JP2690419B2 - Single crystal growing method and apparatus - Google Patents

Single crystal growing method and apparatus

Info

Publication number
JP2690419B2
JP2690419B2 JP25915391A JP25915391A JP2690419B2 JP 2690419 B2 JP2690419 B2 JP 2690419B2 JP 25915391 A JP25915391 A JP 25915391A JP 25915391 A JP25915391 A JP 25915391A JP 2690419 B2 JP2690419 B2 JP 2690419B2
Authority
JP
Japan
Prior art keywords
single crystal
vertical container
vertical
support
inverted conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25915391A
Other languages
Japanese (ja)
Other versions
JPH0597566A (en
Inventor
伸介 藤原
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25915391A priority Critical patent/JP2690419B2/en
Publication of JPH0597566A publication Critical patent/JPH0597566A/en
Application granted granted Critical
Publication of JP2690419B2 publication Critical patent/JP2690419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Si、Ge等の半導体、Ga
As,InP等のIII-V 族化合物半導体、CdTe等のII-VI 族化
合物半導体、BSO,LBO 等の酸化物などの単結晶を垂直ブ
リッジマン方法又はグラジエントフリージング法により
育成する方法及びその装置に関する。
The present invention relates to semiconductors such as Si and Ge, and Ga.
Method and apparatus for growing single crystals of III-V group compound semiconductors such as As, InP, II-VI group compound semiconductors such as CdTe, oxides such as BSO, LBO by the vertical Bridgman method or gradient freezing method .

【0002】[0002]

【従来の技術】上記の単結晶は、従来、垂直ブリッジマ
ン法、水平ブリッジマン法、グラジエントフリージング
法、引き上げ法などにより育成されてきた。垂直ブリッ
ジマン法は、原料融液を収容した縦型容器を温度勾配炉
内に配置し、該容器を下方に移動することにより原料融
液を下方から冷却固化して単結晶を育成する方法であ
る。グラジエントフリージング法は、原料融液を収容し
た縦型容器を温度勾配炉内に配置し、炉内の温度分布を
変化させて原料融液を下方から冷却固化する方法であ
る。これらの方法によれば、縦型容器の側壁に沿った円
柱状の単結晶を容易に育成することができる。
2. Description of the Related Art The above single crystal has been conventionally grown by a vertical Bridgman method, a horizontal Bridgman method, a gradient freezing method, a pulling method or the like. The vertical Bridgman method is a method in which a vertical container containing a raw material melt is placed in a temperature gradient furnace, and the raw material melt is cooled and solidified from below by moving the container downward to grow a single crystal. is there. The gradient freezing method is a method of arranging a vertical container containing a raw material melt in a temperature gradient furnace and changing the temperature distribution in the furnace to cool and solidify the raw material melt from below. According to these methods, a columnar single crystal along the side wall of the vertical container can be easily grown.

【0003】ところで、縦型容器の底部は、種結晶を収
容したり、発生する結晶核の数を制限して単結晶の育成
を図る目的で、一般に逆円錐形としたり、その先端に細
管を付設した形状を採用している。そして、これらの縦
型容器を支持する方法としては、容器の安定支持のため
に、容器の底全体を収容するサセプタが一般に使用され
ている。この種のサセプタは、容器の底部からの熱流を
促進し、容器内にも縦方向の熱流の形成を促進するた
め、良質の結晶の育成に適している。従って、サセプタ
の材質は、熱伝導性の良いものが使用される。
By the way, the bottom of a vertical container is generally of an inverted conical shape for the purpose of accommodating a seed crystal or growing a single crystal by limiting the number of crystal nuclei generated, or a thin tube at its tip. The attached shape is used. As a method of supporting these vertical containers, a susceptor for accommodating the entire bottom of the container is generally used for stable support of the container. This type of susceptor is suitable for growing good-quality crystals because it promotes the heat flow from the bottom of the container and promotes the formation of a vertical heat flow in the container. Therefore, the material of the susceptor having good thermal conductivity is used.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のサセプ
タは、縦型容器の逆円錐形部分の融液が固化する時、即
ち、成長結晶の直径を増加させる工程において、図3の
矢印ように、熱流がサセプタを介して流れるため、固液
界面が点線のように凹状態になる。即ち、サセプタによ
る均熱効果が奏されて、凹状の固液界面が形成される。
結晶成長において固液界面が凹状態になると、容器壁近
くで発生する結晶粒界が成長結晶に取り込まれ、単結晶
化を阻害する原因となる。また、この部分には、小傾角
粒界が多数発生する。他方、縦型容器を上方で支持し、
サセプタを使用しない場合や、サセプタを熱伝導性の低
い材質で作る場合は、縦方向の熱流が小さくなり、ま
た、固液界面で発生する固化熱の影響もあり、固液界面
は凹になり易い。上記の方法において、固液界面の凹状
態を回避するためには、成長速度を小さくし、凝固熱の
発生を小さく抑えるか、ヒータや断熱材等の炉内構造及
び最適温度プロファイルを最適化することによっても可
能であるが、一般的には困難である。そこで、本発明
は、上記の問題点を解消し、成長結晶の直径を増加させ
る工程及び直胴部を形成する工程を含め、固液界面を常
時凸状態に維持することにより、結晶欠陥の混入を防止
し、良質の単結晶の育成を可能にする育成方法及びその
装置を提供しようとするものである。
However, the above-mentioned susceptor has a structure as shown by an arrow in FIG. 3 when the melt of the inverted conical portion of the vertical container is solidified, that is, in the step of increasing the diameter of the grown crystal. Since the heat flow flows through the susceptor, the solid-liquid interface becomes concave as shown by the dotted line. That is, the soaking effect is produced by the susceptor, and a concave solid-liquid interface is formed.
When the solid-liquid interface becomes concave during crystal growth, the crystal grain boundaries generated near the container wall are taken into the growing crystal, which becomes a cause of inhibiting single crystallization. In addition, many small-angle grain boundaries are generated in this portion. On the other hand, supporting the vertical container above,
When the susceptor is not used or when the susceptor is made of a material with low thermal conductivity, the heat flow in the vertical direction is small, and the solidification-liquid heat generated at the solid-liquid interface also causes the solid-liquid interface to be concave. easy. In the above method, in order to avoid the concave state of the solid-liquid interface, the growth rate is reduced to suppress the generation of heat of solidification, or the furnace internal structure such as the heater and the heat insulating material and the optimum temperature profile are optimized. It is possible, but generally difficult. Therefore, the present invention eliminates the above-mentioned problems, and includes the process of increasing the diameter of the grown crystal and the process of forming the straight body part, and by constantly maintaining the solid-liquid interface in a convex state, the crystal defects are mixed. Therefore, the present invention aims to provide a growth method and an apparatus therefor capable of preventing the above phenomenon and enabling the growth of a high quality single crystal.

【0005】[0005]

【課題を解決するための手段】本発明は、逆円錐形底部
の先端に小さな円筒形突出部を設けた縦型容器に原料を
収容し、温度勾配炉内で下方より冷却固化して単結晶を
育成する垂直ブリッジマン方法又はグラジエントフリー
ジング法において、固液界面が縦型容器の直胴部に至る
までは、上記円筒形突出部を支持棒に固定して縦型容器
を支持し、逆円錐形底部を実質的に露出した状態に保持
し、次いで、直胴部形成工程においては、支持台の上面
で逆円錐形底部を受けて該底部から支持台を介して熱を
放散させることを特徴とする単結晶の育成方法、及び、
縦型容器の逆円錐形底部の先端に小さな円筒形突出部を
設け、該縦型容器を温度勾配炉内に降下可能に配置した
垂直ブリッジマン装置又はグラジエントフリージング装
置において、上記円筒形突出部を嵌合させて縦型容器を
支持するための凹部を上端に設けた支持棒と、該支持棒
用の貫通孔を有し、上記逆円錐形底部の外面と接触可能
な受面を有する支持台とを備え、該支持棒及び該支持台
に独立した昇降手段を付設したことを特徴とする単結晶
の育成装置である。
According to the present invention, a raw material is contained in a vertical container having a small cylindrical protrusion at the tip of an inverted conical bottom, and the solid is cooled and solidified from below in a temperature gradient furnace to form a single crystal. In the vertical Bridgman method or the gradient freezing method of growing the, until the solid-liquid interface reaches the straight body part of the vertical container, the cylindrical protrusion is fixed to a support rod to support the vertical container, and an inverted cone. Characterized in that the shaped bottom is kept substantially exposed, and then, in the straight body forming step, the upper surface of the support receives the inverted conical bottom to dissipate heat from the bottom through the support. And a method for growing a single crystal, and
In a vertical Bridgman device or a gradient freezing device in which a small cylindrical protrusion is provided at the tip of the inverted conical bottom of the vertical container, and the vertical container is arranged to be able to descend in a temperature gradient furnace, the cylindrical protrusion is A support bar having a support rod having a recess at the upper end for fitting and supporting the vertical container, and a receiving surface having a through hole for the support rod and capable of contacting the outer surface of the inverted conical bottom portion. And a support unit and a support table provided with independent lifting means.

【0006】[0006]

【作用】本発明者等は、図3のような、縦型容器の逆円
錐形底部全体を熱伝導性の良いサセプタで支持する場合
に、図中実線のように熱流が流れて、固液界面が点線の
凹状態を示すことを確認し、次いで、図4のような、逆
円錐形底部に突出させた細管のみを熱伝導性の良い支持
棒で支持して固液界面を調べたところ、熱流は実線のよ
うに支持棒を介して流れ、固液界面は点線のように凸状
態を示すことを見いだした。このように固液界面を凸状
態に保持すると、容器壁付近で発生する結晶欠陥の成長
結晶への侵入を防止することができる。しかし、上記細
管を支持する支持棒を介して下方に流れる熱流が小さい
ために、成長結晶の直胴部形成工程では凝固熱を有効に
下方に逃がすことができず、固液界面が凹状態になる危
険性が高く、結晶欠陥の侵入を確実に防止することが困
難であった。その際に、容器の下降速度、即ち、結晶の
成長速度を小さくして凝固熱の発生を抑えれば、多結晶
化の防止はある程度防ぐことができるが、必ずしも十分
でないし、生産性を著しく損なう。
When the present inventors support the entire inverted cone-shaped bottom of a vertical container with a susceptor having good thermal conductivity as shown in FIG. 3, a heat flow flows as shown by the solid line in the figure, and solid-liquid It was confirmed that the interface showed a concave state of a dotted line, and then, as shown in FIG. 4, only the thin tube protruding to the bottom of the inverted conical shape was supported by a supporting rod having good thermal conductivity and the solid-liquid interface was examined. , It was found that the heat flow flows through the support rod as shown by the solid line, and the solid-liquid interface shows a convex state as shown by the dotted line. By keeping the solid-liquid interface in a convex state in this way, it is possible to prevent crystal defects generated near the container wall from entering the growing crystal. However, since the heat flow that flows downward through the supporting rod that supports the thin tube is small, the heat of solidification cannot be effectively escaped downward in the process of forming the straight body portion of the grown crystal, and the solid-liquid interface becomes concave. It is difficult to reliably prevent the entry of crystal defects. At that time, if the rate of descending the container, that is, the growth rate of crystals is reduced to suppress the heat of solidification, the prevention of polycrystallization can be prevented to some extent, but it is not always sufficient and the productivity is remarkably increased. Spoil.

【0007】そこで、本発明者等は、図3と図4の長所
を生かして、図1のブリッジマン装置を発明するに至っ
た。図1は、本発明の1具体例であるブリッジマン装置
の断面図である。縦型容器1は逆円錐形底部2の先端に
小さな円筒形突出部3を有し、縦型容器1を支持する支
持棒4の上端には該円筒形突出部3と嵌合する凹部5を
設け、上記逆円錐形底部2の外面を接触して支持するた
めに、支持台6に受面7を設け、かつ、支持台6には支
持棒4を通すための貫通孔8を設け、支持棒4と支持台
6を独立して昇降回転する手段(図示せず)を付設す
る。これらの周囲にはヒータ11〜14を配置して温度
勾配炉を形成し、断熱材16で内張りしたチャンバー1
5に収容する。
Therefore, the present inventors have invented the Bridgman device of FIG. 1 by taking advantage of the advantages of FIGS. 3 and 4. FIG. 1 is a cross-sectional view of a Bridgman device which is one example of the present invention. The vertical container 1 has a small cylindrical protrusion 3 at the tip of the inverted conical bottom 2, and a support rod 4 supporting the vertical container 1 has a recess 5 at the upper end for fitting with the cylindrical protrusion 3. In order to support the outer surface of the inverted conical bottom part 2 in contact with it, the support base 6 is provided with a receiving surface 7, and the support base 6 is provided with a through hole 8 for allowing the support rod 4 to pass therethrough. A means (not shown) for independently raising and lowering the rod 4 and the support base 6 is attached. The heaters 11 to 14 are arranged around these to form a temperature gradient furnace, and the chamber 1 lined with a heat insulating material 16 is provided.
5 housed.

【0008】次に、図1のブリッジマン装置を使用して
単結晶を育成する方法を説明する。縦型容器1内に原料
融液9を収容し、必要に応じて液体封止剤を収容する
か、容器の上端を閉じ、その周囲のヒータ11〜14に
より軸方向に所定の温度勾配を形成し、支持台6を図1
のように縦型容器1から下方に離した状態で、支持棒4
を回転させながら徐々に下方に移動することにより、原
料融液10を下部より冷却固化し、固液界面が円筒形突
出部3から逆円錐形底部2に至り、図1のように成長結
晶の直径を増加させる。この間、固液界面で発生する凝
固熱を含めて、熱流は主に円筒形突出部3を経て支持棒
4に流れるため、固液界面は図のように凸状態を示す。
固液界面が縦型容器1の直胴部に到達する前後で、支持
台6を上方に上げて縦型容器1の逆円錐形底部2の外面
を接触させて図2の状態を保ち、支持台6と支持棒4を
一体として回転させながら徐々に下方に移動して結晶の
直胴部を形成する。
Next, a method for growing a single crystal by using the Bridgman apparatus shown in FIG. 1 will be described. The raw material melt 9 is housed in the vertical container 1 and a liquid sealant is housed if necessary, or the upper end of the container is closed, and a predetermined temperature gradient is formed in the axial direction by the heaters 11 to 14 around the container. Then, the support base 6 is shown in FIG.
As shown in FIG.
By gradually moving downward while rotating, the raw material melt 10 is cooled and solidified from the lower part, and the solid-liquid interface reaches from the cylindrical protrusion 3 to the inverted conical bottom 2 and, as shown in FIG. Increase the diameter. During this time, the heat flow including the solidification heat generated at the solid-liquid interface mainly flows through the cylindrical protrusion 3 to the support rod 4, so that the solid-liquid interface shows a convex state as shown in the figure.
Before and after the solid-liquid interface reaches the straight body part of the vertical container 1, the support table 6 is raised upward to bring the outer surface of the inverted conical bottom part 2 of the vertical container 1 into contact with the state of FIG. The table 6 and the support rod 4 are integrally rotated, and gradually moved downward to form a straight body portion of the crystal.

【0009】このようにして、成長結晶の固液界面の直
径が比較的小さく、熱流が少ないときには、支持台6を
縦型容器1から下方に離した状態に保ち、その後、成長
結晶の直胴部を形成するときには、支持台6を縦型容器
1の逆円錐形底部2に接触させることにより、支持台6
及び支持棒4を介して多量の熱流を下方に逃がし、常時
固液界面を凸状態に維持することができる。その結果、
結晶欠陥の混入が防止され、成長速度を落すことなく、
良質の単結晶を容易に育成することが可能になった。以
上、図1の装置をブリッジマン装置として説明したが、
グラジエントフリージング法を実施するためには、図1
の装置において、縦型容器1を固定し、ヒータ11〜1
4により形成される温度勾配を変化させることにより、
原料融液を下方より冷却固化して単結晶を育成すること
により、ブリッジマン法と同様に単結晶を製造すること
が可能である。
In this way, when the diameter of the solid-liquid interface of the grown crystal is relatively small and the heat flow is small, the support base 6 is kept in a state of being separated downward from the vertical container 1, and then the straight body of the grown crystal is kept. When forming the portion, the supporting table 6 is brought into contact with the inverted conical bottom part 2 of the vertical container 1 to thereby form the supporting table 6
Also, a large amount of heat flow can be escaped downward via the support rod 4, and the solid-liquid interface can always be maintained in a convex state. as a result,
The inclusion of crystal defects is prevented and the growth rate is not reduced,
It has become possible to easily grow a high quality single crystal. Although the device of FIG. 1 has been described as a Bridgman device,
In order to carry out the gradient freezing method, FIG.
In the device, the vertical container 1 is fixed and the heaters 11 to 1
By varying the temperature gradient formed by 4,
By cooling and solidifying the raw material melt from below to grow a single crystal, it is possible to produce a single crystal as in the Bridgman method.

【0010】[0010]

【実施例】図1の装置を使用してCdTe単結晶を育成
した。直径36mmの石英製ルツボに400gのCdT
e多結晶を投入し、ルツボ内を1×10-6Torrまで
排気してから、ルツボを石英製キャップで蓋をした。こ
のルツボの下方突出部をモリブデン製支持棒先端の凹部
に嵌合し、カーボン製支持台から離した状態でルツボを
チャンバ中央に配置した。そして、4つのヒータで炉内
に縦方向の温度勾配を形成し、まず、炉内の高温部にル
ツボを置いて原料を溶融した。次いで、℃/mmの温度
勾配の中を3mm/hrの下降速度でルツボを下方に移
動して結晶成長を行い、結晶の固液界面がルツボの直胴
部に進んだときに、支持台を上方に移動してルツボ底部
と接触させ、その状態を保持しながら3mm/hrの下
降速度でルツボを下方に移動して結晶の直胴部を形成し
た。得られたCdTe結晶は、従来、増径部で多く見ら
れた小斜角粒界を全く確認することができず、結晶性に
優れた良質のCdTe単結晶を得ることができた。ま
た、成長縞から固液界面の形状が常時凸状態にあったこ
とが確認された。
EXAMPLE A CdTe single crystal was grown using the apparatus shown in FIG. 400 g of CdT in a 36 mm diameter quartz crucible
e After adding polycrystal and evacuating the crucible to 1 × 10 −6 Torr, the crucible was covered with a quartz cap. The crucible was placed in the center of the chamber with the lower protrusion of the crucible fitted into the recess of the tip of the molybdenum support rod and separated from the carbon support. Then, a temperature gradient in the vertical direction was formed in the furnace by the four heaters, and first, the crucible was placed in a high temperature portion in the furnace to melt the raw material. Then, the crucible was moved downward at a descending rate of 3 mm / hr in a temperature gradient of ° C / mm to perform crystal growth, and when the solid-liquid interface of the crystal proceeded to the straight body part of the crucible, the support base was moved. The crucible was moved upward and brought into contact with the bottom of the crucible. While maintaining this state, the crucible was moved downward at a descending speed of 3 mm / hr to form a straight body portion of the crystal. In the obtained CdTe crystal, no small-angle grain boundary, which was often seen in the increased diameter region in the past, could be confirmed at all, and a high-quality CdTe single crystal having excellent crystallinity could be obtained. It was also confirmed from the growth stripes that the shape of the solid-liquid interface was always convex.

【0011】[0011]

【発明の効果】本発明は、上記の構成を採用することに
より、固液界面の形状を常に上に凸の状態を保持するこ
とができ、その結果、結晶欠陥の侵入が防止され、結晶
性に優れた単結晶を歩留り良く育成することができるよ
うになった。
According to the present invention, by adopting the above-mentioned constitution, the shape of the solid-liquid interface can always be kept in a convex state, and as a result, the intrusion of crystal defects can be prevented and the crystallinity can be improved. It has become possible to grow excellent single crystals with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1具体例であるブリッジマン装置の断
面図である。
FIG. 1 is a cross-sectional view of a Bridgman device which is one example of the present invention.

【図2】図1の装置で結晶の直胴部を形成するときの、
支持台と縦型容器の位置関係を示した図である。
2 is a view of forming a straight body part of a crystal with the apparatus of FIG.
It is a figure showing the physical relationship between a support and a vertical container.

【図3】縦型容器の底部全体をサセプタで支持するとき
の、熱流の流れと固液界面の関係を示した説明図であ
る。
FIG. 3 is an explanatory diagram showing the relationship between the flow of heat flow and the solid-liquid interface when the entire bottom of the vertical container is supported by the susceptor.

【図4】縦型容器底部先端の突出部のみを支持棒で支持
するときの、熱流の流れと固液界面の関係を示した説明
図である。
FIG. 4 is an explanatory view showing the relationship between the flow of heat flow and the solid-liquid interface when only the protruding portion at the tip of the bottom of the vertical container is supported by the support rod.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 逆円錐形底部の先端に小さな円筒形突出
部を設けた縦型容器に原料を収容し、温度勾配炉内で下
方より冷却固化して単結晶を育成する垂直ブリッジマン
方法又はグラジエントフリージング法において、固液界
面が縦型容器の直胴部に至るまでは、上記円筒形突出部
を支持棒に固定して縦型容器を支持し、逆円錐形底部を
実質的に露出した状態に保持し、次いで、直胴部形成工
程においては、支持台の上面で逆円錐形底部を受けて該
底部から支持台を介して熱を放散させることを特徴とす
る単結晶の育成方法。
1. A vertical Bridgman method in which a raw material is contained in a vertical container provided with a small cylindrical protrusion at the tip of an inverted conical bottom, and a single crystal is grown by cooling and solidifying from below in a temperature gradient furnace, or In the gradient freezing method, until the solid-liquid interface reaches the straight body part of the vertical container, the cylindrical protrusion is fixed to a support rod to support the vertical container, and the inverted conical bottom is substantially exposed. A method for growing a single crystal, which is characterized in that the single crystal is held in a state, and then, in the straight body forming step, the inverted conical bottom is received on the upper surface of the support and the heat is dissipated from the bottom through the support.
【請求項2】 縦型容器の逆円錐形底部の先端に小さな
円筒形突出部を設け、該縦型容器を温度勾配炉内に降下
可能に配置した垂直ブリッジマン装置又はグラジエント
フリージング装置において、上記円筒形突出部を嵌合さ
せて縦型容器を支持するための凹部を上端に設けた支持
棒と、該支持棒用の貫通孔を有し、上記逆円錐形底部の
外面と接触可能な受面を有する支持台とを備え、該支持
棒及び該支持台に独立した昇降手段を付設したことを特
徴とする単結晶の育成装置。
2. A vertical Bridgman apparatus or a gradient freezing apparatus in which a small cylindrical protrusion is provided at the tip of an inverted conical bottom of a vertical container, and the vertical container is arranged so as to be lowered in a temperature gradient furnace. A support rod having a recess at the upper end for supporting a vertical container by fitting a cylindrical protrusion, and a through hole for the support rod, which is capable of contacting the outer surface of the inverted conical bottom. A single crystal growth apparatus comprising: a supporting base having a surface, and the supporting rod and the supporting base provided with independent lifting means.
JP25915391A 1991-10-07 1991-10-07 Single crystal growing method and apparatus Expired - Fee Related JP2690419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25915391A JP2690419B2 (en) 1991-10-07 1991-10-07 Single crystal growing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25915391A JP2690419B2 (en) 1991-10-07 1991-10-07 Single crystal growing method and apparatus

Publications (2)

Publication Number Publication Date
JPH0597566A JPH0597566A (en) 1993-04-20
JP2690419B2 true JP2690419B2 (en) 1997-12-10

Family

ID=17330079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25915391A Expired - Fee Related JP2690419B2 (en) 1991-10-07 1991-10-07 Single crystal growing method and apparatus

Country Status (1)

Country Link
JP (1) JP2690419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121064A (en) * 2013-04-10 2015-12-02 斯奈克玛 Monocrystalline smelting mould

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679151A (en) * 1995-03-16 1997-10-21 Kabushiki Kaisha Kobe Seiko Sho Method for growing single crystal
JP2011195375A (en) * 2010-03-19 2011-10-06 Fuji Electric Co Ltd Method and apparatus for growing single crystal
CN103088409B (en) * 2013-01-31 2015-03-25 中国科学院上海技术物理研究所 Apparatus for vertical pulling growth of CdZnTe monocrystals, and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121064A (en) * 2013-04-10 2015-12-02 斯奈克玛 Monocrystalline smelting mould
CN105121064B (en) * 2013-04-10 2017-03-08 斯奈克玛 Monocrystalline melting mould

Also Published As

Publication number Publication date
JPH0597566A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US6334897B1 (en) Method of manufacturing compound semiconductor single crystal
JP2009149452A (en) Method for growing semiconductor crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JPH05194073A (en) Growth of compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH08104591A (en) Apparatus for growing single crystal
JPH0867593A (en) Method for growing single crystal
JPH07291781A (en) Method for growing single crystal
JP2019172525A (en) Seed crystal for growing single crystal
JP2004161559A (en) Apparatus for manufacturing compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees