JP2006117442A - Method and apparatus for producing single crystal - Google Patents

Method and apparatus for producing single crystal Download PDF

Info

Publication number
JP2006117442A
JP2006117442A JP2004304243A JP2004304243A JP2006117442A JP 2006117442 A JP2006117442 A JP 2006117442A JP 2004304243 A JP2004304243 A JP 2004304243A JP 2004304243 A JP2004304243 A JP 2004304243A JP 2006117442 A JP2006117442 A JP 2006117442A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
single crystal
crucible
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004304243A
Other languages
Japanese (ja)
Inventor
Shuichi Yabu
修一 藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004304243A priority Critical patent/JP2006117442A/en
Publication of JP2006117442A publication Critical patent/JP2006117442A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high quality single crystal by decreasing crystal defects introduced into the upper end part of a seed crystal, and an apparatus therefor. <P>SOLUTION: In the method for producing a single crystal by the vertical Bridgman process comprising placing a seed crystal on the low end of a crucible, melting a raw material in the crucible and gradually solidifying the melt liquid starting from the seed crystal to grow a columnar single crystal, the upper end of the seed crystal is melted before melting the raw material so that the melt liquid does not come into direct contact with unmelted seed crystal so as to alleviate thermal shock. Further, even if a scavenger mixed in the raw material drips, an adverse effect as an impurity is mitigated because it is diluted by the melt liquid at the upper end of the seed crystal. As a result, crystal defects introduced into the upper end part of the seed crystal are decreased and propagation of the crystal defects into the growing crystal is prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、垂直ブリッジマン法(VB法)による単結晶製造装置及び方法、特に半導体露光装置のレンズ材料として用いられる蛍石単結晶を育成するための、単結晶成長技術に関するものである。   The present invention relates to an apparatus and method for manufacturing a single crystal by a vertical Bridgman method (VB method), and more particularly to a single crystal growth technique for growing a fluorite single crystal used as a lens material of a semiconductor exposure apparatus.

近年、半導体集積回路の高集積化にともない、超微細パターン形成への要求がますます高まっている。微細パターンをウェハ上に転写するリソグラフィ装置としては、縮小投影露光装置が多用されている。高集積化するためには、投影レンズの解像度を上げる必要がある。そして、投影レンズの解像力を上げるには、短波長の露光光を用いる必要がある。   In recent years, with the high integration of semiconductor integrated circuits, there is an increasing demand for ultra fine pattern formation. As a lithography apparatus that transfers a fine pattern onto a wafer, a reduction projection exposure apparatus is frequently used. In order to achieve high integration, it is necessary to increase the resolution of the projection lens. In order to increase the resolution of the projection lens, it is necessary to use exposure light having a short wavelength.

露光光の短波長化は、g線(波長436nm)、i線(365nm)、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)と進み、今後は、Fレーザー光(157nm)の使用が有望視されている。i線までの波長域では、光学系に従来の光学レンズを使用することが可能であったが、KrF、ArF各エキシマレーザー光、Fレーザー光の波長域では、透過率が低く、従来の光学ガラスを使用することは不可能である。このため、エキシマレーザー露光装置の光学系には、光学素子材料として短波長光の透過率が高い石英ガラスまたは蛍石を使用するのが一般的になっており、Fレーザー露光装置では、蛍石が必須とされている。 The shortening of the exposure light wavelength has progressed to g-line (wavelength 436 nm), i-line (365 nm), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), and in the future, F 2 laser light (157 nm) Use is promising. In the wavelength range up to i-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of KrF, ArF excimer laser light, F 2 laser light, the transmittance is low, It is impossible to use optical glass. Therefore, the optical system of excimer laser exposure apparatus, and the transmittance of short-wavelength light using a high silica glass or fluorite become common as optical element material, in F 2 laser exposure apparatus, firefly Stone is required.

このような投影レンズに使用される蛍石に対する光学的要求仕様は極めて高い。特に、レーザー透過率耐久性、応力複屈折、屈折率均一性が重要である。そこで、結晶欠陥の少ない均一な単結晶蛍石が望まれている。   Optical requirements for fluorite used in such projection lenses are extremely high. In particular, laser transmittance durability, stress birefringence, and refractive index uniformity are important. Therefore, a uniform single crystal fluorite with few crystal defects is desired.

蛍石は通常、下記特許文献1及び2に開示されているような垂直ブリッジマン法(VB法)で製造されている。   Fluorite is usually produced by the vertical Bridgman method (VB method) as disclosed in Patent Documents 1 and 2 below.

図4は、従来の垂直ブリッジマン法による結晶の製造装置を示す図である。   FIG. 4 is a view showing a crystal manufacturing apparatus according to a conventional vertical Bridgman method.

図4において、1は炉本体、2は炉内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒータ、3bは下ヒータ、4は炉本体1の底を貫通する支持棒、5は支持棒4の上端に取りつけた坩堝である。この坩堝5の下端に種結晶9を置き、その上に蛍石の原料(フッ化カルシウム(CaF))を入れた後、炉内を真空にして、炉温を上げ原料を溶融する。図4の左側のグラフは、炉のヒータ面部の鉛直方向に沿った温度分布を示している。グラフに示すように、断熱部材2の位置が融点温度T1になるように設定されている。結晶成長開始時の坩堝5の位置は、種結晶9の上部が溶融する位置である。結晶成長させる時は、支持棒4を介して上下移動機構により約0.1〜5mm/時の速度で坩堝5を高温領域1aから低温領域1bに降下させ、種結晶9を起点として下部の方から結晶化させていく。図4は、この坩堝降下の途中の状態を示しており、6は融液、8は固化した結晶、7は固液界面である。
米国特許2,214,976号明細書 特開2002−308692号公報
In FIG. 4, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, 4 is a support rod that penetrates the bottom of the furnace body 1, Reference numeral 5 denotes a crucible attached to the upper end of the support bar 4. A seed crystal 9 is placed at the lower end of the crucible 5 and a fluorite raw material (calcium fluoride (CaF 2 )) is put on the crucible 5, and then the furnace is evacuated to raise the furnace temperature and melt the raw material. The graph on the left side of FIG. 4 shows the temperature distribution along the vertical direction of the heater surface portion of the furnace. As shown in the graph, the position of the heat insulating member 2 is set to the melting point temperature T1. The position of the crucible 5 at the start of crystal growth is a position where the upper part of the seed crystal 9 is melted. When the crystal is grown, the crucible 5 is lowered from the high temperature region 1a to the low temperature region 1b at a speed of about 0.1 to 5 mm / hour through the support rod 4 by a vertical movement mechanism, Crystallize from. FIG. 4 shows a state in the middle of the crucible lowering, where 6 is a melt, 8 is a solidified crystal, and 7 is a solid-liquid interface.
US Patent 2,214,976 JP 2002-308692 A

しかしながら上記のような従来の垂直ブリッジマン法では、最近要求されるような高品質の単結晶が出来難いという問題があった。育成後の結晶を観察すると、結晶化の起点となる種結晶に低欠陥の単結晶を使用しても種結晶の上端部に結晶欠陥が生じ、それが育成結晶中に伝播していることが解かった。   However, the conventional vertical Bridgman method as described above has a problem that it is difficult to produce a high-quality single crystal as recently required. When the grown crystal is observed, even if a single crystal having a low defect is used as a seed crystal that is the starting point of crystallization, a crystal defect is generated at the upper end portion of the seed crystal and is propagated in the grown crystal. It was solved.

種結晶上端部に欠陥が導入される原因の一つは、結晶成長開始の前に原料を溶融したとき高温の融液が種結晶上部に滴下接触して生じる熱衝撃である。もう一つの原因は、蛍石原料中に少量混入されるスカベンジャ(酸化防止フッ化添加物、)である。これは、原料(CaF)が水分等と反応して生成したCaOやもともと原料中に存在する不純物を除去するために、加えた金属のフッ化物である。例えば、ZnFのスカベンジャはCaOと反応してCaFとし、自らはZnO等として結晶溶融時に除去されるものである。この結果、不純物としてのCaOは除去され、透過率特性の優れたフッ化物結晶が得られる。しかし、スカベンジャは蛍石よりも融点が低いため蛍石原料よりも先に溶融滴下し、種結晶に接触して熱衝撃を与えると共に、高濃度のスカベンジャが直接種結晶に接触して不純物として悪影響を及ぼし、種結晶上端部の結晶欠陥の原因となる。 One of the causes of the introduction of defects at the upper end portion of the seed crystal is a thermal shock generated when a high-temperature melt is dropped into contact with the upper portion of the seed crystal when the raw material is melted before the start of crystal growth. Another cause is a scavenger (antioxidation fluoride additive) mixed in a small amount in the fluorite raw material. This is a metal fluoride added to remove CaO produced by the reaction of the raw material (CaF 2 ) with moisture or the like and impurities originally present in the raw material. For example, a ZnF 2 scavenger reacts with CaO to form CaF 2 and itself is removed as ZnO or the like during crystal melting. As a result, CaO as an impurity is removed, and a fluoride crystal having excellent transmittance characteristics is obtained. However, since the scavenger has a lower melting point than fluorite, it is melted and dripped before the fluorite raw material to contact the seed crystal and give a thermal shock, and the high concentration scavenger directly contacts the seed crystal and has an adverse effect as an impurity. And causes crystal defects at the upper end of the seed crystal.

本発明の目的は、このようにして種結晶上端部に導入される結晶欠陥を低減し、高品質の単結晶を製造できる単結晶製造方法及びその装置を提供することにある。   An object of the present invention is to provide a single crystal manufacturing method and apparatus capable of manufacturing a high quality single crystal by reducing crystal defects introduced into the upper end portion of the seed crystal in this way.

上記課題を解決するため、本発明の単結晶製造方法は、坩堝下端に種結晶を置いて該坩堝内の原料を溶融し、該種結晶を起点として融液を徐々に固化させて柱状の単結晶を育成する垂直ブリッジマン法による単結晶製造方法において、該原料を溶融する前に該種結晶の上端部を溶融しておくことを特徴とする。   In order to solve the above problems, the method for producing a single crystal according to the present invention comprises placing a seed crystal at the lower end of the crucible to melt the raw material in the crucible, and gradually solidifying the melt starting from the seed crystal to form a columnar single crystal. In the method for producing a single crystal by the vertical Bridgman method for growing a crystal, the upper end portion of the seed crystal is melted before the raw material is melted.

また、本発明の単結晶製造装置は、坩堝下端に種結晶を置いて該坩堝内の原料を溶融し、該種結晶を起点として融液を徐々に固化させて柱状の単結晶を育成する垂直ブリッジマン法による単結晶製造装置において、該種結晶の上端部を局所的に加熱溶融する局所加熱手段を有することを特徴とする。   Further, the single crystal production apparatus of the present invention is a vertical type in which a seed crystal is placed at the lower end of the crucible, the raw material in the crucible is melted, and the melt is gradually solidified starting from the seed crystal to grow a columnar single crystal. An apparatus for producing a single crystal by the Bridgman method has a local heating means for locally heating and melting the upper end portion of the seed crystal.

本発明によれば、原料を溶融する前に種結晶上端部を溶融しておくことにより、融液が未溶融の種結晶には直接接触せず、熱衝撃が緩和される。また原料に混合したスカベンジャが滴下しても種結晶上端部の融液によって希釈されるため、不純物としての悪影響が軽減される。その結果、種結晶上端部に導入させる結晶欠陥を低減でき、育成結晶中に結晶欠陥が伝播するのを防ぎ、高品質の単結晶の製造が可能となる。   According to the present invention, the upper end portion of the seed crystal is melted before the raw material is melted, so that the melt does not directly contact the unmelted seed crystal and the thermal shock is alleviated. Moreover, even if the scavenger mixed with the raw material is dropped, it is diluted with the melt at the upper end of the seed crystal, so that the adverse effect as an impurity is reduced. As a result, it is possible to reduce the crystal defects introduced into the upper end portion of the seed crystal, prevent the crystal defects from propagating in the grown crystal, and manufacture a high-quality single crystal.

以下、本発明の実施の形態を図面を参照して説明する。
(第一の実施の形態)
図1は、本発明の第一の実施の形態に係る単結晶製造装置の断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of a single crystal manufacturing apparatus according to a first embodiment of the present invention.

図1において、1は炉本体、2は炉内を高温領域1aと低温領域1bに分割する断熱部材、3aは上ヒータ、3bは下ヒータ、4は炉本体1の底を貫通する支持棒、5は支持棒4の上端に取り付けた坩堝、5aは坩堝5の下端の種結晶収納部、10は結晶の原料(CaF)、11は種結晶、20は種結晶収納部5a近傍に配置された局所加熱ヒータ、21は種結晶収納部5a上部に取り付けた受熱フィンである。 In FIG. 1, 1 is a furnace body, 2 is a heat insulating member that divides the inside of the furnace into a high temperature region 1a and a low temperature region 1b, 3a is an upper heater, 3b is a lower heater, 4 is a support rod that penetrates the bottom of the furnace body 1, 5 is a crucible attached to the upper end of the support bar 4, 5 a is a seed crystal storage section at the lower end of the crucible 5, 10 is a crystal raw material (CaF 2 ), 11 is a seed crystal, and 20 is disposed near the seed crystal storage section 5 a. The local heater 21 is a heat receiving fin attached to the upper part of the seed crystal storage 5a.

また、図2は、図1の種結晶上端部が溶融した状態を示す図である。   Moreover, FIG. 2 is a figure which shows the state which the seed crystal upper end part of FIG. 1 fuse | melted.

図2において、11aは溶融した種結晶、11bは未溶融の種結晶である。   In FIG. 2, 11a is a molten seed crystal and 11b is an unmelted seed crystal.

図1の構成において結晶は次のようにして育成される。先ず、坩堝5の下端の種結晶収納部5aに種結晶11を置き、その上に原料を入れた後、炉内を真空にする。次に、局所加熱ヒータ20によって、受熱フィン21を加熱する。受熱フィン21の熱伝導によって種結晶11の上端部が昇温し溶融される。図2はこのときの状態を示している。次に、ヒータ3a、3bにより炉温を上げ原料を溶融する。図2の左側のグラフは、炉のヒータ面部の鉛直方向に沿った温度分布を示している。グラフに示すように、断熱部材2の位置が融点温度T1になるように設定されている。結晶成長開始時の坩堝5の位置は、種結晶9の上部が溶融する位置である。結晶成長させる時は、支持棒4を介して上下移動機構により約0.1〜5mm/時の速度で坩堝5を高温領域1aから低温領域1bに降下させ、種結晶9を起点として下部の方から結晶化させていく。なお、局所加熱ヒータ20は、坩堝5側に固定されるが、炉本体1側に左右移動自在に取り付け坩堝5を降下させるときにその外側に退避させるようにしてもよい。また、種結晶11の上端部11aの温度を監視するため種結晶収納部5a上部に熱電対等の温度検出器を取り付けてもよい。   In the configuration of FIG. 1, the crystal is grown as follows. First, the seed crystal 11 is placed in the seed crystal storage portion 5a at the lower end of the crucible 5, and the raw material is put thereon, and then the inside of the furnace is evacuated. Next, the heat receiving fins 21 are heated by the local heater 20. The upper end portion of the seed crystal 11 is heated and melted by the heat conduction of the heat receiving fins 21. FIG. 2 shows the state at this time. Next, the furnace temperature is raised by the heaters 3a and 3b to melt the raw material. The graph on the left side of FIG. 2 shows the temperature distribution along the vertical direction of the heater surface of the furnace. As shown in the graph, the position of the heat insulating member 2 is set to the melting point temperature T1. The position of the crucible 5 at the start of crystal growth is a position where the upper part of the seed crystal 9 is melted. When the crystal is grown, the crucible 5 is lowered from the high temperature region 1a to the low temperature region 1b at a speed of about 0.1 to 5 mm / hour through the support rod 4 by a vertical movement mechanism, Crystallize from. The local heater 20 is fixed to the crucible 5 side, but may be retracted to the outside when the crucible 5 is attached to the furnace body 1 side so as to be movable left and right. Further, in order to monitor the temperature of the upper end portion 11a of the seed crystal 11, a temperature detector such as a thermocouple may be attached to the upper portion of the seed crystal storage portion 5a.

上記の過程において原料を溶融すると、先ずスカベンジャ(ZnF)、次に原料が溶融し滴下する。このとき既に種結晶上端部11aは溶融しているため、未溶融の種結晶11bには直接接触せず、融液11aによって熱衝撃が緩和される。また滴下したスカベンジャは融液11aによって希釈されるため、不純物としての悪影響が軽減される。その結果、種結晶上端部に導入される結晶欠陥を低減でき、育成結晶中に結晶欠陥が伝播するのを制限し、高品質の単結晶の製造が可能となる。
(第二の実施の形態)
図3は、本発明の第二の実施の形態に係る単結晶製造装置の断面図である。
When the raw material is melted in the above process, the scavenger (ZnF 2 ) is first melted and then the raw material is melted and dropped. At this time, since the seed crystal upper end portion 11a has already melted, it does not directly contact the unmelted seed crystal 11b, and the thermal shock is alleviated by the melt 11a. Further, since the dropped scavenger is diluted with the melt 11a, the adverse effect as an impurity is reduced. As a result, it is possible to reduce the crystal defects introduced into the upper end portion of the seed crystal, restrict the propagation of crystal defects in the grown crystal, and manufacture a high-quality single crystal.
(Second embodiment)
FIG. 3 is a cross-sectional view of the single crystal manufacturing apparatus according to the second embodiment of the present invention.

図3において、局所加熱ヒータ20は、熱反射板22、及び断熱部材2a,2bと共に第一の実施の形態の断熱部材2の個所に固定されている。   In FIG. 3, the local heater 20 is being fixed to the location of the heat insulation member 2 of 1st Embodiment with the heat | fever reflecting plate 22 and the heat insulation members 2a and 2b.

図3の構成において、局所加熱ヒータ20は坩堝5の移動を妨げないように移動領域の外側に配置されており、輻射によって受熱フィン21を加熱する。   In the configuration of FIG. 3, the local heater 20 is disposed outside the moving region so as not to hinder the movement of the crucible 5, and heats the heat receiving fins 21 by radiation.

第一の実施の形態においては、坩堝5が移動するとき局所加熱ヒータ20は坩堝5と共に移動するか、又は坩堝5の移動領域の外部に退避する必要があるが、第二の実施の形態においては、その必要が無いため構造が簡単になる。   In the first embodiment, when the crucible 5 moves, the local heater 20 needs to move together with the crucible 5 or retreat to the outside of the movement region of the crucible 5. In the second embodiment, The structure is simple because it is not necessary.

なお、半導体露光装置の光学素子材料に適した硝材として、フッ化カルシウム以外に、フッ化マグネシウム、フッ化バリウム、フッ化ネオジウム、フッ化リチウム、フッ化ランタン等のフッ化物が知られており、本発明は、これらのフッ化物の結晶の製造にも適用可能である。   In addition to calcium fluoride, fluorides such as magnesium fluoride, barium fluoride, neodymium fluoride, lithium fluoride, and lanthanum fluoride are known as glass materials suitable for optical element materials of semiconductor exposure apparatuses. The present invention is also applicable to the production of these fluoride crystals.

本発明の第一の実施の形態に係る単結晶製造装置の断面図Sectional drawing of the single-crystal manufacturing apparatus which concerns on 1st embodiment of this invention 図1の種結晶上端部が溶融した状態を示す図The figure which shows the state which the seed crystal upper end part of FIG. 1 fuse | melted 本発明の第二の実施の形態に係る単結晶製造装置の断面図Sectional drawing of the single-crystal manufacturing apparatus which concerns on 2nd embodiment of this invention 従来の単結晶製造装置の断面図Sectional view of conventional single crystal manufacturing equipment

符号の説明Explanation of symbols

1…炉本体
1a…高温領域
1b…低温領域
2…断熱部材
2a…断熱部材
2b…断熱部材
3a…上ヒータ
3b…下ヒータ
4…支持棒
5…坩堝
5a…種結晶収納部
6…融液
7…固液界面
8…結晶
9…種結晶
10…原料
11…種結晶
11a…溶融した種結晶
11b…未溶融の種結晶
20…局所加熱ヒータ
21…受熱フィン
22…熱反射板
DESCRIPTION OF SYMBOLS 1 ... Furnace main body 1a ... High temperature area | region 1b ... Low temperature area | region 2 ... Heat insulation member 2a ... Heat insulation member 2b ... Heat insulation member 3a ... Upper heater 3b ... Lower heater 4 ... Support rod 5 ... Crucible 5a ... Seed crystal storage part 6 ... Melt 7 ... solid-liquid interface 8 ... crystal 9 ... seed crystal 10 ... raw material 11 ... seed crystal 11a ... molten seed crystal 11b ... unmelted seed crystal 20 ... local heater 21 ... heat receiving fin 22 ... heat reflector

Claims (5)

坩堝下端に種結晶を置いて該坩堝内の原料を溶融し、該種結晶を起点として融液を徐々に固化させて柱状の単結晶を育成する垂直ブリッジマン法による単結晶製造方法において、
該原料を溶融する前に該種結晶の上端部を溶融しておくことを特徴とする単結晶製造方法。
In the method for producing a single crystal by the vertical Bridgman method in which a seed crystal is placed at the lower end of the crucible and the raw material in the crucible is melted, and the column crystal single crystal is grown by gradually solidifying the melt starting from the seed crystal.
A method for producing a single crystal, comprising melting an upper end of the seed crystal before melting the raw material.
前記原料をフッ化カルシウムとして単結晶を製造することを特徴とする請求項1に記載の単結晶製造方法。   The single crystal manufacturing method according to claim 1, wherein the single crystal is manufactured using calcium fluoride as the raw material. 坩堝下端に種結晶を置いて該坩堝内の原料を溶融し、該種結晶を起点として融液を徐々に固化させて柱状の単結晶を育成する垂直ブリッジマン法による単結晶製造装置において、
該種結晶の上端部を局所的に加熱溶融する局所加熱手段を有することを特徴とする単結晶製造装置。
In a single crystal manufacturing apparatus by the vertical Bridgman method for placing a seed crystal at the lower end of the crucible and melting the raw material in the crucible, and gradually solidifying the melt starting from the seed crystal to grow a columnar single crystal,
An apparatus for producing a single crystal, comprising a local heating means for locally heating and melting the upper end portion of the seed crystal.
前記局所加熱手段は、坩堝下端の種結晶収納部近傍に配置された局所加熱ヒータと、前記種結晶収納部上部に取り付けた受熱フィンとから成ることを特徴とする請求項3に記載の単結晶製造装置。   4. The single crystal according to claim 3, wherein the local heating means includes a local heater arranged near the seed crystal storage unit at the lower end of the crucible and a heat receiving fin attached to the upper part of the seed crystal storage unit. Manufacturing equipment. 前記局所加熱手段は、坩堝下端の種結晶収納部に対応して坩堝の移動領域の外側に配置された局所加熱ヒータと、前記種結晶収納部上部に取り付けた受熱フィンとから成ることを特徴とする請求項3に記載の単結晶製造装置。   The local heating means includes a local heater disposed outside the crucible moving region corresponding to the seed crystal storage unit at the lower end of the crucible, and a heat receiving fin attached to the top of the seed crystal storage unit. The single crystal manufacturing apparatus according to claim 3.
JP2004304243A 2004-10-19 2004-10-19 Method and apparatus for producing single crystal Withdrawn JP2006117442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304243A JP2006117442A (en) 2004-10-19 2004-10-19 Method and apparatus for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304243A JP2006117442A (en) 2004-10-19 2004-10-19 Method and apparatus for producing single crystal

Publications (1)

Publication Number Publication Date
JP2006117442A true JP2006117442A (en) 2006-05-11

Family

ID=36535694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304243A Withdrawn JP2006117442A (en) 2004-10-19 2004-10-19 Method and apparatus for producing single crystal

Country Status (1)

Country Link
JP (1) JP2006117442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294362A (en) * 2014-10-31 2015-01-21 秦皇岛本征晶体科技有限公司 Preparation method for large-sized square calcium fluoride crystals
CN109321975A (en) * 2018-11-19 2019-02-12 永平县泰达废渣开发利用有限公司 Monocrystalline silicon directional solidification seeding module
CN111379024A (en) * 2018-12-29 2020-07-07 北京首量科技股份有限公司 Preparation process and equipment of calcium fluoride
CN111379023A (en) * 2018-12-29 2020-07-07 北京首量科技股份有限公司 Preparation method of calcium fluoride single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294362A (en) * 2014-10-31 2015-01-21 秦皇岛本征晶体科技有限公司 Preparation method for large-sized square calcium fluoride crystals
CN109321975A (en) * 2018-11-19 2019-02-12 永平县泰达废渣开发利用有限公司 Monocrystalline silicon directional solidification seeding module
CN111379024A (en) * 2018-12-29 2020-07-07 北京首量科技股份有限公司 Preparation process and equipment of calcium fluoride
CN111379023A (en) * 2018-12-29 2020-07-07 北京首量科技股份有限公司 Preparation method of calcium fluoride single crystal

Similar Documents

Publication Publication Date Title
KR101767268B1 (en) Apparatus for producing sapphire single crystal
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
JP2007077013A (en) Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP2006219352A (en) Apparatus and method for manufacturing single crystal
JP2006117442A (en) Method and apparatus for producing single crystal
JP4147595B2 (en) Method for producing fluorite single crystal
JP2004224692A (en) Method for growing crystal
JP4569872B2 (en) Fluorite single crystal production apparatus and fluorite single crystal production method using the same
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JP2003238152A (en) Method for making crystal
JP4839205B2 (en) Fluorite manufacturing method
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
JP3725280B2 (en) Fluorite single crystal manufacturing apparatus and manufacturing method
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JP2005035824A (en) Fluoride crystal growth equipment
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP2005089204A (en) Apparatus and method for producing crystal
JPH10101484A (en) Crystal production apparatus and method thereof
JP2006248891A (en) Method for producing highly homogeneous low-stress single crystal with reduced scattering characteristics
JP4839204B2 (en) Fluorite
JP3542444B2 (en) Crystal manufacturing apparatus and method
JP4731844B2 (en) Crystal manufacturing method and apparatus
JP2006335587A (en) Method for manufacturing single crystal, and pretreatment apparatus for single crystal growth

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108