JP2733898B2 - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal

Info

Publication number
JP2733898B2
JP2733898B2 JP6013099A JP1309994A JP2733898B2 JP 2733898 B2 JP2733898 B2 JP 2733898B2 JP 6013099 A JP6013099 A JP 6013099A JP 1309994 A JP1309994 A JP 1309994A JP 2733898 B2 JP2733898 B2 JP 2733898B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
single crystal
grown
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6013099A
Other languages
Japanese (ja)
Other versions
JPH07206584A (en
Inventor
孝志 小路
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6013099A priority Critical patent/JP2733898B2/en
Publication of JPH07206584A publication Critical patent/JPH07206584A/en
Application granted granted Critical
Publication of JP2733898B2 publication Critical patent/JP2733898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、単結晶育成技術、特に
液体封止カイロポーラス法(以下、LEK法と称する)
を適用した化合物半導体単結晶の成長装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal growing technique, particularly a liquid-sealed chiroporous method (hereinafter referred to as an LEK method).
The present invention relates to a compound semiconductor single crystal growth apparatus to which is applied.

【0002】[0002]

【従来の技術】一般に、GaP、GaAs、InP、C
dTe等のIII−V族およびII−VI族化合物半導
体は、融点付近で高い蒸気圧を有するために原料融液上
をB等からなる液体封止層で覆う液体封止法に
より単結晶の成長が行われている。現在、この液体封止
法としては液体封止チョクラルスキー法(LEC法)や
LEK法等が知られている。LEC法は、結晶の成長と
ともに種結晶を引き上げていく方法であり、種付けによ
り結晶方位が制御可能で、また高純度結晶を得やすいた
め、工業化されているが、直径制御が困難であって均一
の直胴が得難く、また結晶成長時の固液界面付近の温度
勾配が大きいため熱応力が大きくなり転位欠陥が多いと
いう欠点を有している。
2. Description of the Related Art Generally, GaP, GaAs, InP, C
Since III-V and II-VI compound semiconductors such as dTe have a high vapor pressure near the melting point, they are formed by a liquid sealing method in which the raw material melt is covered with a liquid sealing agent layer made of B 2 O 3 or the like. Single crystal growth is taking place. At present, as the liquid sealing method, a liquid sealing Czochralski method (LEC method), an LEK method, and the like are known. The LEC method is a method in which the seed crystal is pulled up as the crystal grows. The crystal orientation can be controlled by seeding, and high-purity crystals can be easily obtained. And the temperature gradient near the solid-liquid interface during crystal growth is large, so that thermal stress is increased and dislocation defects are increased.

【0003】これに対し、LEK法は、結晶の引上げを
行わず耐火性ルツボの中で結晶成長を行うために、成長
結晶の直径はルツボ内径に依存する。そのため、直径制
御が容易であるとともに、結晶成長時の融液中温度勾配
が数℃/cmであってLEC法に比して1桁小さいため、
熱応力が小さく、転位欠陥が少ないという利点を有して
いる。
[0003] On the other hand, in the LEK method, since the crystal is grown in a refractory crucible without pulling the crystal, the diameter of the grown crystal depends on the inner diameter of the crucible. Therefore, the diameter can be easily controlled, and the temperature gradient in the melt during crystal growth is several degrees centigrade / cm, which is one digit smaller than that of the LEC method.
It has the advantages of low thermal stress and few dislocation defects.

【0004】かかるLEK法は、例えば図5のような装
置を用いて行われている。図5に示す結晶成長装置は、
密閉型の高圧容器1内に円筒状のヒーター2が配設され
ており、このヒーター2の中央には、耐火性のルツボ3
が配置されている。また、このルツボ3は、ルツボ受け
4により支持されている。さらに、このルツボ受け4
は、その下端に固着された支持軸5により回転可能に支
持されている。そして、このルツボ3中には、GaAs
等の原料融液6が入れられており、原料融液6の上面は
等からなる液体封止層7で覆われている。一
方、ルツボ3の上方からは、高圧容器1内に結晶引上げ
軸8が上下動かつ回転可能に垂下されており、この結晶
引上げ軸8によって種結晶9を保持し、ルツボ3中の原
料融液6の表面に接触させることができるようになって
いる。
The LEK method is performed using an apparatus as shown in FIG. 5, for example. The crystal growth apparatus shown in FIG.
A cylindrical heater 2 is disposed in a closed high-pressure vessel 1, and a fire-resistant crucible 3 is provided at the center of the heater 2.
Is arranged. The crucible 3 is supported by a crucible receiver 4. Furthermore, this crucible holder 4
Is rotatably supported by a support shaft 5 fixed to its lower end. And, in this crucible 3, GaAs
Raw material melt 6 are placed equal, the upper surface of the raw material melt 6 is covered with a liquid sealant layer 7 of B 2 O 3 and the like. On the other hand, from above the crucible 3, a crystal pulling shaft 8 is suspended vertically and rotatably in the high-pressure vessel 1, and the seed pulling 9 is held by the crystal pulling shaft 8. 6 can be brought into contact with the surface.

【0005】LEK法では、このような結晶成長装置を
用いて、先ず、図5に示すように、結晶引上げ軸8によ
って種結晶9を原料融液6中に浸漬する。次いで、不均
一な結晶成長を防止するため、ルツボ3と引上げ軸8と
を回転させながら原料融液の対流を制御し、引上げは行
わずに単結晶を成長させる。単結晶10は、成長終了後
に、単結晶10を原料融液6から切り離すために液体封
層7上方の高圧不活性ガス11中に引き上げて冷却
させるようにしている。
In the LEK method, a seed crystal 9 is first immersed in a raw material melt 6 by a crystal pulling shaft 8 as shown in FIG. Next, in order to prevent non-uniform crystal growth, the convection of the raw material melt is controlled while rotating the crucible 3 and the pulling shaft 8, and a single crystal is grown without pulling. Single crystal 10, after completion of the growth, and so as to cool by pulling the liquid sealant layer 7 in the upper high-pressure inert gas 11 to separate the single crystal 10 from the raw material melt 6.

【0006】LEK法における結晶成長過程では、結晶
はルツボに倣って成長するため、ルツボ内に成長する結
晶の水平断面形状は結晶引上げ軸の軸芯を中心としたル
ツボ内に内接する最大の円となる。LEC法と比較する
と、種結晶の引上げを行わないため比較的長尺の単結晶
を効率良く作ることは困難である問題点があった。
In the crystal growth process of the LEK method, since the crystal grows following the crucible, the horizontal cross-sectional shape of the crystal growing in the crucible is the largest circle inscribed in the crucible about the axis of the crystal pulling axis. Becomes Compared to the LEC method, there is a problem that it is difficult to efficiently produce a relatively long single crystal because the seed crystal is not pulled.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点に鑑みてなされたもので、特に成長した単結晶
とルツボとの間の滑り抵抗に着目し鋭意検討した結果、
ルツボと単結晶との隙間を制御することにより、比較的
長尺の化合物半導体単結晶を容易に得ることができるこ
とを見出し本発明に到った。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and as a result of intensive studies, particularly focusing on the slip resistance between a grown single crystal and a crucible,
The present invention has been found that a relatively long compound semiconductor single crystal can be easily obtained by controlling the gap between the crucible and the single crystal.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、高
圧容器内、不活性雰囲気下に配置したルツボ中で、原料
と液体封止を融解させ、次いで、前記原料融液に種結
晶を浸漬してルツボと種結晶をそれぞれ回転しながら加
熱温度を制御し、所定直径の単結品の成長を行う化合物
半導体単結晶の製造方法において、種結晶の回転中心よ
りルツボの内壁までの同一水平面における最短距離と最
長距離の比(最短距離/最長距離)が、0.75以上
0.99以下となるようにして単結品の成長を行うこと
を特徴とする化合物半導体単結晶の製造方法である。
Means for Solving the Problems That is, the present invention provides a high-pressure vessel, in a crucible placed under an inert atmosphere, to melt the raw material and a liquid sealing agent, then a seed crystal to the raw material melt In the method of manufacturing a compound semiconductor single crystal in which the heating temperature is controlled while rotating the crucible and the seed crystal while being immersed to grow a single product having a predetermined diameter, the same horizontal plane from the center of rotation of the seed crystal to the inner wall of the crucible is provided. Growing a single product so that the ratio of the shortest distance to the longest distance (shortest distance / longest distance) becomes 0.75 or more and 0.99 or less in the above method. is there.

【0009】LEK法においては、結晶はルツボに倣っ
て成長するため、ルツボ内に成長する結晶の水平断面形
状は結晶引上げ軸の軸芯を中心とし、ルツボ内に内接す
る最大の円となる。ただし、ルツボと結晶との間に残留
する液体封止膜厚分小さくなる。従来使用されている
図4に示すような円形の水平断面形状のルツボでは、成
長した結晶の水平断面形状とルツボ断面形状はほぼ合同
の円となるため、成長した結晶とルツボとの隙間が微小
となり、この隙間を液体封止材が満たし、成長した結晶
とルツボとの間の滑り抵抗が非常に大きくなる。そのた
め、ルツボと引上げ軸を別個に回転し続けることが困難
となるため、結晶成長に適した原料融液の対流を制御す
ることが困難となり、大きな単結晶が得られにくくな
る。
In the LEK method, since the crystal grows following the crucible, the horizontal cross-sectional shape of the crystal growing in the crucible is the largest circle inscribed in the crucible with the center of the crystal pulling axis as the center. However, the crucible and the liquid sealant thickness fraction smaller remaining between the crystals. In a conventional crucible having a circular horizontal cross-sectional shape as shown in FIG. 4, since the horizontal cross-sectional shape of the grown crystal and the crucible cross-sectional shape are almost the same circle, the gap between the grown crystal and the crucible is very small. Then, the gap is filled with the liquid sealing material, and the sliding resistance between the grown crystal and the crucible becomes extremely large. Therefore, it is difficult to keep rotating the crucible and the pulling shaft separately, so that it is difficult to control the convection of the raw material melt suitable for crystal growth, and it is difficult to obtain a large single crystal.

【0010】本発明では、化合物半導体単結晶とルツボ
間の滑り抵抗を、化合物半導体単結晶とルツボの間の滑
り抵抗を化合物半導体単結晶とルツボとの間に隙間を設
けることで低減することにより、大きな単結晶を効率よ
く得るものである。本発明における隙間の大きさは、単
結品の回転中心よりルツボの内壁までの最短距離と最長
距離との比(最短距離/最長距離)が0.75以上0.
99以下の範囲である。ルツボの内壁までの最短距離/
最長距離比が、0.99以上では、化合物半導体単結品
とルツボ間の隙間が十分でなく、化合物半導体単結晶と
ルツボ間の滑り抵抗が大きくなり、単結晶が得られにく
くなる。一方、ルツボの内壁までの最短距離/最長距離
比が、0.75以下になると、成長できる単結晶の直径
は、単結晶の回転中心とルツボとの最短距離に依存する
ため、単結品の径が小さくなり好ましくない。また、ル
ツボと成長中の単結晶との隙間の液体封止の厚さの分
布が大きくなるため、育成単結晶の水平方向の温度の揺
らぎが大きくなり、系の温度制御性が悪くなる欠点も有
する。より好ましくは、単結晶の回転中心よりルツボの
内壁までの最短距離と最長距離との比(最短距離/最長
距離)が、0.94以上0.98以下である。
In the present invention, the sliding resistance between the compound semiconductor single crystal and the crucible is reduced by providing a gap between the compound semiconductor single crystal and the crucible by providing a gap between the compound semiconductor single crystal and the crucible. A large single crystal can be obtained efficiently. In the present invention, the size of the gap is such that the ratio of the shortest distance to the inner wall of the crucible from the center of rotation of the single product to the inner wall of the crucible (shortest distance / longest distance) is 0.75 or more.
The range is 99 or less. Shortest distance to inner wall of crucible /
When the longest distance ratio is 0.99 or more, the gap between the compound semiconductor single product and the crucible is not sufficient, the slip resistance between the compound semiconductor single crystal and the crucible increases, and it becomes difficult to obtain a single crystal. On the other hand, when the shortest distance / longest distance ratio to the inner wall of the crucible is 0.75 or less, the diameter of a single crystal that can be grown depends on the shortest distance between the rotation center of the single crystal and the crucible. The diameter becomes small, which is not preferable. Further, since the crucible and thickness distribution of the liquid sealing agent of the gap between the growing single crystal is increased, the horizontal temperature fluctuations of the growing single crystal is increased, the temperature control of the system is deteriorated disadvantages Also have. More preferably, the ratio of the shortest distance from the rotation center of the single crystal to the inner wall of the crucible and the longest distance (shortest distance / longest distance) is 0.94 or more and 0.98 or less.

【0011】単結晶とルツボ間に上記条件を満足する隙
間を与える具体的な手段としては、 (1)使用するルツボの水平断面形状が単結晶とルツボ
間の滑り抵抗が小さくなるような形状のものを使用す
る。例えば、楕円形、卵形、星形、多角形、多角形の角
を丸めた形、円形・楕円形・卵形の一部を切り取った
形、不定形などが挙げられるが、隙間部分での封止
動きがスムーズになる楕円形が好ましい。 (2)種結晶の位置をルツボの中心軸上からずらす。等
が挙げられる。
Specific means for providing a gap satisfying the above conditions between the single crystal and the crucible are as follows: (1) The horizontal cross-sectional shape of the crucible used is such that the slip resistance between the single crystal and the crucible is reduced. Use things. For example, oval, oval, star, polygon, rounded corners, round / oval / oval cutouts, irregular shapes, etc. elliptical movement of the sealing agent becomes smooth is preferable. (2) The position of the seed crystal is shifted from the center axis of the crucible. And the like.

【0012】上記手段によって、結晶とルツボ内壁との
間に比較的大きい隙間を生じるため、結晶とルツボとの
間の滑り抵抗を低減し、原料融液の対流の制御を容易な
らしめることができ、大きな単結晶を効率良く得ること
ができるという上記目的を達成することができる。ま
た、併せて、ルツボとルツボ受けとの間の滑りも防ぐこ
とができる。
By the above means, a relatively large gap is formed between the crystal and the inner wall of the crucible, so that the sliding resistance between the crystal and the crucible can be reduced, and the convection of the raw material melt can be easily controlled. In addition, the above object of efficiently obtaining a large single crystal can be achieved. In addition, slippage between the crucible and the crucible receiver can be prevented.

【0013】[0013]

【実施例】(実施例1) 結晶育成装置は図6に示すように従来装置にトルク計1
3を配置し、図1に示した楕円形状(短径65mm、長
径67mm)のルツボを使用した。まず、GaAs多結
晶3.8kg(原料融液高さ200mm)と液体封止
としてBを25mmの厚さになるように秤量し
て、pBN製のルツボに入れ、ヒーター2により加熱し
て炉内を1250℃以上に昇温し、GaAsおよびB
を融解させた。このとき、Asの揮散を防止するた
め、ガス導入管12からアルゴンガスを導入し、高圧容
器1内を30気圧とした。次にGaAs融液の表面温度
をGaAsの融点よりもやや高い温度に調節してから、
結晶引き上げ軸8を下げて、(100)面の種結晶9を
原料融液6に種付けし、融液を1℃/hrの割合で冷却
しながら200時間かけて結晶の成長を行った。この
際、結晶引き上げ軸8は30rpm、ルツボ軸5は逆方
向に30rpmで回転させた。育成開始から200時間
経過後、単結晶10がほぼルツボ底部まで成長した時点
での軸トルクは1.0kg・mであり、円形のルツボ使
用時に比べ1/4であった。また、育成した結晶は、全
て単結晶となっていた。
Embodiment 1 (Embodiment 1) As shown in FIG.
3 was used, and an elliptical crucible (short diameter 65 mm, long diameter 67 mm) shown in FIG. 1 was used. First, weighed B 2 O 3 GaAs polycrystal 3.8kg and (raw material melt height 200 mm) as the liquid sealant <br/> to a thickness of 25 mm, placed in a pBN crucible, The inside of the furnace was heated to 1250 ° C. or higher by heating with the heater 2, and GaAs and B 2
The O 3 was melted. At this time, in order to prevent the volatilization of As, argon gas was introduced from the gas introduction pipe 12, and the inside of the high-pressure vessel 1 was set to 30 atm. Next, after adjusting the surface temperature of the GaAs melt to a temperature slightly higher than the melting point of GaAs,
The crystal pulling shaft 8 was lowered, the (100) plane seed crystal 9 was seeded into the raw material melt 6, and the crystal was grown for 200 hours while cooling the melt at a rate of 1 ° C./hr. At this time, the crystal pulling shaft 8 was rotated at 30 rpm, and the crucible shaft 5 was rotated at 30 rpm in the opposite direction. After a lapse of 200 hours from the start of the growth, the axial torque at the time when the single crystal 10 grew almost to the bottom of the crucible was 1.0 kg · m, which was 1/4 of that when a circular crucible was used. The grown crystals were all single crystals.

【0014】(実施例2)図2に示したような円の両端
を切った形状(平行部間の距離65mm、径67mm)のル
ツボを使用し、他の実験条件は全て(実施例1)と同条
件でGaAs結晶を育成した。育成開始から200時間
経過後、単結晶10がほぼルツボ底部まで成長した時点
での軸トルクは0.40kg・mであり、円形のルツボ使用
時に比べ1/10であった。また、育成した結晶は、全
て単結晶となっていた。なお、図3のような形状のルツ
ボでも同様の効果がある。
Example 2 A crucible having a shape in which both ends of a circle were cut off as shown in FIG. 2 (distance between parallel portions: 65 mm, diameter: 67 mm) was used, and all other experimental conditions were used (Example 1). GaAs crystals were grown under the same conditions as described above. After a lapse of 200 hours from the start of the growth, the axial torque at the time when the single crystal 10 grew almost to the bottom of the crucible was 0.40 kg · m, which was 1/10 of that when a circular crucible was used. The grown crystals were all single crystals. It should be noted that a crucible having a shape as shown in FIG. 3 has the same effect.

【0015】(比較例1)図4に示す円形形状(φ65
mm)のルツボを用いた他は全て(実施例1)と同条件で
GaAs結晶を育成した。約200時間後、単結晶10
がほぼルツボ底部まで成長した時点での軸トルクは4.
13kg・mであった。また、育成した結晶は成長部途中か
ら多結晶化していた。
Comparative Example 1 A circular shape (φ65 shown in FIG. 4)
GaAs crystals were grown under the same conditions as in Example 1 except that a crucible (mm) was used. After about 200 hours, the single crystal 10
The shaft torque at the time when grew almost to the bottom of the crucible was 4.
It was 13 kg · m. The grown crystal was polycrystallized in the middle of the growth part.

【0016】[0016]

【発明の効果】以上説明したように、本発明は、単結晶
とルツボとの間に隙間を形成させることにより、結晶と
ルツボとの間の滑り抵抗を低減し、原料融液の対流の制
御を容易ならしめ、大きな単結晶を容易に得るという上
記目的を達成することができるという効果がある。
As described above, the present invention reduces the slip resistance between a crystal and a crucible by forming a gap between the single crystal and the crucible, and controls the convection of the raw material melt. And the above object of easily obtaining a large single crystal can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の(実施例1)に示すFIG. 1 is shown in (Example 1) of the present invention.

【図6】のA−A断面の説明図である。FIG. 6 is an explanatory view of a section taken along line AA of FIG.

【図2】FIG. 2

【図3】本発明の(実施例2)に示すFIG. 3 shows (Example 2) of the present invention.

【図6】のA−A断面の説明図である。FIG. 6 is an explanatory view of a section taken along line AA of FIG.

【図4】 (比較例1)におけるFIG. 4 shows Comparative Example 1

【図6】のA−A断面の説明図である。FIG. 6 is an explanatory view of a section taken along line AA of FIG.

【図5】 本発明で使用する装置の基本構成を示す。FIG. 5 shows a basic configuration of an apparatus used in the present invention.

【図6】(実施例1)(実施例2)(比較例1)におけ
る基本装置構成を示す。
FIG. 6 shows a basic device configuration in (Example 1), (Example 2), and (Comparative Example 1).

【符号の説明】[Explanation of symbols]

1;高圧容器 2;ヒーター 3;ルツボ 4;ルツボ受け 5;支持軸 6;原料融液 7;液体封止層 8;結晶引き上げ軸 9;種結晶 10;単結晶 11;高圧不活性ガス 12;ガス導入管 13;トルク計1; high-pressure container 2; heater 3; crucible 4; crucible supporting 5; support shaft 6; raw material melt 7; liquid sealant layer 8; crystal pulling shaft 9; seed crystal 10; single crystal 11; high pressure inert gas 12 ; Gas inlet pipe 13; torque meter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧容器内、不活性雰囲気下に配置した
ルツボ中で、原料と液体封止を融解させ、次いで、前
記原料融液に種結晶を浸漬してルツボと種結晶をそれぞ
れ回転させながら加熱温度を制御し、所定直径の単結晶
の成長を行う化合物半導体単結晶の製造方法において、
種結晶の回転中心よりルツボの内壁までの同一水平面に
おける最短距離と最長距離の比(最短距離/最長距離)
が、0.75以上0.99以下となるようにして単結晶
の成長を行うことを特徴とする化合物半導体単結晶の製
造方法。
1. A high-pressure vessel, in a crucible placed under an inert atmosphere, to melt the raw material and a liquid sealing agent, then each rotating the crucible and the seed crystal by immersing the seed crystal to the raw material melt In the method of manufacturing a compound semiconductor single crystal in which the heating temperature is controlled while growing, a single crystal having a predetermined diameter is grown,
Ratio of the shortest distance to the longest distance on the same horizontal plane from the center of rotation of the seed crystal to the inner wall of the crucible (shortest distance / longest distance)
Wherein the single crystal is grown so as to be 0.75 or more and 0.99 or less.
JP6013099A 1994-01-12 1994-01-12 Method for manufacturing compound semiconductor single crystal Expired - Lifetime JP2733898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6013099A JP2733898B2 (en) 1994-01-12 1994-01-12 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013099A JP2733898B2 (en) 1994-01-12 1994-01-12 Method for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH07206584A JPH07206584A (en) 1995-08-08
JP2733898B2 true JP2733898B2 (en) 1998-03-30

Family

ID=11823715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013099A Expired - Lifetime JP2733898B2 (en) 1994-01-12 1994-01-12 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2733898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291777A (en) * 1994-04-21 1995-11-07 Toshiba Corp Apparatus and method for producing semiconductor single crystal
KR101198163B1 (en) * 2011-01-26 2012-11-12 디케이아즈텍 주식회사 A Kyropoulos sapphire single crystal growing device by using elliptic crucible

Also Published As

Publication number Publication date
JPH07206584A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP3885245B2 (en) Single crystal pulling method
JPH04305091A (en) Method and device for pulling up single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JPH04321590A (en) Growing method of single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH07291788A (en) Production of compound semiconductor single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH0341432B2 (en)
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04187585A (en) Device of growing crystal
JPH07206589A (en) Method for producing compound semiconductor single crystal
JPH0559873B2 (en)
JPH07291787A (en) Production of compound semiconductor single crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal
JPS63285183A (en) Production of compound semiconductor single crystal
JPH03261694A (en) Pull method for single crystal and system therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728