respectively.
[0026]
In the configuration shown in FIG. 4, first, a current is supplied from a power source (not shown) to each of the heaters 61 to 66 to generate heat and maintain each crucible at a high temperature, thereby melting the raw materials. Next, the temperature of the surface 51a is lowered by stopping the energization of the lowermost heater 61 or reducing the current to reduce the temperature of the heater 61, and the crystallization is performed from the lower portion of the disk-shaped region 41. Let it. Similarly, by successively lowering the temperature between heaters 62 to 66, crystallization is performed sequentially between disk-shaped regions 42 to 45.
[0027]
The fourth embodiment shown in FIG. 4 differs from the embodiments of FIGS. 1, 2, 3, 5, and 6 in that the crucible is not moved in the course of crystallization, so that vibration that adversely affects crystal growth can be eliminated. In addition, the size of the apparatus can be reduced. Further, since the heaters 61 to 66 can independently control the temperature, in the process of crystallizing the disk-shaped regions 41 to 45, the surfaces 51a to 56a can be set as the low-temperature surface or the high-temperature surface, so that more precise temperature control can be performed. There is an advantage.
[0028]
【The invention's effect】
As described above, according to the present invention, in a simple method of providing heat insulation means on the side of the crucible, when cooling the crucible, suppress heat radiation from the side of the crucible, suppress the temperature difference in the radial direction, High quality large diameter crystals such as fluorite can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a second embodiment of the present invention.
FIG. 3 is a schematic sectional view of a crucible of a crystal manufacturing device according to a third embodiment of the present invention.
FIG. 4 is a schematic sectional view of a crucible and a heater of a crystal manufacturing apparatus according to a fourth embodiment of the present invention.
FIG. 5 is a schematic sectional view of a conventional one-chamber type crystal manufacturing apparatus.
FIG. 6 is a schematic sectional view of a conventional two-chamber type crystal manufacturing apparatus.
FIG. 7 is a schematic sectional view of a crucible of another type of conventional crystal manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crucible 2 Support rod 3 Heater
3b High-temperature furnace chamber 3c Low-temperature heater
4 Furnace body 4a Furnace chamber 4b High-temperature furnace chamber 4c Low-temperature furnace chamber 11-15 Disc-shaped crucible 12a-15a Bottom surface 12b-15b Small hole 16-19 Screw part 20 Support rod 21-26 Insulation material 31-35 Inner cylindrical part 31a-35a Space layers 41-45 Disk-shaped area 50 Bases 51-56 Heat transfer members 51a-56a Upper and lower surfaces 61-66 Heaters

Claims (13)

円筒形の坩堝中で熔融させた結晶性物質の原料を冷却することで結晶化させる結晶製造装置において、前記坩堝は、前記原料を収容する領域の上下に設けられた仕切り板と、円筒側面に設けられた断熱手段とを有することを特徴とする結晶製造装置。In a crystal manufacturing apparatus for crystallizing by cooling a raw material of a crystalline substance melted in a cylindrical crucible, the crucible has partition plates provided above and below a region for accommodating the raw material, and a cylindrical side surface. A crystal manufacturing apparatus, comprising: a heat insulating means provided. 前記断熱手段は、断熱部材である請求項1記載の結晶製造装置。The crystal manufacturing apparatus according to claim 1, wherein the heat insulating means is a heat insulating member. 前記断熱手段は、多重構造とされた坩堝内壁と、それにより形成された空間とを有する請求項1記載の結晶製造装置。2. The crystal manufacturing apparatus according to claim 1, wherein the heat insulating means has a crucible inner wall having a multi-layer structure and a space formed by the inner wall. 前記断熱部材は、前記仕切り板より熱伝導率の小さな材料から成る円筒状の部材であることを特徴とする請求項2記載の結晶製造装置。The crystal manufacturing apparatus according to claim 2, wherein the heat insulating member is a cylindrical member made of a material having a lower thermal conductivity than the partition plate. 前記断熱部材は、MgO、セラミック、金属メッシュ、耐熱耐火煉瓦、多孔質カ−ボンから選択される材料からなる請求項2記載の結晶製造装置。3. The crystal manufacturing apparatus according to claim 2, wherein the heat insulating member is made of a material selected from MgO, ceramic, metal mesh, heat-resistant refractory brick, and porous carbon. 前記断熱手段は、MoとMgO、Moとセラミック、Moと金属メッシュの各組み合わせから選択される材料からなる請求項2記載の結晶製造装置。The crystal manufacturing apparatus according to claim 2, wherein the heat insulating means is made of a material selected from a combination of Mo and MgO, Mo and ceramic, and Mo and metal mesh. 前記領域の底面は、実質的に平坦である請求項1記載の結晶製造装置。The crystal manufacturing apparatus according to claim 1, wherein a bottom surface of the region is substantially flat. 前記坩堝は、前記領域を唯一有している請求項1記載の結晶製造装置。The crystal manufacturing apparatus according to claim 1, wherein the crucible has only one of the regions. 前記坩堝は、前記仕切り板を3つ以上有し、前記領域を複数有している請求項1記載の結晶製造装置。The crystal manufacturing apparatus according to claim 1, wherein the crucible has three or more partition plates and has a plurality of the regions. 前記仕切り板の少なくとも1つは、中央に孔を有し、該孔を介して上下の前記領域が連通している請求項9記載の結晶製造装置。The crystal manufacturing apparatus according to claim 9, wherein at least one of the partition plates has a hole in the center, and the upper and lower regions communicate with each other through the hole. 前記仕切り板を加熱するためのヒ−タ−を有する請求項1記載の結晶製造装置。The crystal manufacturing apparatus according to claim 1, further comprising a heater for heating the partition plate. 円筒形の前記坩堝中で熔融させた結晶性物質の原料を冷却することで結晶化させる結晶製造方法において、上下に仕切り板が設けられ、円筒側面に断熱手段が設けられている該坩堝を下方から徐々に冷却して前記原料を結晶化させることを特徴とする結晶製造方法。In a crystal production method for crystallizing by cooling a raw material of a crystalline substance melted in the cylindrical crucible, a partition plate is provided on the upper and lower sides, and the crucible provided with heat insulating means on the side of the cylinder is moved downward. A crystallization of the raw material by gradually cooling the raw material. 前記結晶性物質は蛍石である請求項12記載の結晶製造方法。The method for producing a crystal according to claim 12, wherein the crystalline substance is fluorite.
JP24044496A 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method Expired - Fee Related JP3542444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24044496A JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24044496A JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
JPH1087391A JPH1087391A (en) 1998-04-07
JP3542444B2 true JP3542444B2 (en) 2004-07-14

Family

ID=17059594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24044496A Expired - Fee Related JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP3542444B2 (en)

Also Published As

Publication number Publication date
JPH1087391A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JP2003501339A (en) Crystal growth and annealing method and apparatus
KR20110027593A (en) Equipment for growing sapphire single crystal
KR101767268B1 (en) Apparatus for producing sapphire single crystal
JP2004262742A (en) Method for growing oriented calcium fluoride single crystal
JP3988217B2 (en) Large-diameter fluorite manufacturing apparatus and manufacturing method
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP2004224692A (en) Method for growing crystal
JP4147595B2 (en) Method for producing fluorite single crystal
JP3542444B2 (en) Crystal manufacturing apparatus and method
JP2006219352A (en) Apparatus and method for manufacturing single crystal
JPH10101484A (en) Crystal production apparatus and method thereof
JP3725280B2 (en) Fluorite single crystal manufacturing apparatus and manufacturing method
KR100428699B1 (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
JP4017863B2 (en) Annealing furnace and method for producing optical synthetic quartz glass
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
JPH1192269A (en) Apparatus for producing crystal and production
JPH11292696A (en) Fluorite production unit
JP2005035824A (en) Fluoride crystal growth equipment
JP2006117442A (en) Method and apparatus for producing single crystal
JP3797643B2 (en) Crystal production equipment
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
US11913133B2 (en) Method of manufacturing polycrystalline silicon ingot using a crucible in which an oxygen exhaust passage is formed by single crystal or polycrystalline rods
JPH1192268A (en) Apparatus for producing crystal and production
JP2002326893A (en) Crystal manufacturing equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees