JPH07291781A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH07291781A
JPH07291781A JP10621294A JP10621294A JPH07291781A JP H07291781 A JPH07291781 A JP H07291781A JP 10621294 A JP10621294 A JP 10621294A JP 10621294 A JP10621294 A JP 10621294A JP H07291781 A JPH07291781 A JP H07291781A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
seed crystal
crystal
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10621294A
Other languages
Japanese (ja)
Inventor
Akira Noda
朗 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP10621294A priority Critical patent/JPH07291781A/en
Publication of JPH07291781A publication Critical patent/JPH07291781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the production yield of a single crystal by subjecting the seed crystal housing part of a crucible to specific constitution in single crystal growth by a perpendicular slow cooling method, thereby stably maintaining the shape of a solid-liquid boundary at a projecting state. CONSTITUTION:The following means are used in the method for growing the single crystal from a seed crystal by putting the seed crystal and raw materials for the single crystal into the crucible and gradually lowering temp. after once melting the raw materials for the single crystal: A heat sink 6 is mounted at the part of the crucible where the seed crystal 2 is housed and the spacing between this part where the seed crystal is housed and the heat sink 6 is filled with low melting metals (e.g.: Pb, Au, Ga, Sn, In, Al, etc.) 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直徐冷法(VGF
法, Vertical Gradient Freezing )による単結晶成長
方法に関するものであり、特に化合物半導体単結晶の成
長方法に関する。
FIELD OF THE INVENTION The present invention relates to a vertical gradual cooling method (VGF).
Method, Vertical Gradient Freezing), and more particularly to a method for growing a compound semiconductor single crystal.

【0002】[0002]

【従来の技術】半導体融液をるつぼ内で下部から上方に
向けて固化させて、単結晶を成長する垂直徐冷法(VG
F法)は、比較的大口径で、低転位の単結晶を作製でき
ることから、III−V族化合物半導体単結晶の成長方法
として注目されている。
2. Description of the Related Art A vertical slow cooling method (VG) for growing a single crystal by solidifying a semiconductor melt in a crucible from the lower part to the upper part.
The F method) has attracted attention as a method for growing a III-V compound semiconductor single crystal because it can produce a single crystal with a relatively large diameter and low dislocation.

【0003】以下に従来のVGF法による、III−V族
化合物半導体単結晶の成長を図1に示したVGF炉を例
にとって説明する。
The growth of a III-V group compound semiconductor single crystal by the conventional VGF method will be described below by taking the VGF furnace shown in FIG. 1 as an example.

【0004】底部が漏斗状をなするつぼ1内に種結晶2
と多結晶原料を入れ、窒化ボロン製のサセプター3によ
って支持し、石英アンプル4内に真空封入する。そし
て、これを円筒状ヒーター5を有する炉内に設置し、ヒ
ーター5に給電して、種結晶2より上部が融点以上にな
るような温度勾配を形成し、温度を徐々に下げて単結晶
を成長させるものである。
A seed crystal 2 is placed in a crucible 1 having a funnel-shaped bottom.
Then, the polycrystalline raw material is charged, supported by a boron nitride susceptor 3, and vacuum-sealed in a quartz ampoule 4. Then, this is placed in a furnace having a cylindrical heater 5, and power is supplied to the heater 5 to form a temperature gradient such that the upper part of the seed crystal 2 is above the melting point, and the temperature is gradually lowered to form a single crystal. It grows.

【0005】ところで、るつぼを支持する方法として
は、一般にるつぼの底全体を収容するサセプターが使用
されている。この種のサセプターは、るつぼ内の熱流を
縦方向に形成するために熱伝導度の良いものが使用され
る。
By the way, as a method for supporting the crucible, a susceptor for accommodating the entire bottom of the crucible is generally used. This type of susceptor has good thermal conductivity in order to form the heat flow in the crucible in the vertical direction.

【0006】しかし、上記のサセプターでは、るつぼの
増径部分の融液が固化するとき熱流がサセプターを介し
て流れるため、固液界面が融液に対して凹状態となり易
い。結晶成長において固液界面が凹状態となると、転位
が結晶の中心部に集積しやすく、高密度に集積した場
合、その位置から結晶が多結晶化してしまう。単結晶を
得るためには固液界面が平坦か、融液に対して凸状態と
なるのが望ましい。しかし、そのようにすることは、上
記の理由により従来の成長方法では難しかった。
However, in the above-mentioned susceptor, since the heat flow flows through the susceptor when the melt in the increased diameter portion of the crucible solidifies, the solid-liquid interface is likely to be concave with respect to the melt. If the solid-liquid interface becomes concave during crystal growth, dislocations are likely to accumulate in the central part of the crystal, and if they are densely integrated, the crystal becomes polycrystal from that position. In order to obtain a single crystal, it is desirable that the solid-liquid interface be flat or convex with respect to the melt. However, it was difficult to do so by the conventional growth method for the above reasons.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解決し、固液界面の形状を安定して凸状態に
維持することにより、単結晶の製造歩留りを向上させる
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and improve the production yield of single crystals by maintaining the solid-liquid interface shape in a stable and convex state. is there.

【0008】[0008]

【課題を解決するための手段及び作用】すなわち、本発
明は、るつぼ内に種結晶および単結晶用原料を入れ、該
単結晶用原料をいったん融解させてから温度を徐々に下
げることにより該種結晶側から単結晶を成長させる方法
において、該るつぼの種結晶収容部分にヒートシンクを
取付け、かつ該種結晶収容部分と該ヒートシンクとの間
を低融点の金属で満たしたことを特徴とする単結晶成長
方法を提供するものである。
Means and Actions for Solving the Problems That is, according to the present invention, a seed crystal and a single crystal raw material are placed in a crucible, the single crystal raw material is once melted, and then the temperature is gradually lowered. In the method of growing a single crystal from the crystal side, a heat sink is attached to the seed crystal containing portion of the crucible, and the space between the seed crystal containing portion and the heat sink is filled with a low melting point metal. It provides a growth method.

【0009】また、上記低融点の金属が Pb,Au,Ga,Sn,I
n,Al,Ge,Cu,Ag,Sc のいずれか1種またはいずれか2種
以上の合金を用いることを特徴とする単結晶成長方法を
提供するものである。
The low melting point metal is Pb, Au, Ga, Sn, I.
It is intended to provide a single crystal growth method characterized by using an alloy of any one of n, Al, Ge, Cu, Ag, and Sc or two or more of them.

【0010】本発明では図2に示すように、ヒートシン
ク6とるつぼの種結晶収容部分との間を低融点の金属7
で満たしているので、るつぼとヒートシンクの間の隙間
がなくなり熱は効率よくヒートシンクに伝わることがで
きる。そのため、全体としての熱流は種結晶側に向かう
ことになり、固液界面は融液に対して凸状態となる。
In the present invention, as shown in FIG. 2, a metal 7 having a low melting point is provided between the heat sink 6 and the seed crystal accommodating portion of the crucible.
Since it is filled with, there is no gap between the crucible and the heat sink, and heat can be efficiently transferred to the heat sink. Therefore, the heat flow as a whole goes toward the seed crystal side, and the solid-liquid interface becomes convex with respect to the melt.

【0011】[0011]

【実施例】るつぼの種結晶収容部分とグラファイト製の
ヒートシンクの間にGaを満たしたVGF装置を用いて
GaAs単結晶成長を行なった。使用したるつぼは、p
BN製、直径φ80mm、全長180mm、原料である
GaAs多結晶のチャージ量は1500gである。石英
アンプルに原料を投入したるつぼをセットし、1×10
-6Torrまで真空排気してから石英キャップで蓋をし
た。アンプルを炉内にセットし、炉内に縦方向に温度勾
配を形成し、原料を融解した。次いで、5℃/cmの温
度勾配で2mm/hの成長速度で冷却した。
Example A GaAs single crystal was grown using a VGF apparatus filled with Ga between a seed crystal accommodating portion of a crucible and a heat sink made of graphite. The crucible used is p
Made of BN, diameter φ80 mm, total length 180 mm, and the charge amount of the raw material GaAs polycrystal is 1500 g. Set the crucible into which the raw material was placed in a quartz ampoule and set it to 1 x 10
It was evacuated to -6 Torr and capped with a quartz cap. The ampoule was set in the furnace, a temperature gradient was formed in the furnace in the vertical direction, and the raw material was melted. Then, it was cooled at a growth rate of 2 mm / h with a temperature gradient of 5 ° C./cm.

【0012】育成後の結晶は種結晶から全長80mmに
亘って完全な単結晶が得られた。さらに、この結晶を縦
に切断してエッチングを行ない、成長縞から固液界面形
状を調べたところ、結晶のすべての領域において融液に
対して凸形状になっていることが確認できた。
As the grown crystal, a complete single crystal was obtained from the seed crystal over the entire length of 80 mm. Further, when this crystal was cut vertically and etched, and the solid-liquid interface shape was examined from the growth fringes, it was confirmed that the crystal had a convex shape with respect to the melt in all regions.

【0013】なお、上記実施例では低融点金属としてG
aを用いたが、これに限定されず Pb,Au,Ga,Sn,In,Al,G
e,Cu,Ag,Sc のいずれか1種またはいずれか2種以上の
合金を用いることができる。
In the above embodiment, G is used as the low melting point metal.
Although a is used, it is not limited to this, but Pb, Au, Ga, Sn, In, Al, G
Any one of e, Cu, Ag, and Sc, or any two or more alloys can be used.

【0014】[0014]

【発明の効果】本発明によれば、固液界面形状を融液に
対して常に凸形状に制御できるため、結晶欠陥の侵入が
防止でき、結晶性に優れた単結晶が得られる。また、転
位が集積することによって発生する多結晶化を防止でき
るため、単結晶を歩留まり良く育成することができる。
According to the present invention, the solid-liquid interface shape can be constantly controlled to be convex with respect to the melt, so that crystal defects can be prevented from entering and a single crystal having excellent crystallinity can be obtained. Further, since it is possible to prevent polycrystallization caused by the accumulation of dislocations, it is possible to grow a single crystal with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の垂直徐冷法による単結晶成長装置の一例
を示す図である。
FIG. 1 is a diagram showing an example of a conventional single crystal growth apparatus by a vertical slow cooling method.

【図2】本発明に係る単結晶成長方法の実施例を示す図
である。
FIG. 2 is a diagram showing an example of a single crystal growth method according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 るつぼ内に種結晶および単結晶用原料を
入れ、該単結晶用原料をいったん融解させてから温度を
徐々に下げることにより該種結晶側から単結晶を成長さ
せる方法において、該るつぼの種結晶収容部分にヒート
シンクを取付け、かつ該種結晶収容部分と該ヒートシン
クとの間を低融点の金属で満たしたことを特徴とする単
結晶成長方法。
1. A method for growing a single crystal from the seed crystal side by placing a seed crystal and a single crystal raw material in a crucible, melting the single crystal raw material once, and then gradually lowering the temperature. A single crystal growth method, characterized in that a heat sink is attached to a seed crystal housing portion of a crucible, and a space between the seed crystal housing portion and the heat sink is filled with a metal having a low melting point.
【請求項2】 上記低融点の金属が Pb,Au,Ga,Sn,In,A
l,Ge,Cu,Ag,Sc のいずれか1種またはいずれか2種以上
の合金であることを特徴とする請求項1記載の単結晶成
長方法。
2. The low melting point metal is Pb, Au, Ga, Sn, In, A.
The single crystal growth method according to claim 1, wherein the single crystal growth method is an alloy of any one of l, Ge, Cu, Ag, and Sc or any two or more thereof.
JP10621294A 1994-04-22 1994-04-22 Method for growing single crystal Pending JPH07291781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10621294A JPH07291781A (en) 1994-04-22 1994-04-22 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10621294A JPH07291781A (en) 1994-04-22 1994-04-22 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPH07291781A true JPH07291781A (en) 1995-11-07

Family

ID=14427852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10621294A Pending JPH07291781A (en) 1994-04-22 1994-04-22 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPH07291781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284267A (en) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd Method for producing gan crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284267A (en) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd Method for producing gan crystal

Similar Documents

Publication Publication Date Title
US20050223971A1 (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
JP3343615B2 (en) Bulk crystal growth method
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
JP3806791B2 (en) Method for producing compound semiconductor single crystal
EP1114884B1 (en) Process for producing compound semiconductor single crystal
US4561930A (en) Process for the production of coarsely crystalline silicon
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JPH07291781A (en) Method for growing single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP3633212B2 (en) Single crystal growth method
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2814796B2 (en) Method and apparatus for producing single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JP2004345888A (en) Production method for compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0867593A (en) Method for growing single crystal
JPH10212192A (en) Method for growing bulk crystal
Bagai et al. Growth of dislocation-free bulk silicon crystals
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal