JPH1087391A - Crystallizer and its method - Google Patents

Crystallizer and its method

Info

Publication number
JPH1087391A
JPH1087391A JP24044496A JP24044496A JPH1087391A JP H1087391 A JPH1087391 A JP H1087391A JP 24044496 A JP24044496 A JP 24044496A JP 24044496 A JP24044496 A JP 24044496A JP H1087391 A JPH1087391 A JP H1087391A
Authority
JP
Japan
Prior art keywords
crucible
heat insulating
crystal
manufacturing apparatus
crystal manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24044496A
Other languages
Japanese (ja)
Other versions
JP3542444B2 (en
Inventor
Shuichi Yabu
修一 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24044496A priority Critical patent/JP3542444B2/en
Publication of JPH1087391A publication Critical patent/JPH1087391A/en
Application granted granted Critical
Publication of JP3542444B2 publication Critical patent/JP3542444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a crystallizer of simple structure capable of producing a high-quality and large-diameter crystal in the crystal producing device for cooling a cryatallizable raw material melted in a cylindrical crucible to crystallize it by providing a heat insulating means on the inner cylindrical face of the crucible to interupt the heat radiated from the side face of the crucible in the crucible cooling region and suppressing the temp. difference in the radial direction. SOLUTION: A crystallizable raw material is melted in a cylindrical crucible, cooled and crystallized in the crystollizer. The crucible consists of the five discoid crucibles 11 to 15 each having a cylindrical side wall connected through threaded parts 16 to 19 and has a partition plate above and below the regions 41 to 45 contg. the crystallizable raw material and in which the material is melted and crystallized and the heat insulating means 21 to 26 provided with the cylindrical side face. Heat insulating members 21 to 26 are preferably used as the heat insulating means 21 to 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレンズ等の光学部材
に用いられる石英、蛍石等の結晶材料(硝材)を製造す
る為の結晶製造装置、及び結晶製造方法に関するもので
ある。
The present invention relates to a crystal manufacturing apparatus and a crystal manufacturing method for manufacturing a crystal material (glass material) such as quartz or fluorite used for an optical member such as a lens.

【0002】[0002]

【従来の技術】光学部材は、望遠鏡、カメラ、あるいは
半導体集積回路製造用の露光装置等に用いられてる。と
りわけ、露光装置では高品質の光学部材が望まれてい
る。近年、半導体集積回路の高集積化にともない、超微
細パタ−ン形成への要求がますます高まっている。微細
パタ−ンをウェハ上に転写する装置としては、ステップ
・アンド・リピ−ト方式の縮小投影小型露光装置(ステ
ッパ−)が多用されている。高集積化するためには、ス
テッパ−投影レンズの解像度を上げる必要がある。そし
て、投影レンズの解像力を上げるには、短波長の露光光
を用い、投影レンズの開口数を大きく(大口径化)する
必要がある。
2. Description of the Related Art Optical members are used in telescopes, cameras, exposure apparatuses for manufacturing semiconductor integrated circuits, and the like. In particular, a high quality optical member is desired for an exposure apparatus. 2. Description of the Related Art In recent years, with the increase in the degree of integration of semiconductor integrated circuits, there has been an increasing demand for forming ultra-fine patterns. As an apparatus for transferring a fine pattern onto a wafer, a step-and-repeat type reduced projection small exposure apparatus (stepper) is frequently used. For high integration, it is necessary to increase the resolution of the stepper-projection lens. In order to increase the resolving power of the projection lens, it is necessary to increase the numerical aperture (increase the aperture) of the projection lens by using exposure light having a short wavelength.

【0003】又、露光光の短波長化は、g線(波長43
6nm)、i線(波長365nm)と進んできており、
今後は、KrFエキシマレ−ザ−光(波長248n
m)、ArFエキシマレ−ザ−光(波長193nm)の
使用が有望視されている。i線までの波長域では、光学
系に従来の光学レンズを使用することが可能であった
が、KrF、ArF各エキシマレ−ザ−光の波長域で
は、透過率が低く、従来の光学ガラスを使用することは
不可能である。このため、エキシマレ−ザ−露光装置の
光学系には、短波長光の透過率が高い石英ガラスまたは
蛍石を使用するのが一般的になっている。光学系の色収
差補正のためには、屈折率の異なる2つ以上の硝材があ
ることが望ましい。
[0003] In addition, shortening the wavelength of exposure light is achieved by using g-line (wavelength 43 nm).
6 nm) and i-line (wavelength 365 nm)
In the future, KrF excimer laser light (wavelength 248 n
m), the use of ArF excimer laser light (wavelength 193 nm) is considered promising. In the wavelength range up to the i-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of KrF and ArF excimer laser light, the transmittance was low, and conventional optical glass was used. It is impossible to use. For this reason, it is common to use quartz glass or fluorite, which has a high transmittance for short-wavelength light, in the optical system of the excimer laser exposure apparatus. In order to correct the chromatic aberration of the optical system, it is desirable to have two or more glass materials having different refractive indexes.

【0004】また、ステッパ−投影レンズを構成する各
レンズは、極限の面精度で研磨されるが、多結晶になっ
ていると結晶方位によって研磨速度が異なるため、レン
ズの面精度を確保することが困難になる。更に多結晶の
場合には、結晶界面に不純物が偏析し易く、屈折率の均
一性を損ねたり、レ−ザ−照射により蛍光を発したりす
る。
Further, each lens constituting a stepper-projection lens is polished with an extreme surface precision. However, if the crystal is polycrystalline, the polishing speed differs depending on the crystal orientation. Becomes difficult. Further, in the case of polycrystal, impurities are easily segregated at the crystal interface, which impairs the uniformity of the refractive index and emits fluorescence by laser irradiation.

【0005】このような理由で、エキシマレ−ザ−露光
装置の投影レンズでは、大口径の単結晶蛍石が望まれて
いる。
For these reasons, a large diameter single crystal fluorite is desired for a projection lens of an excimer laser exposure apparatus.

【0006】例えば、蛍石は従来、坩堝降下法(ブリッ
ジマン法)で製造されており、その製造装置には図5に
示す1室タイプと図6に示す2室タイプ(米国特許2、
214、976参照)がある。
For example, fluorite is conventionally manufactured by a crucible descent method (Bridgeman method), and its manufacturing apparatus includes a one-chamber type shown in FIG. 5 and a two-chamber type shown in FIG.
214, 976).

【0007】図5は、従来の1室タイプの蛍石製造装置
の1例を模式的に示す断面図である。この装置は、主と
して、炉室4aを形成する炉本体4と炉室内に配置され
たグラファイト製の側面ヒ−タ−3とで構成される。炉
本体4の底を貫いて、坩堝支持棒2の上部が炉室4aに
達し、この支持棒2の上端に坩堝1が取りつけられる。
この坩堝1に原料を入れ、炉内を真空にし、炉温を蛍石
の融点以上、通常摂氏1390〜1450度まで上げ、
熔融する。結晶成長させる時は、0.1〜5mm/時ぐ
らいの速度で坩堝1を降下させ、下部の方から結晶化さ
せていく。
FIG. 5 is a sectional view schematically showing one example of a conventional one-chamber type fluorite manufacturing apparatus. This apparatus is mainly composed of a furnace main body 4 forming a furnace chamber 4a and a graphite side heater-3 arranged in the furnace chamber. The upper part of the crucible support rod 2 reaches the furnace chamber 4a through the bottom of the furnace main body 4, and the crucible 1 is attached to the upper end of the support rod 2.
The raw material is put into the crucible 1, the inside of the furnace is evacuated, and the furnace temperature is raised to the melting point of fluorite or more, usually to 1390 to 1450 degrees Celsius,
Melt. When growing a crystal, the crucible 1 is lowered at a speed of about 0.1 to 5 mm / hour and crystallized from the lower part.

【0008】図6に示す2室タイプは、炉内の温度分布
を調整可能にするために開発されたものである。図5、
6両面の左側のグラフは、炉の中心部の鉛直方向に沿っ
た温度を示すが、1室タイプでは炉の中心に沿った温度
分布が、図5左側に示すように1つ山型となるのに対
し、2室タイプでは図6左側に示すように2つ山型とな
る。
The two-chamber type shown in FIG. 6 has been developed to make it possible to adjust the temperature distribution in the furnace. FIG.
6 The left graph on both sides shows the temperature along the vertical direction at the center of the furnace. In the case of the one-chamber type, the temperature distribution along the center of the furnace becomes one mountain shape as shown on the left side of FIG. On the other hand, the two-chamber type has two mountain shapes as shown on the left side of FIG.

【0009】高品質の単結晶を作るには、結晶速度を遅
くする、坩堝内面を滑らかに仕上げる、結晶起点を坩堝
最下端の一点にするなど、幾つかの配慮すべき点があ
る。本発明者の知見によれば、結晶融液の温度分布で、
等温線をできるだけ水平に保つことが重要である。図5
や、図6のようなの装置では、大口径に伴い、結晶融液
の炉壁近傍と中心部との間に温度差が生じ、温度分布の
制御が困難になる。その対策として炉液の上部または下
部にヒ−タ−を付加し温度制御する装置が提案されてい
る(特開平4−349198、特開平4−349199
参照)。しかしながら、こうした装置は、その構造が複
雑になる。そこで単純な方法として、坩堝の構造を工夫
し、結晶融液の温度分布の改良を図ったものに、図7に
示すような装置がある(チェレドフ・V・N.,ニェオ
ルガニ−チェスキ−マテリアル ,No.3,vol.
28,(1992),pp550−553)。
In order to produce a high quality single crystal, there are several points to be taken into consideration, such as reducing the crystal rate, smoothing the inner surface of the crucible, and setting the starting point of the crystal at one point at the lowermost end of the crucible. According to the findings of the present inventors, the temperature distribution of the crystal melt,
It is important to keep the isotherm as horizontal as possible. FIG.
In addition, in the apparatus as shown in FIG. 6, a temperature difference is generated between the vicinity of the furnace wall of the crystal melt and the central portion due to the large diameter, and it becomes difficult to control the temperature distribution. As a countermeasure, a device has been proposed in which a heater is added to the upper or lower part of the furnace liquid to control the temperature (JP-A-4-349198, JP-A-4-349199).
reference). However, such devices have a complicated structure. Therefore, as a simple method, a device as shown in FIG. 7 is used in which the structure of the crucible is devised to improve the temperature distribution of the crystal melt (Cheredov V.N., Nieorgany-Cesky Material, No. 3, vol.
28, (1992), pp 550-553).

【0010】図7において、坩堝は5つの坩堝(11〜
15)からなり、ネジ部(16〜19)により連結され
ている。各坩堝12〜15の底面12a〜15aは、上
下の坩堝の仕切り板になっており、その中央には小孔1
2b〜15bが開けてある。20は支持棒である。
In FIG. 7, the crucible has five crucibles (11 to 11).
15) and are connected by screw portions (16 to 19). The bottom surfaces 12a to 15a of the crucibles 12 to 15 serve as partition plates for upper and lower crucibles.
2b to 15b are open. Reference numeral 20 denotes a support bar.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、本発明
者が詳しく検討した結果、上記図7の従来例でも、最近
要求されるような大口径(例えば直径250mm以上)
の結晶になると、坩堝を冷却する領域での、坩堝側壁か
らの放熱による半径方向の温度差が無視できなくなり、
高品質の大口径の結晶蛍石は得にくいことが判明した。
However, as a result of a detailed study by the present inventor, the conventional example shown in FIG. 7 has a large diameter (for example, a diameter of 250 mm or more) recently required.
In the region where the crucible is cooled, the temperature difference in the radial direction due to heat radiation from the side wall of the crucible cannot be ignored,
It has been found that high quality large diameter fluorite is difficult to obtain.

【0012】本発明の目的は、高品質の大口径の結晶を
製造できる、構造の簡単な結晶製造装置、及び方法を提
供することにある。
An object of the present invention is to provide an apparatus and a method for producing a crystal having a simple structure capable of producing a high-quality large-diameter crystal.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決し、上
述した目的を達成するために、本発明は、円筒形の坩堝
中で熔融させた結晶性物質の原料を冷却することで結晶
化させる結晶製造装置において、前記坩堝は、前記原料
を収容する領域の上下に設けられた仕切り板と、円筒側
面に設けられた断熱手段とを有することを特徴とする結
晶製造装置、および結晶成長方法を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems and to achieve the above-mentioned object, the present invention provides a method of crystallization by cooling a raw material of a crystalline substance melted in a cylindrical crucible. A crucible having a partition plate provided above and below a region for accommodating the raw materials, and heat insulating means provided on a cylindrical side surface, and a crystal growing method. I will provide a.

【0014】(作用)本発明によれば、坩堝の内側円筒
面に断熱手段を設けたことにより、坩堝を冷却する領域
での、坩堝側面からの放熱が遮断され、半径方向の温度
差が抑えられて、良質な大口径の結晶の製造が可能とな
る。
(Operation) According to the present invention, the heat insulation from the side surface of the crucible in the region for cooling the crucible is blocked by providing the heat insulating means on the inner cylindrical surface of the crucible, and the temperature difference in the radial direction is suppressed. As a result, it is possible to produce high-quality large-diameter crystals.

【0015】[0015]

【発明の実施の形態】 (第一の実施の形態)図1は、本発明の第一の実施例に
かかわる結晶製造装置の坩堝の模式的な断面図である。
第一の実施の形態は、坩堝円筒面に断熱材を有する形態
である。図1において、坩堝は5つの円筒状の側壁を持
つディスク状の坩堝11〜15からなり、結晶物質の原
料を収容し、熔融し結晶化させる領域41〜45を形成
している。そして、各ディスク状の坩堝11〜15は、
ネジ部16〜19により連結されている。各ディスク状
坩堝12〜15の下の底面12a〜15aは、上下の領
域間の仕切り板からなり、その仕切り板の中央には小孔
12b〜15bが開けてある。20は坩堝全体を支える
支持棒、21〜25は領域11〜15の円筒状側面の内
側に設けられた断熱手段である。
(First Embodiment) FIG. 1 is a schematic cross-sectional view of a crucible of a crystal manufacturing apparatus according to a first embodiment of the present invention.
The first embodiment is a mode in which a heat insulating material is provided on the crucible cylindrical surface. In FIG. 1, the crucible is composed of disk-shaped crucibles 11 to 15 having five cylindrical side walls, and forms regions 41 to 45 for accommodating a crystal material and melting and crystallizing. And each disk-shaped crucible 11-15,
They are connected by screw portions 16 to 19. The bottom surfaces 12a to 15a below each of the disk-shaped crucibles 12 to 15 are composed of a partition plate between upper and lower regions, and small holes 12b to 15b are formed in the center of the partition plate. Reference numeral 20 denotes a support rod for supporting the entire crucible, and reference numerals 21 to 25 denote heat insulating means provided inside the cylindrical side surfaces of the regions 11 to 15.

【0016】図1の構成において、結晶化の過程は次の
ように説明できる。
In the structure shown in FIG. 1, the crystallization process can be explained as follows.

【0017】各坩堝11〜15に原料を入れ熔融する。
坩堝を降下させると、まず最下端の坩堝11の下部から
結晶化が始まる。坩堝が降下するに従い結晶化が進み、
やがて小孔12bが結晶化する。次に、この小孔12b
内の結晶が起点となり、坩堝12内が結晶化していく。
この時、坩堝材自体の熱伝導性により、底面12aがほ
ぼ一様温度の低温面、底面13aがほぼ一様温度の高温
面として作用し、坩堝12内の結晶融液は等温線がほぼ
水平な温度分布に維持される。結晶化が小孔13bに達
すると、それが結晶起点となり、坩堝内が結晶化してい
く。このようにして順次最上端の坩堝15間で結晶化さ
せる。なお、通常最下端の坩堝11内の結晶はダミ−と
され、坩堝12から上の坩堝内の結晶が製品とされる。
そこで、例えば、坩堝が冷却ゾ−ンに入った時、坩堝材
の熱伝導性により、底面12aがほぼ一様温度の低温
面、底面13aがほぼ一様温度の高温面として作用し、
かつ、断熱材22の効果により側面からの放熱が遮断さ
れるため、大口径になっても坩堝12内の結晶融液は半
径方向の温度差が抑えられて等温線がほぼ水平な温度分
布に維持される。したがって、良質な大口径の蛍石単結
晶の製造が可能となる。
The raw materials are put into each of the crucibles 11 to 15 and melted.
When the crucible is lowered, crystallization starts first from the lower part of the crucible 11 at the lowermost end. As the crucible descends, crystallization proceeds,
Eventually, the small holes 12b crystallize. Next, this small hole 12b
The inside of the crucible 12 becomes a starting point, and the inside of the crucible 12 is crystallized.
At this time, due to the thermal conductivity of the crucible material itself, the bottom surface 12a acts as a low-temperature surface with a substantially uniform temperature, and the bottom surface 13a acts as a high-temperature surface with a substantially uniform temperature. Temperature distribution is maintained. When the crystallization reaches the small holes 13b, it becomes the starting point of crystallization, and the inside of the crucible is crystallized. In this manner, crystallization is sequentially performed between the crucibles 15 at the uppermost end. Normally, the crystal in the crucible 11 at the lowermost end is made to be dummy, and the crystal in the crucible above the crucible 12 is made to be a product.
Therefore, for example, when the crucible enters the cooling zone, the bottom surface 12a acts as a low-temperature surface with a substantially uniform temperature and the bottom surface 13a acts as a high-temperature surface with a substantially uniform temperature due to the thermal conductivity of the crucible material.
In addition, since the heat radiation from the side surface is blocked by the effect of the heat insulating material 22, even if the diameter of the crystal melt becomes large, the temperature difference in the radial direction of the crystal melt in the crucible 12 is suppressed, and the isotherm has a substantially horizontal temperature distribution. Will be maintained. Therefore, it is possible to produce a high-quality large-diameter fluorite single crystal.

【0018】なお、断熱材21〜25の材料は、坩堝1
1〜15に対して熱伝導率が小さいもの、例えば、Mg
O、セラミック、金属メッシュ、耐熱耐火煉瓦、多孔質
カ−ボンや、MoとMgO、Moとセラミック、Moと
金属メッシュの各組み合わせから選択される材料である
が、これを、炉の半径、炉の縦方向の厚さを考慮に入れ
て任意に選択すれば良い。
The material of the heat insulators 21 to 25 is the crucible 1
1 to 15 having a low thermal conductivity, for example, Mg
O, ceramic, metal mesh, heat-resistant refractory brick, porous carbon, and a combination of Mo and MgO, Mo and ceramic, and Mo and metal mesh. May be arbitrarily selected in consideration of the thickness in the vertical direction.

【0019】断熱手段がない場合は、融液温度を示す等
温線が仕切り板を中心に等方の放射状に上に凸の円弧を
描く形で現れる。その結果、結晶体中に原子配列の乱れ
が大きく生じ、高性能の大口径結晶体を得ることが難し
かった。このように等温線が上に凸に現れる現象は、熱
が炉の内側壁から放出し、その結果、融液温度は、炉の
内側壁近傍と仕切り板中心部との間で温度差が生じる為
と説明できる。
In the case where there is no heat insulating means, an isotherm indicating the temperature of the melt appears in a form of drawing an upwardly projecting circular arc isotropically around the partition plate. As a result, the atomic arrangement was largely disturbed in the crystal, and it was difficult to obtain a high-performance large-diameter crystal. The phenomenon in which the isotherms appear convex upward is that heat is released from the inner wall of the furnace, and as a result, a temperature difference occurs between the vicinity of the inner wall of the furnace and the center of the partition plate. Can be explained.

【0020】本発明者が詳しく検討した結果、この問題
を解決する好適な方法は融液温度を示す等温線を仕切り
板に対して平行に維持することである。即ち、炉の内側
壁から放出される熱を減らし、主に下部の仕切り板から
熱を放出させることで、融液の等温線が仕切り板に沿っ
て異方性を持っように制御することできる。
As a result of detailed studies by the present inventors, a preferred method of solving this problem is to maintain an isotherm indicating the melt temperature parallel to the partition. That is, by reducing the heat released from the inner wall of the furnace and releasing the heat mainly from the lower partition plate, it is possible to control the isotherm of the melt to have anisotropy along the partition plate. .

【0021】(第二の実施の形態)図2は、本発明の第
二の実施の形態にかかわる結晶製造装置の坩堝の模式的
な断面図である。第二の実施の形態は、坩堝の円筒側面
に空間を有する形態である。図2において、図1の装置
同様に坩堝は5つのディスク状の坩堝11〜15からな
り、31〜35は各ディスク状の坩堝11〜15の外周
円筒壁の内側に設けた内側円筒壁部、31a〜35aは
外周円筒壁と内側円筒壁部との間に構成された円筒状の
空間である。原料は領域41〜45の中に収容する。
(Second Embodiment) FIG. 2 is a schematic cross-sectional view of a crucible of a crystal manufacturing apparatus according to a second embodiment of the present invention. The second embodiment is an embodiment having a space on the cylindrical side surface of the crucible. 2, the crucible is composed of five disk-shaped crucibles 11 to 15 as in the apparatus of FIG. 1, and 31 to 35 are inner cylindrical wall portions provided inside the outer peripheral cylindrical wall of each disk-shaped crucible 11 to 15, 31a to 35a are cylindrical spaces formed between the outer cylindrical wall and the inner cylindrical wall. The raw materials are stored in the regions 41 to 45.

【0022】第二の実施の形態では、第一の実施の形態
で用いたの断熱材21〜25の代わりに断熱手段として
二重円筒構造31〜35にすることにより断熱効果を図
っている。内側円筒壁部31〜35の壁厚より空間層3
1a〜35aの厚さを厚くすることで、壁が有する高い
熱伝導性が失われ、同時に、空間の有する非常に低い熱
伝導性により大きな断熱効果が期待できる。また、内側
円筒壁部31〜35は、坩堝との一体物として加工する
ことができる。
In the second embodiment, a heat insulating effect is achieved by using a double cylindrical structure 31 to 35 as heat insulating means instead of the heat insulating materials 21 to 25 used in the first embodiment. Space layer 3 from the wall thickness of the inner cylindrical wall portions 31 to 35
By increasing the thickness of 1a to 35a, the high thermal conductivity of the wall is lost, and at the same time, a large heat insulating effect can be expected due to the very low thermal conductivity of the space. Further, the inner cylindrical wall portions 31 to 35 can be processed as an integral body with the crucible.

【0023】(第三の実施の形態)図3は、本発明の第
三の実施の形態にかかわる結晶製造装置の坩堝の模式的
な断面図である。第三の実施の形態は、坩堝円筒面に断
熱材を設け、更に、原料を収容する領域の上下にある伝
熱部材を分断したものである。図3において、坩堝は5
つのディスク状領域41〜45からなり、21〜25は
ディスク状領域41〜45の内側円筒壁面に配置された
断熱材、51〜56はディスク状領域41〜45の上下
面51a〜56a及び外周円筒面をなす伝熱部材であ
る。
(Third Embodiment) FIG. 3 is a schematic cross-sectional view of a crucible of a crystal manufacturing apparatus according to a third embodiment of the present invention. In the third embodiment, a heat insulating material is provided on the crucible cylindrical surface, and the heat transfer members above and below the region for accommodating the raw materials are separated. In FIG. 3, the crucible is 5
The disk-shaped regions 41 to 45 are composed of two heat-insulating materials disposed on the inner cylindrical wall surface of the disk-shaped regions 41 to 45, and the upper and lower surfaces 51a to 56a and the outer peripheral cylinder of the disk-shaped regions 41 to 45 are provided. A heat transfer member that forms a surface.

【0024】図3の構成において、各伝熱部材51〜5
6は分断されているために、伝熱部材51〜56間の上
下の熱伝導が遮断される。したがって、例えば、ディス
ク状領域42が冷却ゾ−ンに入った時、伝熱部材52の
熱伝導性により面52aが一様温度の低温面、伝熱部材
53の熱伝導性により面53aが一様温度の高温面とし
て作用するが、伝熱部材52、53間の熱伝導が遮断さ
れるため、面52はより確実に一様低温面として機能す
る。これと、側面の断熱材22の効果により、結晶成長
時の潜熱を確実に、かつ一様に下方に逃すことができ、
ディスク状領域42内の結晶融液は等温線が水平な温度
分布に維持され、良質な大口径蛍石単結晶の製造が可能
となる。
In the configuration of FIG. 3, each of the heat transfer members 51-5
6 is cut off, so that the upper and lower heat conduction between the heat transfer members 51 to 56 is shut off. Therefore, for example, when the disk-shaped region 42 enters the cooling zone, the surface 52a has a uniform low temperature surface due to the thermal conductivity of the heat transfer member 52, and the surface 53a has one surface due to the thermal conductivity of the heat transfer member 53. Although it acts as a high-temperature surface of similar temperature, heat conduction between the heat transfer members 52 and 53 is cut off, so that the surface 52 more reliably functions as a uniform low-temperature surface. By this and the effect of the heat insulating material 22 on the side surface, the latent heat at the time of crystal growth can be surely and uniformly released downward,
The crystal melt in the disk-shaped region 42 is maintained at a temperature distribution in which the isotherm is horizontal, and a high-quality large-diameter fluorite single crystal can be manufactured.

【0025】(第四の実施の形態)図4は、本発明の第
四の実施の形態にかかわる結晶製造装置の坩堝とヒ−タ
−の模式的な断面図である。第四の実施の形態は、第三
の実施の形態中の伝熱部材にそれぞれ独立したヒ−タ−
を設けた形態である。図4において、坩堝は図3の装置
と同じで5つのディスク状領域41〜45からなり、2
1〜25はディスク状領域41〜45の内側円筒面を形
成する断熱材、51〜56はディスク状領域41〜45
の上下面51a〜56a及び外周円筒面を形成する伝熱
部材である。26は坩堝全体を支持し、装置の基台50
に固定する断熱材、61〜66はそれぞれ伝熱部材51
〜56を加熱する独立したヒ−タ−である。
(Fourth Embodiment) FIG. 4 is a schematic sectional view of a crucible and a heater of a crystal manufacturing apparatus according to a fourth embodiment of the present invention. In the fourth embodiment, the heat transfer members in the third embodiment are provided with independent heaters.
Is provided. In FIG. 4, the crucible consists of five disk-shaped regions 41 to 45 as in the apparatus of FIG.
1 to 25 are heat insulating materials forming the inner cylindrical surface of the disc-shaped areas 41 to 45, and 51 to 56 are disc-shaped areas 41 to 45.
Is a heat transfer member that forms the upper and lower surfaces 51a to 56a and the outer peripheral cylindrical surface. 26 supports the entire crucible and supports the base 50 of the apparatus.
The heat insulators 61 to 66 are fixed to the heat transfer members 51, respectively.
An independent heater for heating ~ 56.

【0026】図4の構成において、まず、各ヒ−タ−6
1〜66に不図示の電源より電流を供給し、通電発熱さ
せて高温に各坩堝を維持し、原料を熔融する。次に、最
下部のヒ−タ−61の通電を止めるか、電流を小さくし
てヒ−タ−61の温度を下げることにより、面51aの
温度を下げ、ディスク状領域41の下部から結晶化させ
る。同様にして、ヒ−タ−62から66間で順次温度を
下げることにより、ディスク状領域42から45間で順
に結晶化させる。
In the configuration shown in FIG. 4, first, each heater 6
An electric current is supplied from a power supply (not shown) to 1 to 66, and the crucibles are maintained at a high temperature by energizing and generating heat to melt the raw materials. Next, by stopping the current supply to the lowermost heater 61 or reducing the current to lower the temperature of the heater 61, the temperature of the surface 51a is lowered, and the crystallization starts from the lower part of the disk-shaped region 41. Let it. Similarly, by sequentially lowering the temperature between heaters 62 to 66, crystallization is sequentially performed between disk-shaped regions 42 to 45.

【0027】図4に表す第四の実施の形態は、図1、
2、3、5、6の実施形態と異なり、結晶化の過程で坩
堝を動かさないので結晶成長に悪影響を及ぼす振動を無
くすことができ、かつ、装置の小型化が実現できる。ま
た、ヒ−タ−61〜66は独立に温度制御可能なので、
各ディスク状領域41〜45を結晶化する過程で、面5
1a〜56aを低温面あるいは高温面として、よりきめ
細かな温度制御ができるという利点がある。
The fourth embodiment shown in FIG.
Unlike the second, third, fifth, and sixth embodiments, the crucible is not moved during the crystallization process, so that vibration that adversely affects crystal growth can be eliminated, and the apparatus can be downsized. Also, since the heaters 61 to 66 can be independently temperature controlled,
In the process of crystallizing each of the disk-shaped regions 41 to 45, the surface 5
There is an advantage that finer temperature control can be performed by setting 1a to 56a as a low temperature surface or a high temperature surface.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
坩堝の側面に断熱手段を設けるという簡単な方法で、坩
堝を冷却する際に坩堝側面からの放熱を抑制し、半径方
向の温度差を抑えて、良質な大口径の蛍石等の結晶を製
造できる。
As described above, according to the present invention,
A simple method of providing heat insulation means on the side of the crucible, which suppresses heat radiation from the side of the crucible when cooling the crucible, suppresses the temperature difference in the radial direction, and produces high-quality large-diameter fluorite crystals. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態に係る結晶製造装置の
坩堝の模式的な断面図である。
FIG. 1 is a schematic sectional view of a crucible of a crystal manufacturing device according to a first embodiment of the present invention.

【図2】本発明の第二の実施形態に係る結晶製造装置の
坩堝の模式的な断面図である。
FIG. 2 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a second embodiment of the present invention.

【図3】本発明の第三の実施形態に係る結晶製造装置の
坩堝の模式的な断面図である。
FIG. 3 is a schematic sectional view of a crucible of a crystal manufacturing apparatus according to a third embodiment of the present invention.

【図4】本発明の第四の実施形態に係る結晶製造装置の
坩堝とヒ−タ−の模式的な断面図である。
FIG. 4 is a schematic sectional view of a crucible and a heater of a crystal manufacturing apparatus according to a fourth embodiment of the present invention.

【図5】従来の1室タイプの結晶製造装置の模式的な断
面図である。
FIG. 5 is a schematic cross-sectional view of a conventional one-chamber type crystal manufacturing apparatus.

【図6】従来の2室タイプの結晶製造装置の模式的な断
面図である。
FIG. 6 is a schematic sectional view of a conventional two-chamber type crystal manufacturing apparatus.

【図7】従来の別のタイプの結晶製造装置の坩堝の模式
的な断面図である。
FIG. 7 is a schematic cross-sectional view of a crucible of another type of conventional crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 坩堝 2 支持棒 3 ヒ−タ− 3b 高温側炉室 3c 低温側ヒ−タ− 4 炉本体 4a 炉室 4b 高温側炉室 4c 低温側炉室 11〜15 ディスク状坩堝 12a〜15a 底面 12b〜15b 小孔 16〜19 ネジ部 20 支持棒 21〜26 断熱材 31〜35 内側円筒部 31a〜35a 空間層 41〜45 ディスク状領域 50 基台 51〜56 伝熱部材 51a〜56a 上下面 61〜66 ヒ−タ− DESCRIPTION OF SYMBOLS 1 Crucible 2 Support rod 3 Heater 3b High-temperature furnace room 3c Low-temperature heater 4 Furnace main body 4a Furnace room 4b High-temperature furnace room 4c Low-temperature furnace room 11-15 Disk-shaped crucible 12a-15a Bottom surface 12b- 15b Small hole 16-19 Screw part 20 Support rod 21-26 Heat insulating material 31-35 Inner cylindrical part 31a-35a Space layer 41-45 Disk-shaped area 50 Base 51-56 Heat transfer member 51a-56a Upper and lower surfaces 61-66 Heater

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 円筒形の坩堝中で熔融させた結晶性物質
の原料を冷却することで結晶化させる結晶製造装置にお
いて、前記坩堝は、前記原料を収容する領域の上下に設
けられた仕切り板と、円筒側面に設けられた断熱手段と
を有することを特徴とする結晶製造装置。
1. A crystal manufacturing apparatus for crystallizing a crystalline material melted in a cylindrical crucible by cooling the material, wherein the crucible includes partition plates provided above and below a region for accommodating the material. And a heat insulating means provided on a side surface of the cylinder.
【請求項2】 前記断熱手段は、断熱部材である請求項
1記載の結晶製造装置。
2. The crystal manufacturing apparatus according to claim 1, wherein said heat insulating means is a heat insulating member.
【請求項3】 前記断熱手段は、多重構造とされた坩堝
内壁と、それにより形成された空間とを有する請求項1
記載の結晶製造装置。
3. The heat insulating means has an inner wall of a crucible having a multi-layer structure and a space formed by the inner wall.
The crystal manufacturing apparatus according to the above.
【請求項4】 前記断熱部材は、前記仕切り板より熱伝
導率の小さな材料から成る円筒状の部材であることを特
徴とする請求項2記載の結晶製造装置。
4. The crystal manufacturing apparatus according to claim 2, wherein said heat insulating member is a cylindrical member made of a material having a lower thermal conductivity than said partition plate.
【請求項5】 前記断熱部材は、MgO、セラミック、
金属メッシュ、耐熱耐火煉瓦、多孔質カ−ボンから選択
される材料からなる請求項2記載の結晶製造装置。
5. The heat insulating member is made of MgO, ceramic,
3. The crystal manufacturing apparatus according to claim 2, comprising a material selected from a metal mesh, a heat-resistant refractory brick, and a porous carbon.
【請求項6】 前記断熱手段は、MoとMgO、Moと
セラミック、Moと金属メッシュの各組み合わせから選
択される材料からなる請求項2記載の結晶製造装置。
6. The crystal manufacturing apparatus according to claim 2, wherein said heat insulating means is made of a material selected from a combination of Mo and MgO, Mo and ceramic, and Mo and metal mesh.
【請求項7】 前記領域の底面は、実質的に平坦である
請求項1記載の結晶製造装置。
7. The crystal manufacturing apparatus according to claim 1, wherein a bottom surface of the region is substantially flat.
【請求項8】 前記坩堝は、前記領域を唯一有している
請求項1記載の結晶製造装置。
8. The crystal manufacturing apparatus according to claim 1, wherein the crucible has only one of the regions.
【請求項9】 前記坩堝は、前記仕切り板を3つ以上有
し、前記領域を複数有している請求項1記載の結晶製造
装置。
9. The crystal manufacturing apparatus according to claim 1, wherein the crucible has three or more partition plates and has a plurality of the regions.
【請求項10】 前記仕切り板の少なくとも1つは、中
央に孔を有し、該孔を介して上下の前記領域が連通して
いる請求項9記載の結晶製造装置。
10. The crystal manufacturing apparatus according to claim 9, wherein at least one of the partition plates has a hole in the center, and the upper and lower regions communicate with each other via the hole.
【請求項11】 前記仕切り板を加熱するためのヒ−タ
−を有する請求項1記載の結晶製造装置。
11. The crystal production apparatus according to claim 1, further comprising a heater for heating said partition plate.
【請求項12】 円筒形の前記坩堝中で熔融させた結晶
性物質の原料を冷却することで結晶化させる結晶製造方
法において、上下に仕切り板が設けられ、円筒側面に断
熱手段が設けられている該坩堝を下方から徐々に冷却し
て前記原料を結晶化させることを特徴とする結晶製造方
法。
12. A method for producing a crystal, wherein a raw material of a crystalline substance melted in a cylindrical crucible is cooled to be crystallized, wherein upper and lower partition plates are provided, and heat insulating means is provided on a side surface of the cylinder. A crystallization of the raw material by gradually cooling the crucible from below.
【請求項13】 前記結晶性物質は蛍石である請求項1
2記載の結晶製造方法。
13. The method according to claim 1, wherein the crystalline material is fluorite.
3. The method for producing a crystal according to 2.
JP24044496A 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method Expired - Fee Related JP3542444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24044496A JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24044496A JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
JPH1087391A true JPH1087391A (en) 1998-04-07
JP3542444B2 JP3542444B2 (en) 2004-07-14

Family

ID=17059594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24044496A Expired - Fee Related JP3542444B2 (en) 1996-09-11 1996-09-11 Crystal manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP3542444B2 (en)

Also Published As

Publication number Publication date
JP3542444B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP2003501339A (en) Crystal growth and annealing method and apparatus
KR20110027593A (en) Equipment for growing sapphire single crystal
JP2004262742A (en) Method for growing oriented calcium fluoride single crystal
JP2004224692A (en) Method for growing crystal
JP3988217B2 (en) Large-diameter fluorite manufacturing apparatus and manufacturing method
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP4147595B2 (en) Method for producing fluorite single crystal
JP2006219352A (en) Apparatus and method for manufacturing single crystal
JP3542444B2 (en) Crystal manufacturing apparatus and method
JPH10101484A (en) Crystal production apparatus and method thereof
JPH1192269A (en) Apparatus for producing crystal and production
JP3725280B2 (en) Fluorite single crystal manufacturing apparatus and manufacturing method
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
JPH11292696A (en) Fluorite production unit
KR20020071412A (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
JP2003183036A (en) Method for manufacturing synthetic quartz glass for optical use, synthetic quartz glass for optical use and annealing furnace
JP3797643B2 (en) Crystal production equipment
JPH1192268A (en) Apparatus for producing crystal and production
US11913133B2 (en) Method of manufacturing polycrystalline silicon ingot using a crucible in which an oxygen exhaust passage is formed by single crystal or polycrystalline rods
JPH1192270A (en) Apparatus for producing crystal and production
JP2005035824A (en) Fluoride crystal growth equipment
US20040221793A1 (en) Method for producing an optical fluoride crystal without annealing
JP2006117442A (en) Method and apparatus for producing single crystal
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110409

LAPS Cancellation because of no payment of annual fees